insects Article Lipidomic Profiling Reveals Distinct Differences in Sphingolipids Metabolic Pathway between Healthy Apis cerana cerana larvae and Chinese Sacbrood Disease Xiaoqun Dang 1, Yan Li 1, Xiaoqing Li 1, Chengcheng Wang 1, Zhengang Ma 1, Linling Wang 1, Xiaodong Fan 1, Zhi Li 1, Dunyuan Huang 1, Jinshan Xu 1,* and Zeyang Zhou 1,2,3,* 1 Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China;
[email protected] (X.D.);
[email protected] (Y.L.);
[email protected] (X.L.);
[email protected] (C.W.);
[email protected] (Z.M.);
[email protected] (L.W.);
[email protected] (X.F.);
[email protected] (Z.L.);
[email protected] (D.H.) 2 State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China 3 Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China * Correspondence:
[email protected] (J.X.);
[email protected] (Z.Z.) Simple Summary: Chinese Sacbrood Virus (CSBV) is one of the most destructive viruses; it causes Chinese sacbrood disease (CSD) in Apis cerana cerana, resulting in heavy economic loss. In this study, the first comprehensive analysis of the lipidome of A. c. cerana larvae-infected CSBV was performed. Viruses rely on host metabolites to infect, replicate and disseminate from several tissues. Citation: Dang, X.; Li, Y.; Li, X.; Wang, C.; Ma, Z.; Wang, L.; Fan, X.; Li, The metabolic environments play crucial roles in these processes amplification and reproduction Z.; Huang, D.; Xu, J.; et al.