31295005186035.Pdf (3.964Mb)

Total Page:16

File Type:pdf, Size:1020Kb

31295005186035.Pdf (3.964Mb) CYCLODEXTRINS AND MICELLES IN SEPARATIONS by TIMOTHY JOSEPH WARD, B.S. A DISSERTATION IN CHEMISTRY (ANALYTICAL) Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved 1 /1 May, 1987 h'C^ ACKN0WLEDGMENT5 I give my deepest appreciation to Dr. Armstrong for his guidance and constant support. His encouragement helped me to grow as an independent researcher. I also thank the members of my committee for their constructive criticism. I would like to express my love and gratitude to Karen, for her companionship and help made the entire process easier and more enjoyable. I give thanks and praise to our Lord Jesus Christ through whom all things are possible. Finally, I want to dedicate this dissertation to my mother and father, who placed such a high value on education. Their love and encouragement sustained me through the years. 11 TABLE OF C0NTENT5 ACKN0WLEDGMENT5 i i LI5T0FTABLE5 vi LI5T0FFIGURES viii PREFACE Xi CHAPTER PART ONE CYCL0DEXTRIN5 IN SEPARATI0N5 \. INTRODUCTION 2 Traditíonal Methods for Resolving Enantiomers 2 Separation of Enantiomers by HPLC 4 Cyclodextrins 8 Structure and Physical Properties 11 Preparation of Bonded Phases 20 11. MATERIALS AND METHODS 29 Instrumentation 29 111 Chemicals 30 Methods 31 III. RESULTS AND DI5CU55I0N 34 Enantiomeric Separations 34 Dansy] Amino Acids 35 Crown Ethers 43 Drug Stereoisomers 54 Routine Separations 59 Mechanism of Separation 67 Parameters Which Affect Separation 80 IV. CONCLUSIONS 92 REFERENCES 94 APPENDIX 99 PART TWO MICELLESINSEPARATIONS V. MICELLES 101 Introduction 101 Micelle Structure and Properties 101 Micelles in Chromatography 102 iv VI. MATERIALS AND METHODS 106 VII. RESULT5ANDDISCU55I0N 108 Theory 111 Chromatographic Considerations 116 VIII. CONCLUSIONS 123 REFERENCES 124 LISTOFTABLES PART ONE CYCLODEXTRINS IN SEPARATIONS 1. Physical Properties of Cyclodextrins 19 2. Optical Resolution of the Enantiomers of 36 Dansylamino Acids 3. Retention, Separation, and Resolution Parameters 41 for the Separation of Other Enantiomers on the p-CD Stationary Phase 4. Separation Data for Several Racemic 46 2,2*-Binaphthol Derivatives on p-CD Stationary Phase 5. Binding Constants of Four 2,2'-Binaphthol 53 Derivatives withp-CD 6. Separation of Enantiomeric Drugs 55 7. Separation of Diastereomeric Drugs 57 8. Retention, Separation, and Resolution Parameters 62 for the LC Separation of Routine Substances on the p-CD Column 9. Structures and Chromatographic Data for a Series 65 of Nicotine Alkaloids VI 10. Comparison of Enantiomeric Separations Using 88 Different Mobile-Phase Components with the p-CD Column 11. Effect of Flow Rate on the Chromatographic 89 Separation Factor and Resolution of the (+) and (-) Enantiomers of DDDD PART TWO MICELLESINSEPARATIONS 12. Variations in Solute Diffusion Coefficients in the 109 Absence and Presence of SDS Micelles 13. Variations in Solute Diffusion Coefficients 112 in the Presence of Sodium Methylsulfate 14. Calculated Values of the Observed Solute Diffusion 115 Coefficients for Compounds Which Bind toSDSMicelles 15. Variations in the Number of Theoretical Plates (n) for 117 Various Solutes as a Function of SDS Micelle Concentration in the Mobile Phase Vll LISTOFFIGURES PART ONE CYCLODEXTRINS IN SEPARATIONS 1. A Schematic Showing Different Chiral Stationary 5 Phases Developed by Pirkle and Coworkers (A-C) and Related Chiral Stationary Phases Developed by Oi and Coworkers (D-F) 2. A Schematic Showing the Structure of Three 9 Different Charge Transfer Adducts That Have been Bonded to or Adsorbed on Silica Gel and Cram's Crown Ether Stationary Phase 3. Structure of p-Cyclodextrin (A) and Two of the 12 Glucopyranose Units that lllustrate Details of the a-( 1,4) Glycosidic Linkage (B), C1 (D) Chair Conformation, and the Numbering System Employed to Describe the Ring System 4 lllustration of the Size and Shape of a 15 p-Cyclodextrin Molecule 5. A Schematic Showing the Relative Size of a, p, and 17 y CyclodextrinMolecules 6. A Schematic of the Reactions Used to Produce the 22 Nitrogen Linked Bonded Phase 7. Diagram of the Non-Nitrogen Containing Bonded Phase 26 Vlll 8. Chromatographic Separation of the Enantiomers of 58 a Mixture of Racemic (i)-[DDDD], Dansyl-D,L- Threonine [Dns Thr], and Dansyl-D,L-Phenylalanine [DnsPhe]onthep-CDC5P 9. Structures of 2,2'-Binaphthy1diyl Crown Ethers and 44 Analogues 10. LC separation of Enantiomers of Crown Ether 48 Compounds 8, X 2, i, and 15 11. CD Spectra of (-)-(5)-4 and (+)-(R)-4 51 12. Chromatogram Showing the Near Baseline Separation 60 of a Series of Heterocyclic Aromatic Compounds 13. Schematic of a Cyclodextrin Molecule, Represented 68 as a Truncated Cone, Which Forms a Reversible Inclusion Complex with Mephobarbital 14. Structures of Different Drugs Separated on 71 p-Cyclodextrin Bonded Phase 15. Chromatogram Showing the LC Separation of 73 d- and 1-Propranolol on Two 25-cm p-Cyclodextrin Columns 16. Computer Projections of Inclusion Complexes of 76 (A) d-Propranolol and (B) 1-Proprano1o1 in p-Cyclodextrin, From X-Ray Crystallographic Data IX 17. Graph Showing the Inf luence of Percentage 81 Methanol in the Aqueous Mobile Phase on the Capacity Factor, k', for the (+) and (-) Enantiomers of DDDD on a 25-cm p-Cyc1odextrin Column 18. Plot Showing the Influence of the Percent Methanol 84 on the Resolution of the Enantiomers of DDDD on a 25-cm p-Cyclodextrin Column 19. Enantiomeric Separation and Resolution of 86 Hexobarbital on the p-Cyclodextrin Chiral Stationary Phase as a Function of the Percentage of Methanol in theMobile Phase PART TWO MICELLES INSEPARATIONS 20. Typical Cross-Sectional Schematic Representing 103 the Classical View of an Aqueous Micelle 21. SimplifiedModel Showing a "Membrane" or 121 "Bilayer-Like" Area When Surfactant Adsorbs on LC Bonded Media X PREFACE The resolution of enantiomers traditionally has been considered one of the more difficu1t problems in separation science. This arises from the fact that enantiomers have identical physical and chemical properties with the exception that they rotate plane polarized light in opposite directions. The separation of enantiomers using cyclodextrins is described in Part One of this dissertation. Cyclodextrins are nonionic, cyclic, chiral carbohydrates composed of glucopyranose units bound through a-( 1,4) linkages. By covalently bonding cyclodextrins to silica gel particles, an effective chiral stationary phase for high performance liquid chromatography (HPLC) has been produced. The packing is hydrolytically stable under standard HPLC conditions. The ability of cyclodextrins to form inclusion complexes with a wide variety of water insoluble, sparingly soluble, and soluble compounds make it particularly useful for enantiomeric separations. The formation of inclusion complexes is affected by a number of factors, such as hydrophobic effects, hydrogen bonding at the mouth of the cyclodextrin cavity, dipole-dipole interactions or the release of high energy water or modifer from the cyclodextrin cavity during inclusion complex formation. The effects of temperature, mobile phase composition, pH, flow rate and solute structure on resolution and separation efficiency are examined as well as possible modes of mechanism by which XI separation occurs. The results provide important insight into the inf luence of experimental parameters upon these separations. Part Two of this dissertation examines the use of micelles in chromatography. Micelles are dynamic species consisting of aggregated surfactants in an aqueous continuum. While micellar mobile phases have been known to produce unusual selectivities for various compounds in HPLC, they have offered little or nothing for improved chromatographic efficiency. A study was performed to determine the loss of efficiency in micellar mediated separations. Results indicate that poor mass transfer in the stationary phase is predominately responsible for the low efficiencies observed in HPLC separations. Xll PART ONE CYCLODEXTRINS IN 5EPARATI0N5 CHAPTERI INTRODUCTION Traditional Methods for Resolving Enantiomers Enantiomers are compounds which cannot be superimposed on their mirror images. The resolution of enantiomers has historically been one of the more difficult separation problems. This is attributable to the fact that enantiomers have identical physical and chemical properties with the exception that they rotate plane polarized light in opposite directions. When a compound is capable of rotating plane polarized light it is said to be optically active. In 1848 Pasteur reported the first successful separation of enantiomers from a racemic mixture (1). While examining the crystal structure of the sodium ammonium salt of racemic tartaric acid, he noticed that two types of crystals were present. One was identical to the sodium ammonium salt of (+)-tartaric acid (which had been discovered previously and shown to be dextrorotatory) while the other crystals were nonsuperimposable mirror reflections of (+)-tartaric acid. Pasteur separated the two types of crystals under a microscope with tweezers. Upon dissolving each crystal separately in water and placing the solution in a polarimeter, Pasteur found that they rotated plane polarized light in opposite directions by an equal amount. Since few organic compounds crystallize into distinct crystals (containing separate enantiomers) that are amenable to mechanical separation, this method was not generally applicable. i 3 Enantiomeric separations have traditionally been performed by conversion
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
    US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety.
    [Show full text]
  • Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on Β-Alanine and Isatin
    Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin by Robert Philip Colaguori A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Pharmaceutical Sciences University of Toronto © Copyright by Robert Philip Colaguori, 2016 ii Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin Robert Philip Colaguori Master of Science Department of Pharmaceutical Sciences University of Toronto 2016 Abstract Epilepsy is the fourth-most common neurological disorder in the world. Approximately 70% of cases can be controlled with therapeutics, however 30% remain pharmacoresistant. There is no cure for the disorder, and patients affected are subsequently medicated for life. Thus, there is a need to develop compounds that can treat not only the symptoms, but also delay/prevent progression. Previous work resulted in the discovery of NC-2505, a substituted β-alanine with activity against chemically induced seizures. Several N- and α-substituted derivatives of this compound were synthesized and evaluated in the kindling model and 4-AP model of epilepsy. In the kindling model, RC1-080 and RC1-102 were able to decrease the mean seizure score from 5 to 3 in aged mice. RC1-085 decreased the interevent interval by a factor of 2 in the 4-AP model. Future studies are focused on the synthesis of further compounds to gain insight on structure necessary for activity. iii Acknowledgments First and foremost, I would like to thank my supervisor Dr. Donald Weaver for allowing me to join the lab as a graduate student and perform the work ultimately resulting in this thesis.
    [Show full text]
  • Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms
    International Journal of Molecular Sciences Article Effect of Chronic Administration of 5-(3-chlorophenyl)-4-Hexyl-2,4 -Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms Anna Makuch-Kocka 1,* , Marta Andres-Mach 2, Mirosław Zagaja 2, Anna Smiech´ 3 , Magdalena Pizo ´n 4 , Jolanta Flieger 4, Judyta Cielecka-Piontek 5 and Tomasz Plech 1 1 Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 2 Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; [email protected] (M.A.-M.); [email protected] (M.Z.) 3 Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland; [email protected] 4 Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (M.P.); jolanta.fl[email protected] (J.F.) 5 Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 61-781 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Citation: Makuch-Kocka, A.; Andres-Mach, M.; Zagaja, M.; Smiech,´ Abstract: About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In A.; Pizo´n,M.; Flieger, J.; most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a Cielecka-Piontek, J.; Plech, T. Effect of Chronic Administration of stroke, trauma to the brain, or the use of psychotropic substances.
    [Show full text]
  • Pharmaceutical Composition Comprising Brivaracetam and Lacosamide with Synergistic Anticonvulsant Effect
    (19) TZZ __T (11) EP 2 992 891 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.03.2016 Bulletin 2016/10 A61K 38/04 (2006.01) A61K 31/4015 (2006.01) A61P 25/08 (2006.01) (21) Application number: 15156237.8 (22) Date of filing: 15.06.2007 (84) Designated Contracting States: (71) Applicant: UCB Pharma GmbH AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 40789 Monheim (DE) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (72) Inventor: STOEHR, Thomas 2400 Mol (BE) (30) Priority: 15.06.2006 US 813967 P 12.10.2006 EP 06021470 (74) Representative: Dressen, Frank 12.10.2006 EP 06021469 UCB Pharma GmbH 22.11.2006 EP 06024241 Alfred-Nobel-Strasse 10 40789 Monheim (DE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: Remarks: 07764676.8 / 2 037 965 This application was filed on 24-02-2015 as a divisional application to the application mentioned under INID code 62. (54) PHARMACEUTICALCOMPOSITION COMPRISING BRIVARACETAM AND LACOSAMIDE WITH SYNERGISTIC ANTICONVULSANT EFFECT (57) The present invention is directed to a pharmaceutical composition comprising (a) lacosamide and (b) brivara- cetam for the prevention, alleviation or/and treatment of epileptic seizures. EP 2 992 891 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 992 891 A1 Description [0001] The present application claims the priorities of US 60/813.967 of 15 June 2006, EP 06 021 470.7 of 12 October 2006, EP 06 021 469.9 of 12 October 2006, and EP 06 024 241.9 of 22 November 2006, which are included herein by 5 reference.
    [Show full text]
  • Diazepam Therapy and CYP2C19 Genotype
    NLM Citation: Dean L. Diazepam Therapy and CYP2C19 Genotype. 2016 Aug 25. In: Pratt VM, McLeod HL, Rubinstein WS, et al., editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012-. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/ Diazepam Therapy and CYP2C19 Genotype Laura Dean, MD1 Created: August 25, 2016. Introduction Diazepam is a benzodiazepine with several clinical uses, including the management of anxiety, insomnia, muscle spasms, seizures, and alcohol withdrawal. The clinical response to benzodiazepines, such as diazepam, varies widely between individuals (1, 2). Diazepam is primarily metabolized by CY2C19 and CYP3A4 to the major active metabolite, desmethyldiazepam. Approximately 3% of Caucasians and 15 to 20% of Asians have reduced or absent CYP2C19 enzyme activity (“poor metabolizers”). In these individuals, standard doses of diazepam may lead to a higher exposure to diazepam. The FDA-approved drug label for diazepam states that “The marked inter-individual variability in the clearance of diazepam reported in the literature is probably attributable to variability of CYP2C19 (which is known to exhibit genetic polymorphism; about 3-5% of Caucasians have little or no activity and are “poor metabolizers”) and CYP3A4” (1). Drug: Diazepam Diazepam is used in the management of anxiety disorders or for the short-term relief of the symptoms of anxiety. In acute alcohol withdrawal, diazepam may provide symptomatic relief from agitation, tremor, delirium tremens, and hallucinations. Diazepam is also useful as an adjunct treatment for the relief of acute skeletal muscle spasms, as well as spasticity caused by upper motor neuron disorders (3). There are currently 16 benzodiazepines licensed by the FDA.
    [Show full text]
  • Drugs Affecting the Central Nervous System
    Drugs affecting the central nervous system 15. Antiepileptic drugs (AEDs) Epilepsy is caused by the disturbance of the functions of the CNS. Although epileptic seizures have different symptoms, all of them involve the enhanced electric charge of a certain group of central neurons which is spontaneously discharged during the seizure. The instability of the cell membrane potential is responsible for this spontaneous discharge. This instability may result from: increased concentration of stimulating neurotransmitters as compared to inhibiting neurotransmitters decreased membrane potential caused by the disturbance of the level of electrolytes in cells and/or the disturbance of the function of the Na+/K+ pump when energy is insufficient. 2 Mutations in sodium and potassium channels are most common, because they give rise to hyperexcitability and burst firing. Mutations in the sodium channel subunits gene have been associated with - in SCN2A1; benign familial neonatal epilepsy - in SCN1A; severe myoclonic epilepsy of infancy - in SCN1A and SCN1B; generalized epilepsy with febrile seizures The potassium channel genes KCNQ2 and KCNQ3 are implicated in some cases of benign familial neonatal epilepsy. Mutations of chloride channels CLCN2 gene have been found to be altered in several cases of classical idiopathic generalized epilepsy suptypes: child-epilepsy and epilepsy with grand mal on awakening. Mutations of calcium channel subunits have been identified in juvenile absence epilepsy (mutation in CACNB4; the B4 subunit of the L-type calcium channel) and idiopathic generalized epilepsy (CACN1A1). 3 Mutations of GABAA receptor subunits also have been detected. The gene encoding the 1 subunit, GABRG1, has been linked to juvenile myoclonic epilepsy; mutated GABRG2, encoding an abnormal subunit, has been associated with generalized epilepsy with febrile seizures and childhood absence epilepsy.
    [Show full text]
  • Assay of Mephenytoin Metabolism in Human Liver Microsomes by High-Performance Liquid Chromatography
    ANALYTICAL BIOCHEMISTRYlS1,286-29 1 (1985) Assay of Mephenytoin Metabolism in Human Liver Microsomes by High-Performance Liquid Chromatography U. THOMAS MEIER, THOMAS KRONBACH, AND URS A. MEYER Department of Pharmacology, Biocenter of the University, Basel, Switzerland Received May 8, 1985 The metabolism of mephenytoin to its two major metabolites, 4-OH-mephenytoin (4-OH-M) and 5-phenyl-5-ethylhydantoin (nirvanol) was studied in human liver microsomes by a reversed phase HPLC assay. Because of preferential hydroxylation of Smephenytoin in vivo, microsomes (5-300 rg protein) were incubated separately with 9 and R-mephenytoin. After addition of phenobarbital as internal standard, the incubation mixture was extracted with dichloromethane. The residue remaining after evaporation was dissolved in water and injected on a 60 X 4.6-mm reversed-phase column (5 k-C- 18). Elution with acetonitrile/methanoI/sodium perchlorate (20 mM, pH 2.5) led to almost baseline separation of mephenytoin, metabohtes, and phenobarbital. Quantitation was performed by uv-absorption at 204 nm by the internal standard method. Pro- pylene glycol was found to be the best solvent for mephenytoin, but inhibited the reaction non- competitively. 4-OH-M and nirvanol could be detected at concentrations in the incubation mixture as low as 40 and 80 nM, respectively. The rates of metabolite formation were linear with time and protein concentration. The reaction was found to be substrate stereoselective. At substrate concentrations below 0.5 mM Smephenytoin was preferentially hydroxylated to 4-OH-M, while R-mephenytoin was preferentially demethylated to nirvanol at all substrate concentrations tested (25- 1600 FM).
    [Show full text]
  • Anticonvulsants in Pregnancy
    10 Epilepsy C LINICAL N EUROLOGY N EWS • August 2006 G UEST E DITORIAL Anticonvulsants in Pregnancy lthough it has been known for years facial abnormalities. Other defects, such In contrast, first-generation AEDs that for the other second-generation agents: that some first-generation as those involving the heart and growth, do not appear to be associated with a sig- felbamate (Felbatol), gabapentin (Neu- Aantiepileptic drugs (AEDs) cause are commonly observed. A syndrome nificant risk of birth defects include the rontin), pregabalin (Lyrica), levetiracetam birth defects, intrauterine growth retar- with carbamazepine consisting of minor benzodiazepines (clonazepam [Klonopin], (Keppra), tiagabine (Gabitril), and topira- dation (IUGR), and, possibly, develop- craniofacial defects, fingernail hypoplasia, clorazepate [Tranxene], diazepam [Vali- mate (Topamax). mental delay, these toxicities were not and developmental delay has been ob- um], and lorazepam [Ativan]) and succin- Although the data also are limited for thought to apply to the second-generation served; this drug may also cause neural- imides (ethosuximide [Zarontin] and zonisamide (Zonegran), the drug is ter- AEDs. New information has challenged tube defects (NTDs). methsuximide [Celontin]). However, some atogenic in three animal species and em- that belief. The defects observed with primidone of these drugs have very little human bryo lethal in a fourth and therefore is best The first-generation AEDs known to are similar to those in FHS. Phenobarbi- data, and the benzodiazepines are known avoided in the first trimester. Oxcar- cause birth defects and oth- tal has been associated with to cause toxicity in the newborn, most no- bazepine (Trileptal), a drug closely related er developmental toxicities an increase in congenital de- tably, floppy infant syndrome and with- to carbamazepine, has been associated include the hydantoins fects when used for epilepsy, drawal syndrome.
    [Show full text]
  • Drugs Which Can Affect Near Vision: a Useful List
    Drugs Which Can Affect Near Vision: A Useful List Joanne L. Smith B.Sc., Ph.Phm.* J. Raymond Buncic, M.D., F.R.C.S.(C)t ABSTRACT This paper documents a list of drugs that cause problems with near vision, by virtue of effects on accommodation, occasionally refractive error and diplopia. It is meant as a reference aid to the clinician when confronted with problems of focusing on near objects or print. There are many drugs that have been reported to interfere with near or reading vision, producing blurring, decreased accommodation and diplopia. This paper lists the drugs that have been reported in the literature to produce symptoms which interfere with near vision. Case reports for the listed drugs vary greatly from many to few. The drugs have been divided into the following categories: those causing (A) blurring at near, (B) diplopia and (C) induced myopia. Those drugs which only rarely cause these symptoms have been omitted. From the Departments of Pharmacy* and Ophthalmologyt, The Hospital For Sick Children, Toronto, Ontario, Canada Requests for reprints should be addressed to: Dr. J. Raymond Buncic, Department of Ophthalmology, The Hospital For Sick Children, 555 University Ave., Toronto, Ontario, Canada M5G lX8 TABLE 1 DRUGS COMMONLY CAUSING DIFFICULTY WITH FOCUSING AT NEAR OR BLURRED VISION. DRUG INCIDENCE REFERENCE Antipsychotics Chlorpromazine 14-23 8 Clozapine 5 8,14 Fluphenazine 1.2-4.3 8 Haloperidol 6.8-16 8 Loxapine 12,14 Perphenazine 7.4-17.8 8 Pimozide 20 8 Risperidone 1-2%, >/= 10% 11 Thioridazine 0.6-18 8 Thiothixene 20 8
    [Show full text]
  • Active Moiety Name FDA Established Pharmacologic Class (EPC) Text
    FDA Established Pharmacologic Class (EPC) Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: Active Moiety Name “(Drug) is a (FDA EPC Text Phrase) indicated for [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13.
    [Show full text]
  • And NADPH-Dependent Inhibition of Human CYP2E1 by Clomethiazole S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/05/05/dmd.116.070193.DC1 1521-009X/44/8/1424–1430$25.00 http://dx.doi.org/10.1124/dmd.116.070193 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:1424–1430, August 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Selective Time- and NADPH-Dependent Inhibition of Human CYP2E1 by Clomethiazole s David M. Stresser,1 Elke S. Perloff,2 Andrew K. Mason,3 Andrew P. Blanchard,4 Shangara S. Dehal,5 Timothy P. Creegan, Ritu Singh, and Eric T. Gangl6 Corning Life Sciences (D.M.S., T.P.C., R.S.) and BD Biosciences (E.S.P., A.K.M., A.P.B., S.S.D., E.T.G.), Woburn, Massachusetts Received February 23, 2016; accepted May 4, 2016 ABSTRACT The sedative clomethiazole (CMZ) has been used in Europe since the CYP2E1 and CYP2B6 but not CYP2A6 or other P450 isoforms. The mid-1960s to treat insomnia and alcoholism. It has been previously substantial increase in potency of CYP2E1 inhibition upon preincu- demonstrated in clinical studies to reversibly inhibit human CYP2E1 bation enables the use of CMZ to investigate the role of human Downloaded from in vitro and decrease CYP2E1-mediated elimination of chlorzoxa- CYP2E1 in xenobiotic metabolism and provides advantages zone. We have investigated the selectivity of CMZ inhibition of over other chemical inhibitors of CYP2E1. The KI and kinact values CYP2E1 in pooled human liver microsomes (HLMs). In a reversible obtained with HLM-catalyzed 6-hydroxylation of chlorzoxazone inhibition assay of the major drug-metabolizing cytochrome P450 were 40 mM and 0.35 minute21, respectively, and similar to values 21 (P450) isoforms, CYP2A6 and CYP2E1 exhibited IC50 values of 24 mM obtained with recombinant CYP2E1 (41 mM, 0.32 minute ).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0056896 A1 Jao Et Al
    US 2003.0056896A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0056896 A1 Jao et al. (43) Pub. Date: Mar. 27, 2003 (54) EFFECTIVE THERAPY FOR EPILEPSIES (22) Filed: Sep. 30, 2002 (76) Inventors: Frank Jao, San Jose, CA (US); Patrick Related U.S. Application Data S.-L. Wong, Palo Alto, CA (US); Evangeline Cruz, Hayward, CA (US); (63) Continuation of application No. 08/440,378, filed on Eduardo C. Sy, Union City, CA (US); May 12, 1995, now abandoned. Anthony L. Kuczynski, Mountain View, CA (US) Publication Classification Correspondence Address: (51) Int. C.7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C09. 1/00 ALZA CORPORATION (52) U.S. Cl. .............................................................. 156/327 POINTELLECTUAL BOX 7210 PROPERTY DEPARTMENT (7) ABSTRACT MOUNTAIN VIEW, CA 940397210 A dosage form is disclosed for delivering an antiepileptic drug, which dosage form comprises for maintaining the 21) Appl.pp No.: 10/262,153 integritygrily of the dosage9. form and of the antiepilepticpilep drug.9. Patent Application Publication Mar. 27, 2003 Sheet 1 of 5 US 2003/0056896A1 F. G. F. G. 2 F. G. 3 3 10 3 O ?: 11 2 14 2 C Z s AN-20 N 6 S N I NZ 19 LN N N is78 SN:N NY-20N3 28 N2 -26 N-22 A-2 Q 24 al O / AYAGA2DY AS Patent Application Publication Mar. 27, 2003 Sheet 2 of 5 US 2003/0056896 A1 3 O O- | I O 6 TIME (HOURS) F. G.6A : 00 O O TME (HOURS) F.G. 6B Patent Application Publication Mar. 27, 2003 Sheet 3 of 5 US 2003/0056896 A1 00 9 O 80 70 60 50 40 30 20 O O O 2 4 6 8 IO 2 4 6 8 20 22 24 TIME (HOURS) F.
    [Show full text]