Pharmaceutical Composition Comprising Brivaracetam and Lacosamide with Synergistic Anticonvulsant Effect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanisms of Action of Antiepileptic Drugs
Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions. -
Notice of Final Decisions to Amend (Or Not Amend) the Current Poisons Standard
Notice of final decisions to amend (or not amend) the current Poisons Standard Final decisions and reasons for New Chemical Entities and medicines and chemicals referred to the November 2018 scheduling meetings 26 April 2019 Scheduling amendments referred to expert advisory committee Subdivision 3D.2 of the Therapeutic Goods Regulations 1990 (the Regulations) sets out the procedure to be followed where the Secretary receives an application under section 52EAA of the Therapeutic Goods Act 1989 (the Act) to amend the current Poisons Standard and decides to refer the proposed amendment to an expert advisory committee. These include, under regulation 42ZCZK, that the Secretary publish (in a manner the Secretary considers appropriate) the proposed amendment to be referred to an expert advisory committee, the committee to which the proposed amendment will be referred, and the date of the committee meeting. The Secretary must also invite public submissions to be made to the expert advisory committee by a date mentioned in the notice as the closing date, allowing at least 20 business days after publication of the notice. Such a notice relating to the final decisions herein was made available on the TGA website at Scheduling advisory committees: invitations for public comment on 31 August 2018 and closed on 28 September 2018. Public submissions received on or before this closing date were published on the TGA website at Public submissions on scheduling matters referred to the ACMS #25, ACCS #23 and Joint ACMS-ACCS #20 meetings held in November 2018, in accordance with regulation 42ZCZL. Under regulation 42ZCZN of the Regulations, the Secretary, after considering the advice or recommendation of the expert advisory committee, must (subject to regulation 42ZCZO) make an interim decision in relation to the proposed amendment. -
(12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety. -
Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on Β-Alanine and Isatin
Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin by Robert Philip Colaguori A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Pharmaceutical Sciences University of Toronto © Copyright by Robert Philip Colaguori, 2016 ii Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin Robert Philip Colaguori Master of Science Department of Pharmaceutical Sciences University of Toronto 2016 Abstract Epilepsy is the fourth-most common neurological disorder in the world. Approximately 70% of cases can be controlled with therapeutics, however 30% remain pharmacoresistant. There is no cure for the disorder, and patients affected are subsequently medicated for life. Thus, there is a need to develop compounds that can treat not only the symptoms, but also delay/prevent progression. Previous work resulted in the discovery of NC-2505, a substituted β-alanine with activity against chemically induced seizures. Several N- and α-substituted derivatives of this compound were synthesized and evaluated in the kindling model and 4-AP model of epilepsy. In the kindling model, RC1-080 and RC1-102 were able to decrease the mean seizure score from 5 to 3 in aged mice. RC1-085 decreased the interevent interval by a factor of 2 in the 4-AP model. Future studies are focused on the synthesis of further compounds to gain insight on structure necessary for activity. iii Acknowledgments First and foremost, I would like to thank my supervisor Dr. Donald Weaver for allowing me to join the lab as a graduate student and perform the work ultimately resulting in this thesis. -
PR2 2009.Vp:Corelventura
Pharmacological Reports Copyright © 2009 2009, 61, 197216 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences Review Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions Jarogniew J. £uszczki1,2 Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, PL 20-950 Lublin, Poland Correspondence: Jarogniew J. £uszczki, e-mail: [email protected]; [email protected] Abstract: This review briefly summarizes the information on the molecular mechanisms of action, pharmacokinetic profiles and drug interac- tions of novel (third-generation) antiepileptic drugs, including brivaracetam, carabersat, carisbamate, DP-valproic acid, eslicar- bazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, and valrocemide. These novel antiepileptic drugs undergo intensive clinical investigations to assess their efficacy and usefulness in the treatment of patients with refractory epilepsy. Key words: antiepileptic drugs, brivaracetam, carabersat, carisbamate, DP-valproic acid, drug interactions, eslicarbazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pharmacokinetics, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, valrocemide Abbreviations: 4-AP -
Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms
International Journal of Molecular Sciences Article Effect of Chronic Administration of 5-(3-chlorophenyl)-4-Hexyl-2,4 -Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms Anna Makuch-Kocka 1,* , Marta Andres-Mach 2, Mirosław Zagaja 2, Anna Smiech´ 3 , Magdalena Pizo ´n 4 , Jolanta Flieger 4, Judyta Cielecka-Piontek 5 and Tomasz Plech 1 1 Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 2 Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; [email protected] (M.A.-M.); [email protected] (M.Z.) 3 Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland; [email protected] 4 Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (M.P.); jolanta.fl[email protected] (J.F.) 5 Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 61-781 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Citation: Makuch-Kocka, A.; Andres-Mach, M.; Zagaja, M.; Smiech,´ Abstract: About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In A.; Pizo´n,M.; Flieger, J.; most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a Cielecka-Piontek, J.; Plech, T. Effect of Chronic Administration of stroke, trauma to the brain, or the use of psychotropic substances. -
Diazepam Therapy and CYP2C19 Genotype
NLM Citation: Dean L. Diazepam Therapy and CYP2C19 Genotype. 2016 Aug 25. In: Pratt VM, McLeod HL, Rubinstein WS, et al., editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012-. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/ Diazepam Therapy and CYP2C19 Genotype Laura Dean, MD1 Created: August 25, 2016. Introduction Diazepam is a benzodiazepine with several clinical uses, including the management of anxiety, insomnia, muscle spasms, seizures, and alcohol withdrawal. The clinical response to benzodiazepines, such as diazepam, varies widely between individuals (1, 2). Diazepam is primarily metabolized by CY2C19 and CYP3A4 to the major active metabolite, desmethyldiazepam. Approximately 3% of Caucasians and 15 to 20% of Asians have reduced or absent CYP2C19 enzyme activity (“poor metabolizers”). In these individuals, standard doses of diazepam may lead to a higher exposure to diazepam. The FDA-approved drug label for diazepam states that “The marked inter-individual variability in the clearance of diazepam reported in the literature is probably attributable to variability of CYP2C19 (which is known to exhibit genetic polymorphism; about 3-5% of Caucasians have little or no activity and are “poor metabolizers”) and CYP3A4” (1). Drug: Diazepam Diazepam is used in the management of anxiety disorders or for the short-term relief of the symptoms of anxiety. In acute alcohol withdrawal, diazepam may provide symptomatic relief from agitation, tremor, delirium tremens, and hallucinations. Diazepam is also useful as an adjunct treatment for the relief of acute skeletal muscle spasms, as well as spasticity caused by upper motor neuron disorders (3). There are currently 16 benzodiazepines licensed by the FDA. -
Antiepileptic Potential of Ganaxolone Antiepileptički Potencijal Ganaksolona
Vojnosanit Pregl 2017; 74(5): 467–475. VOJNOSANITETSKI PREGLED Page 467 UDC: 615.03::616.853-085 GENERAL REVIEW https://doi.org/10.2298/VSP151221157J Antiepileptic potential of ganaxolone Antiepileptički potencijal ganaksolona Slobodan Janković, Snežana Lukić Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia Key words: Ključne reči: ganaxolone; epilepsies, partial; neurotransmitter ganaksolon; epilepsije, parcijalne; neurotransmiteri; agents; child; adult. deca; odrasle osobe. Introduction New anticonvulsants With its estimated prevalence of 0.52% in Europe, The drug resistant epilepsy has been recently defined by 0.68% in the United States of America and up to 1.5% in de- the International League Against Epilepsy as “a failure of veloping countries, epilepsy makes a heavy burden on indi- adequate trials of two tolerated, appropriately chosen and viduals, healthcare systems and societies in general all over used antiepileptic drug schedules (whether as monotherapies the world 1, 2. Despite long history of epilepsy treatment with or in combination) to achieve sustained seizure free- dom” 11.The mechanisms of drug resistance in epilepsy are medication, efficacy and effectiveness of available antiepi- still incompletely understood, and none of the anticonvul- leptic drugs as monotherapy were unequivocally proven in sants with current marketing authorization has demonstrated clinical trials only for partial-onset seizures in children and superior efficacy in the treatment of drug resistant epilepsy 12. adults (including elderly), while generalized-onset tonic- Using new anticonvulsants as add-on therapy lead to free- clonic seizures in children and adults, juvenile myoclonic dom from seizures in only 6% of patients with drug resistant epilepsy and benign epilepsy with centrotemporal spikes are epilepsy 13. -
Telemetric EEG and the Rat: a Guide for Neuroscientists
Editorial Telemetric EEG and the Rat: A Guide For Neuroscientists Jafri Malin AbdullAh1, Mohammad RAfiqul islAm2 1 Malaysian Journal of Medical Sciences, Universiti Sains Malaysia Press, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia 2 Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia Abstract Telemetric EEG in the rat’s brain has been used for experiments which tests the effects of an antiepileptic compound on it’s antiseizures activity. A simple classification correlating epileptiform discharge and Racine’s behavioral activity is discussed. Keywords: electroencephalogram, neuroscience, rat, telemetry Animal models for seizures and epilepsy scale for the assessment of seizure intensities in have played a fundamental role in advancing our other epilepsy or seizure models is justifiable, understanding of basic mechanisms underlying given the well known relation between activated ictogenesis and epileptogenesis and have been brain part and corresponding expressed behavior instrumental in the discovery and preclinical of Sprague Dawley rats (160–350 g) which are development of novel antiepileptic drugs. suitable animals to induce status epilepticus Despite the successful development of various models and to record continuous EEG spikes and new antiepileptic drugs in recent decades, the wave discharges (4–6). search for new therapies with better efficacy and We used a total of 10 male Sprague Dawley tolerability remains an important goal (1). The and 6 Genetic Absence Epilepsy Rats from discovery and development of a new antiepileptic Strasbourg (GAERS) rats (7), four to six months drug relies heavily on the preclinical use of animal of age and weighing 187–325 g. -
New Zealand Gazette 77
NEW ZEALAND GAZETTE, No. 77 — 3 AUGUST 2017 Classification of Medicines Pursuant to section 106(1) of the Medicines Act 1981, I, Chris James, Group Manager, Medsafe, Ministry of Health, acting under delegated authority, hereby declare the following: 1. The medicines listed in Schedule 1 to this notice are classified as prescription medicines. 2. The medicines listed in Schedule 2 to this notice are classified as restricted medicines. 3. The medicines listed in Schedule 3 to this notice are classified as pharmacy-only medicines. Every reference to a medicine in this notice applies whether the medicine is synthetic in origin or is from biological or mineral sources. Unless specific reference is made otherwise, every reference applies also to medicines that are: a. preparations and admixtures containing any proportion of any substance listed in the notice. b. salts and esters of any substance listed in the notice. c. preparations or extracts of biological materials listed in the notice. d. salts or oxides of elements listed in the notice. Unless specific reference is made otherwise, every reference to a medicine applies: i. if the medicine is in an injection or eye preparation, to any concentration of that medicine; and ii. if the medicine is not in an injection or eye preparation, only if the concentration of the medicine is greater than 10 milligrams per litre or per kilogram. Where any reference is modified by a statement of the strength of the medicine, the strength is calculated using the free acid, base, alcohol or element unless specifically -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9 -
(12) Patent Application Publication (10) Pub. No.: US 2011/0021786 A1 Schenkel Et Al
US 2011 0021786A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0021786 A1 Schenkel et al. (43) Pub. Date: Jan. 27, 2011 (54) PHARMACEUTICAL SOLUTIONS, PROCESS (86). PCT No.: PCT/EP09/524.54 OF PREPARATION AND THERAPEUTC USES S371 (c)(1), (2), (4) Date: Oct. 6, 2010 (75) Inventors: Eric Schenkel, Brussels (BE): Claire Poulain, Brussels (BE); (30) Foreign Application Priority Data Bertrand Dodelet, Brussels (BE): Domenico Fanara, Brussels (BE) Mar. 3, 2008 (EP) .................................. O8OO3915.9 Correspondence Address: Publication Classification MCDONNELL BOEHNEN HULBERT & BERG HOFF LLP (51) Int. Cl. 300 S. WACKER DRIVE, 32ND FLOOR C07D 207/27 (2006.01) CHICAGO, IL 60606 (US) (52) U.S. Cl. ........................................................ 548/SSO (73) Assignee: UCB PHARMA, S.A., Brussels (BE) (57) ABSTRACT (21) Appl. No.: 12/920,524 The present invention concerns a stable pharmaceutical solu tion, a process of the preparation thereof and therapeutic uses (22) PCT Filed: Mar. 2, 2009 thereof. US 2011/002 1786 A1 Jan. 27, 2011 PHARMACEUTICAL SOLUTIONS, PROCESS 0006 Seletracetam is effective in the treatment of epi OF PREPARATION AND THERAPEUTC lepsy. USES 0007. Until now, brivaracetam and seletracetam have been formulated in Solid compositions (film coated tablet, gran ules). 0008. However, an oral solution would be particularly desirable for administration in children and also in some adult 0001. The present invention concerns stable liquid formu patients. An injectable Solution could be advantageously used lations of 2-oxo-1-pyrrolodine derivatives, a process of the in case of epilepsy crisis. preparation thereof and therapeutic uses thereof. 0009 Moreover, administration of an oral dosage form is 0002 International patent application having publication the preferred route of administration for many pharmaceuti number WO 01/62726 discloses 2-oxo-1-pyrrolidine deriva cals because it provides for easy, low-cost administration.