Genetic Analysis of Nitrogen Remobilization and Kernel Compositon in Zea Mays L

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Analysis of Nitrogen Remobilization and Kernel Compositon in Zea Mays L Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Genetic Analysis of Nitrogen Remobilization and Kernel Compositon in Zea Mays L. and Sorghum Bicolor (L.) Moench Raymond S Lindsey Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Agronomy and Crop Sciences Commons, and the Botany Commons Recommended Citation Lindsey, Raymond S, "Genetic Analysis of Nitrogen Remobilization and Kernel Compositon in Zea Mays L. and Sorghum Bicolor (L.) Moench" (2015). Open Access Dissertations. 504. https://docs.lib.purdue.edu/open_access_dissertations/504 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. ¡ ¢ £ ¤ ¢ ¥ ¦ § ¨ © ¡ £ ¢ ¥ ¦ £ ! " " # $ % % & ' ( ) * ) + * ) ) ( , - . - * / 0 " 1 1 ( 2 - . 0 1 ( 3 4 5 6 5 6 7 8 9 : ; 7 5 < = 7 4 > 7 7 4 : 7 4 : 6 5 6 ? @ 5 6 6 : ; 7 > 7 5 8 A B ; : B > ; : @ C = D A 7 5 7 E : @ ¡ ¢ ¢ £ ¤ ¥ ¥ ¦ § ¨ ¦ ¨ © ¦ ª £ « ¢ ¦ ¢ ¬ ¨ £ ¡ ¦ © ¦ ¥ ¦ « ¢ © ¢ ¤ ¥ £ ­ ¢ ¥ ¦ ¨ ® © ª ¡ ¦ £ ¦ ¨ ¯ £ ­ ° © ¦ ¡ ± ² ³ ´ µ ¶ · ¸ ¹ · F 8 ; 7 4 : @ : G ; : : 8 < H 6 > B B ; 8 I : @ J = 7 4 : < 5 A > E : K > L 5 A 5 A G 9 8 L L 5 7 7 : : M º ³ ² · ¸ ¸ » ¼ ³ ´ ± ½ · ¾ ¿ À ÁÂ » Ã ´ ³ ² · µ ´ ¶ ³ ´ ² Ä Å Æ ´ Ç » Å È N O P Q R S R T P O U V W X Y O Z [ R \ ] R ^ Y \ ^ T _ Y \ R ` T P O O \ S W P Q R T P _ \ R Y P a Y P Q R N Q R T a T b c a T T R ` P ^ P a O Y d ] ` R R V R Y P e f _ S [ a g ^ P a O Y c R [ ^ W e ^ Y \ h R ` P a U a g ^ P a O Y c a T g [ ^ a V R ` i j ` ^ \ _ ^ P R k g Q O O [ l O ` V m n o e P Q a T P Q R T a T b \ a T T R ` P ^ P a O Y ^ \ Q R ` R T P O P Q R p ` O q a T a O Y T O U f _ ` \ _ R r Y a q R ` T a P W s T t f O [ a g W O U u Y P R ] ` a P W a Y v R T R ^ ` g Q w ^ Y \ P Q R _ T R O U g O p W ` a ] Q P V ^ P R ` a ^ [ x º ³ ² · ¸ ¸ » ¼ ³ ´ y B B ; 8 I : @ J = z > { 8 ; | ; 8 < : 6 6 8 ; } 6 ~ M Å ¹ · É ´ Ê Ë Ì Ë Í Î Ï Ð y B B ; 8 I : @ J = M i GENETIC ANALYSIS OF NITROGEN REMOBILIZATION AND KERNEL COMPOSITION IN ZEA MAYS L. AND SORGHUM BICOLOR (L.) MOENCH A Dissertation Submitted to the Faculty of Purdue University by Raymond S Lindsey In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy i May 2015 Purdue University West Lafayette, Indiana ii To my parents: their love and support have made this possible. ii iii ACKNOWLEDGEMENTS I would like to take this opportunity to thank my major advisor Dr. Mitch Tuinstra. His advocacy of hard work and scientific achievement have had an enormous influence on my graduate tenure. I would also like to express appreciation toward my committee members; Drs. Patrick Brown, David Rhodes, Torbert Rocheford, and Tony Vyn. Their collection of expertise has been a valuable asset throughout my research, and for their willingness to discuss a multitude of topics during my graduate tenure I am indebted. I would also like to thank those who supported my research at Purdue, particularly our technician Andy Linvill. Without him, our field research would not be possible. I’m also appreciative of his time spent teaching me the intricacies of precision planting, and harvest; experience I am sure to utilize in my career. Data collection for my research in 2012 and 2013 was extremely labor intensive, and I am very grateful to all of the members of the Tuinstra group, past and present, who assisted in data collection. iii Field research would not be possible without excellent research stations, and I thank Jim Beaty and Jon Leuck for their facilitation of my field experiments. Appreciation is also extended to Dr. Alex Lipka for his support in my Genome-Wide Association Mapping. I am incredibly thankful for the love and support of my parents and brother. iv TABLE OF CONTENTS Page LIST OF TABLES .................................................................................................................... ix LIST OF FIGURES ................................................................................................................ xiii ABSTRACT …………………………………………………………………………………………………………………….. x CHAPTER 1. LITERATURE REVIEW ................................................................................. 1 1.1 Introduction .............................................................................................................. 1 1.2 Nitrogen Use Efficiency ............................................................................................. 4 1.3 Kernel Composition in Maize .................................................................................. 10 1.3.1 Maize Kernel Protein .................................................................................. 11 1.3.2 Maize Kernel Oil .......................................................................................... 15 1.3.3 Maize Kernel Starch .................................................................................... 16 1.3.4 Maize Kernel Ash ........................................................................................ 19 1.3.5 Maize Kernel Fiber ...................................................................................... 19 1.3.6 Maize Kernel Density .................................................................................. 20 1.3.7 Xenia Effects ................................................................................................ 21 1.4 Kernel Composition in Sorghum ............................................................................. 22 1.4.3 Sorghum Kernel Feeding Quality ................................................................ 23 iv 1.4.4 Sorghum Kernel Protein .............................................................................. 25 1.4.5 Sorghum Kernel Oil ..................................................................................... 28 1.4.6 Sorghum Kernel Starch ............................................................................... 28 CHAPTER 2. GENOME-WIDE ASSOCIATION STUDY OF LEAF NITROGEN REMOBILIZATION IN ZEA MAYS ........................................................................................ 31 2.1 Abstract ................................................................................................................... 31 v ......................................................................................................................................... Page 2.2 Introduction ............................................................................................................. 32 2.3 Materials and Methods ........................................................................................... 33 2.3.1 Genetic Material ......................................................................................... 33 2.3.2 Experimental Design ................................................................................... 33 2.3.3 Phenotypic Evaluation ................................................................................ 36 2.3.4 Genotypic Information ................................................................................ 38 2.3.5 Statistical Analysis ....................................................................................... 38 2.3.6 Candidate Gene Analysis ............................................................................ 40 2.4 Results ..................................................................................................................... 40 2.4.1 Genetic Variance and Trait Correlations ..................................................... 40 2.4.2 Heritabilities ................................................................................................ 42 2.4.3 Genome Wide Association Studies ............................................................. 42 2.4.3.1 Examination of VTR2 Traits ..................................................................... 45 2.4.3.2 Examination of VTR4 Traits ..................................................................... 49 2.5 Discussion ................................................................................................................ 54 2.5.1 Genetic Variance and Trait Correlation ...................................................... 54 2.5.2 Heritabilities ................................................................................................ 55 2.5.3 Candidate Genes for Leaf N Remobilization ............................................... 55 v 2.5.3.1 Senescence Signaling............................................................................... 55 2.5.3.2 Senescence Activation/Regulation.......................................................... 60 2.5.3.3 Genetic Control of N Remobilization ...................................................... 62 2.6 Conclusions .............................................................................................................. 68 CHAPTER 3. GENETIC MAPPING OF KERNEL COMPOSITION IN A DIVERSE POPULATION OF ZEA MAYS .............................................................................................. 70 3.1 Abstract ................................................................................................................... 70 3.2 Introduction ............................................................................................................. 71
Recommended publications
  • Supplementary Data
    Supplementary Data for Quantitative Changes in the Mitochondrial Proteome from Subjects with Mild Cognitive Impairment, Early Stage and Late Stage Alzheimer’s disease Table 1 - 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Table 2 - MCI mitochondrial samples, Protein Summary Table 3 - MCI mitochondrial samples, Experiment 1 Table 4 - MCI mitochondrial samples, Experiment 2 Table 5 - MCI mitochondrial samples, Experiment 3 Table 6 - EAD Mitochondrial Study, Protein Summary Table 7 - EAD Mitochondrial Study, Experiment 1 Table 8 - EAD Mitochondrial Study, Experiment 2 Table 9 - EAD Mitochondrial Study, Experiment 3 Table 10 - LAD Mitochondrial Study, Protein Summary Table 11 - LAD Mitochondrial Study, Experiment 1 Table 12 - LAD Mitochondrial Study, Experiment 2 Table 13 - LAD Mitochondrial Study, Experiment 3 Supplemental Table 1. 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Description Data MCI EAD LAD AATM_HUMAN (P00505) Aspartate aminotransferase, mitochondrial precursor (EC Mean 1.43 1.70 1.31 2.6.1.1) (Transaminase A) (Glutamate oxaloacetate transaminase 2) [MASS=47475] SEM 0.07 0.09 0.09 Count 3.00 3.00 3.00 ACON_HUMAN (Q99798) Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) Mean 1.24 1.61 1.19 (Citrate hydro-lyase) (Aconitase) [MASS=85425] SEM 0.05 0.17 0.18 Count 3.00 2.00 3.00 ACPM_HUMAN (O14561) Acyl carrier protein, mitochondrial
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Peroxisomal Functions in the Lung and Their Role in the Pathogenesis of Lung Diseases
    Aus dem Institut für Anatomie und Zellbiologie der Justus-Liebig-Universität Gießen Leiter: Prof. Dr. Eveline Baumgart-Vogt Peroxisomal functions in the lung and their role in the pathogenesis of lung diseases Habilitationsschrift zur Erlangung der Venia legendi des Fachbereichs Medizin der Justus-Liebig-Universität Gießen vorgelegt von Srikanth Karnati Gießen 2018 Die nachfolgende Arbeit nimmt Bezug auf folgende Originalarbeiten: 1. Karnati S*, Graulich T, Oruqaj G, Pfreimer S, Seimetz M, Stamme C, Mariani TJ, Weissmann N, Mühlfeld C, Baumgart-Vogt E (2016). Postnatal development of the secretory cells of the distal airways, the bronchiolar club cells in the mouse lung: stereological and molecular biological studies. Cell and Tissue Research. Jun;364(3):543- 57. 2. Karnati S, Baumgart-Vogt E (2009) PeroXisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol. Apr: 131(4):447-54. 3. Karnati S, Lüers G, Pfreimer S and Baumgart-Vogt E (2013) Manganese SuperoXide dismutase 2 (MnSOD) is localized to mitochondria but not in peroXisomes. Histochemistry and Cell Biology, Aug:140(2):105-17 4. Karnati S, Palaniswamy S, Alam MR, Oruqaj G, Stamme C, Baumgart-Vogt E (2015) C22- bronchial and T7-alveolar epithelial cell lines of the immortomouse are eXcellent murine cell culture model systems to study pulmonary peroXisome biology and metabolism. Histochemistry and Cell Biology Mar;145(3):287-304. 5. Oruqaj G§, Karnati S§, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Günther A, Shi W, Baumgart-Vogt E (2015) Compromised peroXisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling.
    [Show full text]
  • Supplement 1A Steffensen Et
    Liver Wild-type Knockout C T C T 1 2 4 7 8 9 1 2 4 5 7 9 1 1 1 1 1 1 C C C T T T C C C T T T W W W W W W K K K K K K IMAGE:793166 RIKEN cDNA 6720463E02 gene IMAGE:1447421 ESTs, Weakly similar to ZF37 MOUSE ZINC FINGER PROTEIN 37 [M.musculus] IMAGE:934291 RIKEN cDNA 2810418N01 gene IMAGE:1247525 small EDRK-rich f2actor IMAGE:1449402 expressed sequence AW321064 IMAGE:1279847 ESTs IMAGE:518737 expressed sequence AW049941 IMAGE:860231 a disintegrin and metalloproteinase domain 17 IMAGE:642836 CD86 antigen IMAGE:1003885 phosphoribosyl pyrophosphate sy1nthetase IMAGE:524862 RIKEN cDNA 5730469D23 gene IMAGE:1264473 protein inhibitor of activat1ed STAT IMAGE:847035 RIKEN cDNA 4833422F06 gene IMAGE:374550 requiem IMAGE:976520 nuclear receptor coact4ivator IMAGE:1264311 Unknown IMAGE:976735 expressed sequence AI987692 IMAGE:976659 cathepsLin IMAGE:1477580 RIKEN cDNA 1600010J02 gene IMAGE:1277168 ribosomal protein, large, P1 IMAGE:524842 RIKEN cDNA 0710008D09 gene IMAGE:373019 split hand/foot delete1d gene IMAGE:404428 expressed sequence AI413851 IMAGE:619810 RIKEN cDNA 1700003F10 gene IMAGE:1749558 caspase 3, apoptosis related cysteine protease IMAGE:718718 RIKEN cDNA 2810003F23 gene IMAGE:819789 Unknown IMAGE:524474 ATP-binding cassette, sub-family A ABC1, member IMAGE:804950 Mus musculus, Similar to ribosomal protein S20, clone MGC:6876 IMAGE:2651405, mRNA, complete cds IMAGE:806143 gap junction membrane channel prot2ein beta IMAGE:1745887 expressed sequence AI836376 IMAGE:779426 RIKEN cDNA 5230400G24 gene IMAGE:1125615 Unknown IMAGE:535025 DNA
    [Show full text]
  • Hereditary Hearing Impairment with Cutaneous Abnormalities
    G C A T T A C G G C A T genes Review Hereditary Hearing Impairment with Cutaneous Abnormalities Tung-Lin Lee 1 , Pei-Hsuan Lin 2,3, Pei-Lung Chen 3,4,5,6 , Jin-Bon Hong 4,7,* and Chen-Chi Wu 2,3,5,8,* 1 Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan; [email protected] 2 Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan; [email protected] 3 Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan; [email protected] 4 Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan 5 Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan 6 Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan 7 Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan 8 Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan * Correspondence: [email protected] (J.-B.H.); [email protected] (C.-C.W.) Abstract: Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications.
    [Show full text]
  • 7. Literaturverzeichnis
    Literatur 7. Literaturverzeichnis Aller,S.G.,Eng,E.T.,DeFeo,C.J.andUnger,V.M.(2004)EukaryoticCTRcopper uptaketransportersrequiretwofacesofthethirdtransmembranedomainforhelix packing,oligomerization,andfunction.JBiolChem,279,545-544. Alzheimer,A.(907)ÜbereineeigenartigeErkrankungderHirnrinde.Allgemeine ZeitschriftfürPsychiatrieundPsychisch-GerichtlicheMedizin,64,46-48. Anliker,B.andMuller,U.(2006)Thefunctionsofmammalianamyloidprecursorprotein andrelatedamyloidprecursor-likeproteins.NeurodegenerDis,,29-246. Annaert,W.andDeStrooper,B.(2002)AcellbiologicalperspectiveonAlzheimer‘s disease.AnnuRevCellDevBiol,8,25-5. Araki,W.,Saito,S.,Takahashi-Sasaki,N.,Shiraishi,H.,Komano,H.andMurayama,K.S. (2006)CharacterizationofAPH-mutantswithadisruptedtransmembraneGxxxG motif.JMolNeurosci,29,5-4. Arispe,N.,Rojas,E.andPollard,H.B.(99)Alzheimerdiseaseamyloidbetaprotein formscalciumchannelsinbilayermembranes:blockadebytromethamineand aluminum.ProcNatlAcadSciUSA,90,567-57. Arselin,G.,Giraud,M.F.,Dautant,A.,Vaillier,J.,Brethes,D.,Coulary-Salin,B.,Schaeffer, J.andVelours,J.(200)TheGxxxGmotifofthetransmembranedomainof subuniteisinvolvedinthedimerization/oligomerizationoftheyeastATPsynthase complexinthemitochondrialmembrane.EurJBiochem,270,875-884. Bayer,T.A.,Schafer,S.,Simons,A.,Kemmling,A.,Kamer,T.,Tepest,R.,Eckert,A., Schussel,K.,Eikenberg,O.,Sturchler-Pierrat,C.,Abramowski,D.,Staufenbiel, M.andMulthaup,G.(200)DietaryCustabilizesbrainsuperoxidedismutase activityandreducesamyloidAbetaproductioninAPP2transgenicmice.ProcNatl AcadSciUSA,00,487-492. Bedouelle,H.andDuplay,P.(988)ProductioninEscherichiacoliandone-step
    [Show full text]
  • Mechanisms of Selective Autophagy and Mitophagy Implications For
    Neurobiology of Disease 122 (2019) 23–34 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Mechanisms of selective autophagy and mitophagy: Implications for T neurodegenerative diseases ⁎ Charleen T. Chu Departments of Pathology and Ophthalmology, Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases, Center for Neuroscience at the University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA ABSTRACT Over the past 20 years, the concept of mammalian autophagy as a nonselective degradation system has been repudiated, due in part to important discoveries in neurodegenerative diseases, which opened the field of selective autophagy. Protein aggregates and damaged mitochondria represent key pathological hallmarks shared by most neurodegenerative diseases. The landmark discovery in 2007 of p62/SQSTM1 as the first mammalian selective autophagy receptor defined anew family of autophagy-related proteins that serve to target protein aggregates, mitochondria, intracellular pathogens and other cargoes to the core autophagy ma- chinery via an LC3-interacting region (LIR)-motif. Notably, mutations in the LIR-motif proteins p62 (SQSTM1) and optineurin (OPTN) contribute to familial forms of frontotemporal dementia and amyotrophic lateral sclerosis. Moreover, a subset of LIR-motif proteins is involved in selective mitochondrial degradation initiated by two recessive familial Parkinson's disease genes. PTEN-induced kinase 1 (PINK1) activates the E3 ubiquitin ligase Parkin (PARK2) to mark depolarized mitochondria for degradation. An extensive body of literature delineates key mechanisms in this pathway, based mostly on work in transformed cell lines. However, the potential role of PINK1-triggered mitophagy in neurodegeneration remains a conundrum, particularly in light of recent in vivo mitophagy studies.
    [Show full text]
  • New Mesh Headings for 2018 Single Column After Cutover
    New MeSH Headings for 2018 Listed in alphabetical order with Heading, Scope Note, Annotation (AN), and Tree Locations 2-Hydroxypropyl-beta-cyclodextrin Derivative of beta-cyclodextrin that is used as an excipient for steroid drugs and as a lipid chelator. Tree locations: beta-Cyclodextrins D04.345.103.333.500 D09.301.915.400.375.333.500 D09.698.365.855.400.375.333.500 AAA Domain An approximately 250 amino acid domain common to AAA ATPases and AAA Proteins. It consists of a highly conserved N-terminal P-Loop ATPase subdomain with an alpha-beta-alpha conformation, and a less-conserved C- terminal subdomain with an all alpha conformation. The N-terminal subdomain includes Walker A and Walker B motifs which function in ATP binding and hydrolysis. Tree locations: Amino Acid Motifs G02.111.570.820.709.275.500.913 AAA Proteins A large, highly conserved and functionally diverse superfamily of NTPases and nucleotide-binding proteins that are characterized by a conserved 200 to 250 amino acid nucleotide-binding and catalytic domain, the AAA+ module. They assemble into hexameric ring complexes that function in the energy-dependent remodeling of macromolecules. Members include ATPASES ASSOCIATED WITH DIVERSE CELLULAR ACTIVITIES. Tree locations: Acid Anhydride Hydrolases D08.811.277.040.013 Carrier Proteins D12.776.157.025 Abuse-Deterrent Formulations Drug formulations or delivery systems intended to discourage the abuse of CONTROLLED SUBSTANCES. These may include physical barriers to prevent chewing or crushing the drug; chemical barriers that prevent extraction of psychoactive ingredients; agonist-antagonist combinations to reduce euphoria associated with abuse; aversion, where controlled substances are combined with others that will produce an unpleasant effect if the patient manipulates the dosage form or exceeds the recommended dose; delivery systems that are resistant to abuse such as implants; or combinations of these methods.
    [Show full text]
  • Throughput Phage Display and Building the Foundations of a Novel High-Throughput Intrabody Pipeline
    The Generation of Affinity Reagents Using High- throughput Phage Display and Building the Foundations of a Novel High-throughput Intrabody Pipeline by Nicolas Odysseas Economopoulos A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Nicolas Economopoulos 2011 The Generation of Affinity Reagents Using High-throughput Phage Display and Building the Foundations of a Novel High- throughput Intrabody Pipeline Nicolas Odysseas Economopoulos Master of Science Graduate Department of Molecular Genetics University of Toronto 2011 Abstract Phage display technology has emerged as the dominant approach in antibody engineering. Here I describe my work in developing a high-throughput method of reliably generating intracellular antibodies. In my first data chapter, I present the first known high-throughput pipeline for antibody-phage display libraries of synthetic diversity and I demonstrate how increasing the scale of both target production and library selection still results in the capture of antibodies to over 50% of targets. In my second data chapter, I present the construction and validation of a novel scFv-phage library that will serve as the first step in my proposed intrabody pipeline. Antibodies obtained from this library will be screened for functionality using a novel yeast-two- hybrid approach and have numerous downstream applications. This high-throughput pipeline is amenable to automation and can be scaled up to thousands of domains, resulting in the potential generation of many novel therapeutic reagents. ii Acknowledgments It is surreal to think that I have reached the end of a journey that started three years ago.
    [Show full text]
  • The Molecular Basis of Human Retinal and Vitreoretinal Diseases
    Berger, W; Kloeckener-Gruissem, B; Neidhardt, J (2010). The molecular basis of human retinal and vitreoretinal diseases. Progress in Retinal and Eye Research, 29(5):335-375. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Progress in Retinal and Eye Research 2010, 29(5):335-375. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2010 The molecular basis of human retinal and vitreoretinal diseases Berger, W; Kloeckener-Gruissem, B; Neidhardt, J Berger, W; Kloeckener-Gruissem, B; Neidhardt, J (2010). The molecular basis of human retinal and vitreoretinal diseases. Progress in Retinal and Eye Research, 29(5):335-375. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Progress in Retinal and Eye Research 2010, 29(5):335-375. The molecular basis of human retinal and vitreoretinal diseases The molecular basis of human retinal and vitreoretinal diseases Wolfgang Berger1,2,3,*, Barbara Kloeckener-Gruissem1,4 and John Neidhardt1 1Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland 2Neuroscience Center Zurich, Zurich, Switzerland 3Zurich Center for Integrative Human Physiology, Zurich, Switzerland 4Department of Biology, ETH Zurich, Zurich, Switzerland *Corresponding author Address: Division of Medical Molecular Genetics and Gene Diagnostics Institute of Medical Genetics University of Zurich Schorenstrasse 16 CH-8603 Schwerzenbach Switzerland Tel.: + 41 44 655 70 31 Fax: + 41 44 655 72 13 Email: [email protected] http://www.medmolgen.uzh.ch 1 Berger et al., Manuscript for Progress in Retinal and Eye Research, (amended March 12 2010) The molecular basis of human retinal and vitreoretinal diseases 1.
    [Show full text]
  • Peptide Aggregation and Neurotoxicity in Alzheimer's Disease
    Modulation of Amyloid-b peptide aggregation and neurotoxicity in Alzheimer’s disease Biuse Guivernau Almazán Doctoral Thesis UPF 2016 Thesis director: Dr. Francisco José Muñoz López Departament de Ciències Experimentals i de la Salut Biuse Guivernau Almazán: Modulation of Amyloid-b peptide aggregation and neurotoxicity in Alzheimer’s disease, April 2016 Nothing in this world that’s worth having comes easy — Bob Kelso ’After I got my PhD, my mother took great relish in introducing me as “this is my son, he’s a doctor but not the kind that helps people”’ — Randy Pausch ACKNOWLEDGEMENTS Moltes gràcies al Paco, per donar-me la oportunitat d’unir-me a aquest gran grup. Per la llibertat de pensament i experimental que m’ha donat. Per aportar sempre un toc d’humor. Per animar-nos a seguir empenyent las fronteras del conocimiento, encara que de vegades no es deixin. Al Miguel, al Chema i al Rubén, per proporcionar-me l’entorn ideal per créixer com a científica i com a persona. Pel feedback als seminaris i per fer que li agafés gustillo a l’obscur món dels ions. Encara guardo els apunts de fisiologia I i II en un lloc segur per si mai vull refrescar la memòria o he d’escriure 4 pàgines sobre el potencial d’acció1. Una menció especial al Rubén per posar sostre a tots els sopars de Nadal i educar-nos el paladar amb la seva selecció de vins i còctels. A la Fanny, la Selma, la Mercè, l’Alejandro i Pablo. Pels coneixe- ments de biologia molecular, els balls de Bollywood, partits de volei, per suggerir altres punts de vista als seminaris i per totes les kcal en forma de brownie.
    [Show full text]
  • A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: a Simple System for Complex, Heterogeneous Diseases
    International Journal of Molecular Sciences Review A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases Weronika Rzepnikowska 1, Joanna Kaminska 2 , Dagmara Kabzi ´nska 1 , Katarzyna Bini˛eda 1 and Andrzej Kocha ´nski 1,* 1 Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] (W.R.); [email protected] (D.K.); [email protected] (K.B.) 2 Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 15 June 2020; Published: 16 June 2020 Abstract: Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps.
    [Show full text]