Extending Human Presence Into the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Extending Human Presence Into the Solar System Extending Human Presence into the Solar System An Independent Study for The Planetary Society on Strategy for the Proposed U.S. Space Exploration Policy July 2004 Study Team William Claybaugh Owen K. Garriott (co-Team Leader) John Garvey Michael Griffin (co-Team Leader) Thomas D. Jones Charles Kohlhase Bruce McCandless II William O’Neil Paul A. Penzo The Planetary Society**65 N. Catalina Avenue, Pasadena, CA 91106-2301**(626) 793-5100** Fax (626) 793- 5528**E-mail: [email protected]** Web: http://planetary.org Table of Contents Study Team 2 Executive Summary 4 Overview of Exploration Plan 5 Introduction 6 Approach to Human Space Flight Program Design 9 Destinations for the Space Exploration Enterprise 9 International Cooperation 13 1. Roles 13 2. Dependence on International Partners 14 3. Regulatory Concerns 15 Safety and Exploration Beyond LEO 15 The Shuttle and the International Space Station 17 Attributes of the Shuttle 17 ISS Status and Utility 18 Launch Vehicle Options 18 U.S. Expendable Launch Vehicles 19 Foreign Launch Vehicles 20 Shuttle-Derived Vehicles 21 New Heavy-Lift Launcher 21 Conclusions and Recommendations 22 Steps and Stages 22 Departing Low Earth Orbit 22 Electric Propulsion 24 Nuclear Thermal Propulsion 25 Interplanetary Cruise 27 Human Factors 27 Gravitational Acceleration 27 Radiation 28 Social and Psychological Factors 28 System Design Implications 29 The Cost of Going to Mars 30 Development Costs 30 Production Costs 30 First Mission Cost 31 Subsequent Mission Cost 31 Total 30-Year Cost 31 Sensitivity Analysis 31 Cost Summary 32 Policy Implications and Recommendations for Shuttle Retirement 32 Overview, Significant Issues, and Recommended Studies 33 References 35 The Planetary Society**65 N. Catalina Avenue, Pasadena, CA 91106-2301**(626) 793-5100** Fax (626) 793- 5528**E-mail: [email protected]** Web: http://planetary.org Executive Summary we recommend phased development of the (modified 08/17/04) new CEV, with the “Block 1” version designed for LEO access and return only, We propose here a staged approach to with a later “Block 2” version suited to the human exploration beyond low Earth orbit requirements of interplanetary missions. The (LEO). We believe such a plan must be CEV would be launched on a new human- adopted if the overall funding profile is to be rated vehicle, possibly based on the existing kept within the bounds that are likely to be Shuttle solid rocket motor (SRM), acceptable to the many future Congresses augmented with a new liquid upper stage. and Administrations that must “sign on” to Such a system could be available before the Exploration Initiative if it is to succeed. 2010. With Orbiter retired after U.S. Core Stage 1 features the development of a complete and with international agreement new crew exploration vehicle (CEV), the to proceed, any remaining assembly tasks completion of the International Space can be completed by the heavy-lift launch Station (ISS), and an early retirement of the vehicle (HLLV) that must be developed to Shuttle Orbiter. Orbiter retirement would be support later stages of the Exploration made as soon as the ISS U.S. Core is Initiative, by use of expendable launch completed (perhaps only 6 or 7 flights) and vehicles (EELVs) as appropriate, or on the smallest number of additional flights suitable international vehicles such as necessary to satisfy our international Ariane or Proton. partners’ ISS requirements. Money saved by Stages 2 and 3 of the proposed early Orbiter retirement would be used to Exploration architecture will require heavy- accelerate the CEV development schedule to lift launch capability well in excess of the minimize or eliminate any hiatus in U.S. 20–25 metric ton capacity of the present capability to reach and return from LEO. evolved EELV fleet. We believe these Stage 2 requires the development of requirements can best be met, at least additional assets, including an uprated CEV initially, by means of designs that utilize capable of extended missions of many existing Space Shuttle components (e.g., the months in interplanetary space. Habitation, SRM and External Tank). Some proposed laboratory, consumables, and propulsion Shuttle-derived HLLVs have a payload modules, to enable human flight to the capacity in excess of 100 metric tons and vicinities of the Moon and Mars, the offer a near-term approach to meeting Lagrange points, and certain near-Earth Exploration requirements with a minimum asteroids. Development of human-rated of non-recurring investment. planetary landers is completed in Stage 3, Prompt studies to confirm our allowing human missions to the surface of recommendations are needed in areas of the Moon and Mars beginning around 2020. early CEV design for Block 1 capability to The overall plan is summarized in Table 1. and from LEO, to establish the minimum A key to this vision is the requirement to number of Shuttle flights necessary to meet complete assembly of the ISS and to retire international requirements, to find the best the Shuttle Orbiter, without in the process launch vehicle for the CEV, and to perform incurring another lengthy hiatus in the trade studies for HLLV needs and ability of the United States to conduct configuration. crewed spaceflight operations. To this end, The Planetary Society**65 N. Catalina Avenue, Pasadena, CA 91106-2301**(626) 793-5100** Fax (626) 793- 5528**E-mail: [email protected]** Web: http://planetary.org Overview of Exploration Plan Stage One, access to LEO, through 2010 • Shuttle-Orbiter return to flight (RTF), complete the ISS through at least “US Core Complete” • Select and demonstrate launch vehicle for CEV • Demonstrate early CEV use for crew transfer at the ISS • Negotiate with international partners to obtain best way to transport remaining heavy modules to the ISS • Retire Orbiter as soon as above steps are completed • Costs distributed across full Exploration window Stage Two, interplanetary cruise, through 2015 and beyond • Develop interplanetary cruise capability; uprated CEV, and necessary additional modules for the destination selected • Ensure HLLV available, probably a Shuttle-derived HLLV • Enable lunar orbit missions, remote sensing, Rovers with sample return • Enable visits to Sun-Earth-Lagrange #2, astronomy, etc. • Enable visit and study of near-earth objects (NEOs) • Enable visits to Mars vicinity, including moons Phobos and Deimos. Include remote sensors and Rover with return samples. Begin infrastructure placement. Select sites. • Select destinations as appropriate: science, public, other interests Stage Three, human surface landings, 2020 and beyond • Prepare infrastructure for moon and/or Mars bases • Build on thorough preparation in preceding stages • Initiate human landings at selected destinations • Plan for future solar system exploration The Planetary Society**65 N. Catalina Avenue, Pasadena, CA 91106-2301**(626) 793-5100** Fax (626) 793- 5528**E-mail: [email protected]** Web: http://planetary.org Introduction The CEV should be designed explicitly to have sufficient on-orbit life that it can be The recent Presidential Directive to focus resident at the ISS for extended periods, thus NASA’s future on exploration via "the Moon and on to Mars" has invigorated the space community and many of the general providing the emergency crew return public. Meeting these goals while remaining capability that, at present, is available only within realistic funding expectations is via the Russian Soyuz spacecraft. The long- foreseen as the major difficulty in meeting duration requirement is an obvious necessity this challenge. The Planetary Society has in an exploration vehicle. In addition, the commissioned this Report to encourage crew-return vehicle (CRV) function requires support for this new venture and to suggest a that it be capable of remaining stable and workable strategy for human exploration of quiescent, with minimal power drain, for the solar system, with the specific goal of long periods. placing humans on the Martian surface at We believe that there are significant the earliest possible moment, while allowing advantages, both for the United States and costs to be managed at reasonable levels. for the ISS partners, associated with It will be suggested below that the developing the new LEO transportation exploration can be conducted in three stages. capability as early as possible. All partners Stage 1 is the early development of a new would benefit from an earlier beginning of Crew Exploration Vehicle (CEV), as the the benefits of having larger multinational President has directed, accompanied by the crews on the ISS. The remaining heavy development of a launch vehicle to transport modules for the ISS might be better the CEV to and from low Earth orbit (LEO). transported to the ISS by means of a Shuttle- Success with the CEV will lead to missions derived HLLV, to be discussed below. It beyond LEO. We are recommending that should again be emphasized that the strong consideration be given to a specific proposed early development of a new LEO design using the Shuttle solid rocket motor transport system is intended to achieve (SRM), together with a new liquid earlier and more frequent access to the ISS propellant upper stage, for this role. We for all partners. The Orbiter would then be believe that this evolutionary development retired promptly to save the high costs of will be the quickest and least expensive path maintaining Orbiter operations, with the cost to realizing a U.S. capability to send humans savings making funds available for Stages 2 to LEO, and beyond, without the use of the and 3. The ISS can be used not only by our Shuttle Orbiter. This capability should be international partners but also by U.S. crews available well before 2010, the date by for tasks associated with solar system which the Orbiter is to be retired. By this exploration, including qualifying personnel time, the International Space Station (ISS) for long-duration missions and for studying should have reached at least the “U.S.
Recommended publications
  • Low Thrust Manoeuvres to Perform Large Changes of RAAN Or Inclination in LEO
    Facoltà di Ingegneria Corso di Laurea Magistrale in Ingegneria Aerospaziale Master Thesis Low Thrust Manoeuvres To Perform Large Changes of RAAN or Inclination in LEO Academic Tutor: Prof. Lorenzo CASALINO Candidate: Filippo GRISOT July 2018 “It is possible for ordinary people to choose to be extraordinary” E. Musk ii Filippo Grisot – Master Thesis iii Filippo Grisot – Master Thesis Acknowledgments I would like to address my sincere acknowledgments to my professor Lorenzo Casalino, for your huge help in these moths, for your willingness, for your professionalism and for your kindness. It was very stimulating, as well as fun, working with you. I would like to thank all my course-mates, for the time spent together inside and outside the “Poli”, for the help in passing the exams, for the fun and the desperation we shared throughout these years. I would like to especially express my gratitude to Emanuele, Gianluca, Giulia, Lorenzo and Fabio who, more than everyone, had to bear with me. I would like to also thank all my extra-Poli friends, especially Alberto, for your support and the long talks throughout these years, Zach, for being so close although the great distance between us, Bea’s family, for all the Sundays and summers spent together, and my soccer team Belfiga FC, for being the crazy lovable people you are. A huge acknowledgment needs to be address to my family: to my grandfather Luciano, for being a great friend; to my grandmother Bianca, for teaching me what “fighting” means; to my grandparents Beppe and Etta, for protecting me
    [Show full text]
  • Observing from Space Orbits, Constraints, Planning, Coordination
    Observing from Space Orbits, constraints, planning, coordination Integral XMM-Newton Jan-Uwe Ness European Space Astronomy Centre (ESAC) Villafranca del Castillo, Spain On behalf of the Integral and XMM-Newton Science Operations Centres Slide 1 Observing from Space - Orbits http://sci.esa.int/integral/59688-integral-fifteen-years-in-orbit/ Slide 2 Observing from Space - Orbits Highly elliptical Earth orbit: XMM-Newton, Integral, Chandra Slide 3 Observing from Space - Orbits Low-Earth orbit: ~1.5 hour, examples: Hubble Space Telescope Swift NuSTAR Fermi Earth blocking, especially low declination objects Only short snapshots of a few 100s possible No long uninterrupted observations Only partial overlap with Integral/XMM possible Slide 4 Observing from Space - Orbits Orbit around Lagrange point L2 past: future: Herschel James Webb Planck Athena present: Gaia Slide 5 Observing from Space – Constraints Motivations for constraints: • Safety of space-craft and instruments • Contamination by bright optical/X-ray sources or straylight from them • Functionality of star Tracker • Power supply (solar panels) • Thermal stability (avoid heat from the sun) • Ground contact for remote commanding and downlink of data Space-specific constraints in bold orange Slide 6 Observing from Space – Constraints Examples for constraints: • No observations while passing through radiation belts • Orientation of space craft to sun • Large avoidance angles around Sun and anti-Sun, Moon, Earth, Bright planets • No slewing over Moon and Earth (planets ok) • Availability
    [Show full text]
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Planetary Report Report
    The PLANETARYPLANETARY REPORT REPORT Volume XXV Number 5 September/October 2005 ATACAMA DESERT MarsMars AnalogsAnalogs VALLES MARINERIS Volume XXV Table of Number 5 Contents September/October 2005 A PUBLICATION OF Features From The Dry Earth, Wet Mars 6 Sometimes the best place to learn about Mars exploration is right here on Editor Earth. In Chile’s Atacama Desert, scientists have discovered an area so dry that organic material, and therefore evidence of life, is virtually undetectable. Study of he damage that Earth inflicts on her this parched Mars-like region on Earth may lead us to a better understanding of Tinhabitants—horribly demonstrated how to search for water and the elements of life in Martian soil. This year, The by Hurricane Katrina and the December Planetary Society cosponsored a field expedition to the Atacama Desert, sending tsunami—reminds us what fragile creatures graduate student Troy Hudson on a 1-week adventure with a team of scientists led we are, lucky to survive at all on this dynamic, by Society Board member Chris McKay. Here, Troy describes his experience. dispassionate ball of rock hurtling through space. 12 The Pioneer Anomaly: A Deep Space Mystery Our exploration of other worlds has As Pioneer 10 and 11 head toward the farthest reaches of our solar system, taught us that the potential for planetary something strange is happening—they are mysteriously slowing down. Scientists catastrophe is always with us. On Mars, do not yet know why the spacecraft aren’t acting as expected; however, The we’ve seen planet-rending gouges cut by Planetary Society has stepped in to help fund the effort to analyze roughly 25 years catastrophic floods.
    [Show full text]
  • The Aerospace Update
    The Aerospace Update Dec. 28, 2017 Top 2017 Space Images Video Credit: NASA SpaceX Concludes 2017 With Fourth Iridium Next launch SpaceX closed out its most successful year to date Dec. 22nd with the launch of 10 satellites for mobile satellite services operator Iridium, notching a personal best of 18 launches in a single year. The Falcon 9 mission, which took off from Vandenberg Air Force Base in California at 8:27 p.m. Eastern in an instantaneous launch window, was the fourth of eight missions for Iridium, carrying the McLean, Virginia- based operator’s second generation satellites, called Iridium Next. In what now is considered a rarity, SpaceX opted not to recover the rocket’s first stage, instead letting the booster fall into the Pacific Ocean. Video Credit: SpaceX Source: Caleb Henry @ SpaceNews.com Zenit Rocket Launches AngoSat-1 but Ground Control Loses Contact A Russian-Ukrainian Zenit rocket was launched on Tuesday, December 26th, with the aim of delivering into orbit Angola’s first satellite, known as AngoSat-1. However, it appears that contact with the spacecraft was lost after its deployment into orbit. The booster lifted off from Site 45/1 at the Baikonur Cosmodrome in Kazakhstan. Tuesday’s launch marked the first Zenit flight in more than two years when it orbited the Elektro-L № 2 weather satellite for Roscosmos. The rocket returned to flight despite fears that the Russian-Ukrainian conflict, which started in 2014, would kill any joint efforts between these two countries. Video courtesy of SciNews Source: Tomasz Nowakowski @ SpaceFlightInsider.com Land Imaging Satellite Launched for Chinese Military A land imaging satellite soared to a 300-mile-high perch above Earth Saturday, Dec 23rd after lifting off on top of a Long March 2D rocket from the Jiuquan space base in the Gobi Desert, joining a similar military reconnaissance craft launched earlier this month in the same type of orbit.
    [Show full text]
  • NETS 2020 Template
    بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18
    [Show full text]
  • Lightweight, High-Temperature Radiator for In-Space Nuclear- Electric Power and Propulsion
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses Summer November 2014 Lightweight, High-Temperature Radiator for In-Space Nuclear- Electric Power and Propulsion Briana N. Tomboulian University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Heat Transfer, Combustion Commons, Propulsion and Power Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Tomboulian, Briana N., "Lightweight, High-Temperature Radiator for In-Space Nuclear-Electric Power and Propulsion" (2014). Doctoral Dissertations. 247. https://doi.org/10.7275/5972048.0 https://scholarworks.umass.edu/dissertations_2/247 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Lightweight, High-Temperature Radiator for In-Space Nuclear-Electric Power and Propulsion A Dissertation Presented by BRIANA N. TOMBOULIAN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2014 Mechanical and Industrial Engineering Department © Copyright by Briana N. Tomboulian 2014 All Rights Reserved Lightweight, High-Temperature Radiator
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Human Mars Mission Architecture Plan to Settle the Red Planet with 1000 People
    Human Mars Mission Architecture Plan to Settle the Red Planet with 1000 People Malaya Kumar Biswal M1, Vishnu S2, Devika S Kumar3, Sairam M4 Pondicherry University, Kalapet, Puducherry, India - 605 014 Abstract Exploration is one of the attentive endeavor to mankind and a strategy for evolution. We have been incessantly reconnoitering our planet and universe from Mesopotamian era to modern era. The progression of rocketry and planetary science in past century engendered a futuristic window to explore Mars which have been a source of inspiration to hundreds of astronomers and scientists. Globally, it invigorated space exploration agencies to make expedition for planetary exploration to Mars and Human Mars Missions. Scientists and engineers have portrayed numerous Human Mars Mission proposals and plans but currently the design reference mission 5.0 of NASA is the only mission under study. Here we propose a mission architecture for permanent Human Mars Settlement with 1000 peoples with multiple launch of sufficient cargoes and scientific instruments. Introduction: This paper focuses on design of Human Mars Mission with reference to the instructions by Mars Society. We proposed mission architecture for carrying 1000 peoples onboard spaceship (Marship). Overall mission architecture outline map and Human Mars Settlement Map is provided next to this page. We divided the whole mission architecture into three phases starting from orbital launch of launch vehicles and Mars colony establishment. We proposed novel habitat for protection during robust dust storms, various method to make the colony economically successful, minerals and their applications, administrative methods, water extraction, plantation, landing patterns, estimation of masses of food to be carried out and customizable system for re-use and recycling.
    [Show full text]
  • Lagrange Remote Sensing Instruments: the Extreme Ultraviolet Imager (Euvi)
    LAGRANGE REMOTE SENSING INSTRUMENTS: THE EXTREME ULTRAVIOLET IMAGER (EUVI) C. Kintziger (CSL) - Presenter S. Habraken (CSL) P. Bouchez (CSL) Matthew West (ROB) David Berghmans (ROB) Manfred Gyo (PMOD/WRC) Margit Haberreiter (PMOD/WRC) Jackie Davies (RAL Space) Martin Caldwell (RAL Space) Ian Tosh (RAL Space) Stefan Kraft (ESA) 1 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview 4 remote-sensing instruments See Poster 23 by J. Davies 2 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview 5 in-situ instruments 3 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview • Overall Remote Sensing Instruments leader: RAL Space (UK) • EUVI study led by three institutes: – CSL (BE) – ROB (BE) – PMOD/WRC (CH) • CSL activities • ROB activities • PMOD activities – EUVI Instrument manager: – instrument – electrical engineering • Overall management requirements – mechanisms • System study – instrument operation – mechanical engineering • Optical engineering – ground segments • Thermal engineering • AIT engineering • Roles & Responsibilities – BPI: Pr. Dr. Serge Habraken (CSL) – Bco-I: Dr. Matthew J West (ROB) – CSL work funded by Belspo via Prodex Programme 4 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview • EUV Imager – SSA programme (SWE) – Location: L5 – Goal: image the full solar disc – Waveband: EUV wavelength (e.g. 193 Å) – Heritage: PROBA-2 SWAP ESIO (GSTP) Solar Orbiter EUI Parameter Requirement Spectral resolution < 1.5 푛푚 퐹푊퐻푀 Spatial resolution < 5 푎푟푐푠푒푐 Field of view 42.6′ 푥 42.6′ Mass < 8 푘푔 Size < 600 푥 150 푥 150 푚푚 Power < 10 푊 5 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Instrument overview • Selected wavelengths 131 nm 19.5 nm 30.4 nm Semi-Static Structures Dynamic structures Regions Filaments/Prominences Flares Chromosphere Active Regions Eruptions Million Degree Corona Coronal Holes EUV Waves Dimmings 6 ESWW 2018, 9 Nov.
    [Show full text]
  • BRUCE Mccandless II '58, USN (RET.)
    Program Guide 2012 SEPHIA_Q8.qxp_Layout 1 3/12/12 12:32 PM Page 7 CAPTAIN BRUCE McCANDLESS II ’58, USN (RET.) “I am deeply moved by my classmates’ efforts in nominating me and advancing my nomination for the Distinguished Graduate Award.” aptain Bruce McCandless II ’58, USN during which he made the first untethered C(Ret.), the first human to fly untethered solo flight. This earned him the Department in space, led the way to on-orbit servicing of Defense Superior Service Medal and of satellites such as the Solar Maximum the NASA Exceptional Engineering Mission, the Hubble Space Telescope and, Achievement Award. In 1985, he received ultimately, the International Space Station. the National Aeronautic Association Collier McCandless was born in Boston to Trophy and the first Smithsonian National a well-known Navy family. Two ships, Air and Space Museum Trophy. He was BRADLEY and MCCANDLESS , are named inducted into the NASA Astronaut Hall in honor of his grandfathers and father. of Fame in 2005. The third generation to attend the Naval He served a leadership role in the design Academy, he graduated at the top of his and development of the Hubble Space class academically. Telescope and was a member of the space He served in Fighter Squadron 102 shuttle crew that deployed the telescope from 1960 to 1964 in three deployments into orbit in 1990. Captain McCandless with the Sixth Fleet, including the Cuban also holds a patent for a “drop-proof” tool Missile Crisis naval blockade, during which tethering system still used in space today. he flew night missions off Cuba to protect After a 32-year career with the Navy and U.S.
    [Show full text]
  • An Economic Assessment of Space Solar Power As a Source of Electricity for Space-Based Activities
    An Economic Assessment of Space Solar Power as a Source of Electricity for Space-Based Activities Molly K. Macauley and James F. Davis October 2001 • Discussion Paper 01–46 Resources for the Future 1616 P Street, NW Washington, D.C. 20036 Telephone: 202–328–5000 Fax: 202–939–3460 Internet: http://www.rff.org © 2001 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review or editorial treatment. An Economic Assessment of Space Solar Power as a Source of Electricity for Space-Based Activities Molly K. Macauley and James F. Davis Abstract We develop a conceptual model of the economic value of space solar power (SSP) as a source of power to in-space activities, such as spacecraft and space stations. We offer several estimates of the value based on interviews and published data, discuss technological innovations that may compete with or be complementary to SSP, and consider alternative institutional arrangements for government and the private sector to provide SSP. Key Words: innovation, government policy JEL Classification Numbers: O33, O32, L98 ii Contents I. Introduction and Overview ................................................................................................ 1 I. a. What Is SSP? ..............................................................................................................
    [Show full text]