Mechanisms of Action of Antiepileptic Drugs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States July 2016 2 Table of Contents
Deuterium Labelled Compounds United States July 2016 2 Table of Contents International Distributors 3 Corporate Overview 4 General Information 5 Pricing and Payment 5 Quotations 5 Custom Synthesis 5 Shipping 5 Quality Control 6 Quotations 6 Custom Synthesis 6 Shipping 6 Quality Control 6 Chemical Abstract Service Numbers 6 Handling Hazardous Compounds 6 Our Products are Not Intended for Use in Humans 7 Limited Warranty 7 Packaging Information 7 Alphabetical Listings 8 Stock Clearance 236 Products by Category 242 n-Alkanes 243 α-Amino Acids, N-Acyl α-Amino Acids, N-t-BOC Protected α-Amino Acid 243 and N-FMOC Protected α-Amino Acids Buffers and Reagents for NMR Studies 245 Detergents 245 Environmental Standards 246 Fatty Acids and Fatty Acid Esters 249 Flavours and Fragrances 250 Gases 253 Medical Research Products 254 Nucleic Acid Bases and Nucleosides 255 Pesticides and Pesticide Metabolites 256 Pharmaceutical Standards 257 Polyaromatic Hydrocarbons (PAHs), Alkyl-PAHs, Amino-PAHs, 260 Hydroxy-PAHs and Nitro-PAHs Polychlorinated Biphenyls (PCBs) 260 Spin Labels 261 Steroids 261 3 International Distributors C Beijng Zhenxiang H EQ Laboratories GmbH Australia K Technology Company Graf-von-Seyssel-Str. 10 Rm. 15A01, Changyin Bld. 86199 Augsburg Austria H No. 88, YongDingLu Rd. Germany Beijing 100039 Tel.: (49) 821 71058246 Belgium J China Fax: (49) 821 71058247 Tel.: (86) 10-58896805 [email protected] China C Fax: (86) 10-58896158 www.eqlabs.de Czech Republic H [email protected] Germany, Austria, China Czech Republic, Greece, Denmark I Hungary, -
PPE Requirements Hazardous Drug Handling
This document’s purpose is only to provide general guidance. It is not a definitive interpretation for how to comply with DOSH requirements. Consult the actual NIOSH hazardous drugs list and program regulations in entirety to understand all specific compliance requirements. Minimum PPE Required Minimum PPE Required Universal (Green) - handling and disposed of using normal precautions. PPE Requirements High (Red) - double gloves, gown, eye and face protection in Low (Yellow) - handle at all times with gloves and appropriate engineering Hazardous Drug Handling addition to any necessary controls. engineering controls. Moderate (Orange) -handle at all times with gloves, gown, eye and face protection (with splash potential) and appropirate engineering controls. Tablet Open Capsule Handling only - Contained Crush/Split No alteration Crush/Split Dispensed/Common Drug Name Other Drug Name Additional Information (Formulation) and (NIOSH CATEGORY #) Minimum PPE Minimum PPE Minimum PPE Minimum PPE Required required required required abacavir (susp) (2) ziagen/epzicom/trizivir Low abacavir (tablet) (2) ziagen/epzicom/trizivir Universal Low Moderate acitretin (capsule) (3) soriatane Universal Moderate anastrazole (tablet) (1) arimidex Low Moderate High android (capsule) (3) methyltestosterone Universal Moderate apomorphine (inj sq) (2) apomorphine Moderate arthotec/cytotec (tablet) (3) diclofenac/misoprostol Universal Low Moderate astagraf XL (capsule) (2) tacrolimus Universal do not open avordart (capsule) (3) dutasteride Universal Moderate azathioprine -
With LAMOTRIGINE IN
were independent of seizure type. Cardiac abnormalities occurring in epilepsy with GTCS may potentially facilitate sudden cardiac death (SUDEP). ETHOSUXIMIDE, VALPROIC ACID, AND LAMOTRIGINE IN CHILDHOOD ABSENCE EPILEPSY Efficacy, tolerability, and neuropsychological effects of ethosuximide, valproic acid, and lamotrigine in children with newly diagnosed childhood absence epilepsy were compared in a double-blind, randomized, controlled clinical trial performed at six centers in the US and organized as a Study Group. Drug doses were incrementally increased until freedom from seizures or highest tolerable dose was reached, Primary outcome was freedom from treatment failure after 16 weeks therapy, and secondary outcome was attentional dysfunction. In a total of 453 children, the freedom-from-failure rates after 16 weeks were similar for ethosuximide (53%) and valproic acid (58%), and higher than the rate for lamotrigine (29%) (P<0.001). Attentional dysfunction was more common with valproic acid (49%) than with ethosuximide (33%) (P=0.03). (Glauser TA, Cnaan A, Shinnar S, et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med March 4 2010;362:790-799). (Reprints: Dr Tracy A Glauser, Cincinnati Children's Hospital, 3333 Burnett Ave, MLC 2015, Cincinnati, OH 45229. E- mail: [email protected]). COMMENT. "Older is better," is the conclusion of Vining EPG, in an editorial (N Engl J Med 2010;362:843-845). As generally accepted in US practice and confirmed by the above controlled trial, ethosuximide from the 1950s is the optimal initial therapy for childhood absence epilepsy without GTCS. Ethosuximide is equal to valproic acid in seizure control and superior in effects on attention. -
Management of Status Epilepticus
Published online: 2019-11-21 THIEME Review Article 267 Management of Status Epilepticus Ritesh Lamsal1 Navindra R. Bista1 1Department of Anaesthesiology, Tribhuvan University Teaching Address for correspondence Ritesh Lamsal, MD, DM, Department Hospital, Institute of Medicine, Tribhuvan University, Nepal of Anaesthesiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University,Kathmandu, Nepal (e-mail: [email protected]). J Neuroanaesthesiol Crit Care 2019;6:267–274 Abstract Status epilepticus (SE) is a life-threatening neurologic condition that requires imme- diate assessment and intervention. Over the past few decades, the duration of seizure Keywords required to define status epilepticus has shortened, reflecting the need to start thera- ► convulsive status py without the slightest delay. The focus of this review is on the management of con- epilepticus vulsive and nonconvulsive status epilepticus in critically ill patients. Initial treatment ► neurocritical care of both forms of status epilepticus includes immediate assessment and stabilization, ► nonconvulsive status and administration of rapidly acting benzodiazepine therapy followed by nonbenzodi- epilepticus azepine antiepileptic drug. Refractory and super-refractory status epilepticus (RSE and ► refractory status SRSE) pose a lot of therapeutic problems, necessitating the administration of contin- epilepticus uous infusion of high doses of anesthetic agents, and carry a high risk of debilitating ► status epilepticus morbidity as well as mortality. ► super-refractory sta- tus epilepticus Introduction occur after 30 minutes of seizure activity. However, this working definition did not indicate the need to immediately Status epilepticus (SE) is a medical and neurologic emergency commence treatment and that permanent neuronal injury that requires immediate evaluation and treatment. It is associat- could occur by the time a clinical diagnosis of SE was made. -
STATUS EPILEPTICUS in ADULTS (Convulsive Seizures in Patients Aged > 16 Years Old) Link Consultant: Dr Hannah Cock
STATUS EPILEPTICUS IN ADULTS (Convulsive Seizures in patients aged > 16 years old) Link consultant: Dr Hannah Cock Status epilepticus (SE) is defined as continuous seizure activity which has failed to self- terminate leading to a risk of neurological damage. The risks are highest with generalised tonic/clonic (convulsive) seizures. Convulsive SE may present as either a run of discreet generalised tonic/clonic seizures without full recovery in between (ie without regaining consciousness), or continuous generalised tonic/clonic seizure activity. Most convulsive seizures terminate spontaneously within 3 minutes, and do NOT need emergency treatment. Convulsive seizures lasting longer than 5 minutes, or recurring without recovery should be managed as Convulsive SE, unless the patient is known to habitually have longer seizures with self-termination (eg information from relatives, friends, or the patient’s epilepsy card or diary). The mortality and morbidity of generalised status epilepticus is high, and it is important to control fits as soon as possible, to use adequate doses of 1st and 2nd line agents, but not to over-treat patients in whom seizures have terminated but are slow to recover. GENERAL MANAGEMENT 1st stage (0-10mins). Protect the patient e.g. padded bed rails. Do not restrain. Administer oxygen. During an inter-ictal period insert an airway and then administer oxygen. Do not attempt to insert anything in the patient’s mouth during a seizure, even if the tongue is injured. Place the patient in a semi-prone position with the head down to prevent aspiration. Establish iv access. Note the time. 2nd Stage (0-30mins). Institute regular monitoring (temperature, cardiac, respiration, BP). -
Campro Catalog Stable Isotope
Introduction & Welcome Dear Valued Customer, We are pleased to present to you our Stable Isotopes Catalog which contains more than three thousand (3000) high quality labeled compounds. You will find new additions that are beneficial for your research. Campro Scientific is proud to work together with Isotec, Inc. for the distribution and marketing of their stable isotopes. We have been working with Isotec for more than twenty years and know that their products meet the highest standard. Campro Scientific was founded in 1981 and we provide services to some of the most prestigious universities, research institutes and laboratories throughout Europe. We are a research-oriented company specialized in supporting the requirements of the scientific community. We are the exclusive distributor of some of the world’s leading producers of research chemicals, radioisotopes, stable isotopes and environmental standards. We understand the requirements of our customers, and work every day to fulfill them. In working with us you are guaranteed to receive: - Excellent customer service - High quality products - Dependable service - Efficient distribution The highly educated staff at Campro’s headquarters and sales office is ready to assist you with your questions and product requirements. Feel free to call us at any time. Sincerely, Dr. Ahmad Rajabi General Manager 180/280 = unlabeled 185/285 = 15N labeled 181/281 = double labeled (13C+15N, 13C+D, 15N+18O etc.) 186/286 = 12C labeled 182/282 = d labeled 187/287 = 17O labeled 183/283 = 13C labeleld 188/288 = 18O labeled 184/284 = 16O labeled, 14N labeled 189/289 = Noble Gases Table of Contents Ordering Information.................................................................................................. page 4 - 5 Packaging Information .............................................................................................. -
Eslicarbazepine Acetate Longer Procedure No
European Medicines Agency London, 19 February 2009 Doc. Ref.: EMEA/135697/2009 CHMP ASSESSMENT REPORT FOR authorised Exalief International Nonproprietary Name: eslicarbazepine acetate longer Procedure No. EMEA/H/C/000987 no Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. product Medicinal 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 84 16 E-mail: [email protected] http://www.emea.europa.eu TABLE OF CONTENTS 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1. Submission of the dossier ...................................................................................................... 3 1.2. Steps taken for the assessment of the product..................................................................... 3 2. SCIENTIFIC DISCUSSION................................................................................................. 4 2.1. Introduction............................................................................................................................ 4 2.2. Quality aspects ....................................................................................................................... 5 2.3. Non-clinical aspects................................................................................................................ 8 2.4. Clinical aspects.................................................................................................................... -
Therapeutic Class Overview Anticonvulsants
Therapeutic Class Overview Anticonvulsants INTRODUCTION Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): ○ At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; ○ 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control and Prevention [CDC] 2018, Epilepsy Foundation 2016). ○ Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. ○ Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” . -
CEREBYX® (Fosphenytoin Sodium Injection)
NDA 020450 Cerebyx (fosphenytoin sodium) Injection FDA Approved Labeling Text dated 10/2011 Page 1 of 22 CEREBYX® (Fosphenytoin Sodium Injection) WARNING: CARDIOVASCULAR RISK ASSOCIATED WITH RAPID INFUSION RATES The rate of intravenous CEREBYX administration should not exceed 150 mg phenytoin sodium equivalents (PE) per minute because of the risk of severe hypotension and cardiac arrhythmias. Careful cardiac monitoring is needed during and after administering intravenous CEREBYX. Although the risk of cardiovascular toxicity increases with infusion rates above the recommended infusion rate, these events have also been reported at or below the recommended infusion rate. Reduction in rate of administration or discontinuation of dosing may be needed (see WARNINGS and DOSAGE AND ADMINISTRATION). DESCRIPTION CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. 1.5 mg of fosphenytoin sodium is equivalent to 1 mg phenytoin sodium, and is referred to as 1 mg phenytoin sodium equivalents (PE). The amount and concentration of fosphenytoin is always expressed in terms of mg PE. CEREBYX is marketed in 2 mL vials containing a total of 100 mg PE and 10 mL vials containing a total of 500 mg PE. The concentration of each vial is 50 mg PE/mL. CEREBYX is supplied in vials as a ready-mixed solution in Water for Injection, USP, and Tromethamine, USP (TRIS), buffer adjusted to pH 8.6 to 9.0 with either Hydrochloric Acid, NF, or Sodium Hydroxide, NF. CEREBYX is a clear, colorless to pale yellow, sterile solution. The chemical name of fosphenytoin is 5,5-diphenyl-3-[(phosphonooxy)methyl]-2,4 imidazolidinedione disodium salt. -
Restless Legs Syndrome in Patients with Epilepsy Under Levetiracetam Monotherapy
Original Article / Özgün Makale DODO I: 10.4274/ I: 10.4274/jtsm.xxxjtsm.69188 Journal of Turkish Sleep Medicine 2018;5:12-6 Restless Legs Syndrome in Patients with Epilepsy Under Levetiracetam Monotherapy Levetirasetam Monoterapisi Altında Epilepsi Hastalarında Huzursuz Bacak Sendromu Gülnihal Kutlu, Fatma Genç*, Yasemin Ünal, Dilek Aslan Öztürk, Abidin Erdal*, Yasemin Biçer Gömceli* Muğla Sıtkı Koçman University Faculty of Medicine, Department of Neurology, Muğla, Turkey *University of Health Sciences, Antalya Training and Research Hospital, Clinic of Neurology, Antalya, Turkey Abstract Öz Objective: Restless Legs syndrome (RLS) is a frequent neurological Amaç: Huzursuz Bacak sendromu (HBS) sık görülen bir nörolojik disease. Levetiracetam (LEV) is an effective and broad-spectrum hastalıktır. Levetirasetam (LEV) etkili ve geniş spektrumlu bir antiepileptik anticonvulsant drug. The aim of this study is to investigate the frequency ilaçtır. Bu çalışmanın amacı epilepsi tanısı ile LEV monoterapisi alan of RLS in patients diagnosed with epilepsy who took LEV monotherapy. hastalarda HBS sıklığını araştırmaktır. Materials and Methods: Two neurologists were reviewed the files of Gereç ve Yöntem: Epilepsi polikliniğinde takip edilen 1680 hastanın 1680 patients, who were followed in epilepsy outpatient clinic. One dosyası iki nörolog tarafından gözden geçirildi. En az 6 aydır LEV hundred seven patients under LEV monotherapy for at least six months monoterapisi alan 107 hasta ve 120 sağlıklı kontrol çalışmaya alındı. and 120 healthy controls were included in the study. The criteria for the International Restless Legs Syndrome Study Group were taken into HBS değerlendirmesi için Uluslararası Huzursuz Bacak Sendromu Çalışma consideration for the assessment of RLS. Grubu’nun kriterleri göz önüne alındı. Results: The mean age of patient group was 38.26±17.39 years, while Bulgular: Sağlıklı kontrollerin ortalama yaşı 39,17±16,12 yıl iken, the mean age of healthy controls was 39.17±16.12 years. -
Pharmacokinetic Drug–Drug Interactions Among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients
International Journal of Molecular Sciences Review Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients Marta Kara´zniewicz-Łada 1 , Anna K. Główka 2 , Aniceta A. Mikulska 1 and Franciszek K. Główka 1,* 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Pozna´n,Poland; [email protected] (M.K.-Ł.); [email protected] (A.A.M.) 2 Department of Bromatology, Poznan University of Medical Sciences, 60-354 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-(0)61-854-64-37 Abstract: Anti-epileptic drugs (AEDs) are an important group of drugs of several generations, rang- ing from the oldest phenobarbital (1912) to the most recent cenobamate (2019). Cannabidiol (CBD) is increasingly used to treat epilepsy. The outbreak of the SARS-CoV-2 pandemic in 2019 created new challenges in the effective treatment of epilepsy in COVID-19 patients. The purpose of this review is to present data from the last few years on drug–drug interactions among of AEDs, as well as AEDs with other drugs, nutrients and food. Literature data was collected mainly in PubMed, as well as google base. The most important pharmacokinetic parameters of the chosen 29 AEDs, mechanism of action and clinical application, as well as their biotransformation, are presented. We pay a special attention to the new potential interactions of the applied first-generation AEDs (carba- Citation: Kara´zniewicz-Łada,M.; mazepine, oxcarbazepine, phenytoin, phenobarbital and primidone), on decreased concentration Główka, A.K.; Mikulska, A.A.; of some medications (atazanavir and remdesivir), or their compositions (darunavir/cobicistat and Główka, F.K. -
Hypothalamic Principles Necessary for the Release of Ovulating Hormone from the Adenohypophysis
EFFECT OF AMINOGLUTETHIMIDE ON REPRODUCTIVE PROCESSES IN FEMALE RATS W. J. EVERSOLE and D. J. THOMPSON Department of Life Sciences, Indiana State University, Terre Haute, Indiana 47809, U.S.A. (Received "òlst January 1974) Summary. Adult female rats injected subcutaneously with 100 mg aminoglutethimide phosphate (AGP)/kg/day for 4 weeks failed to become pregnant when placed in cohabitation with males during the last 2 weeks of the injection period. Lower doses depressed the fertility rate and reduced the litter size: the average litter size of three of eleven rats given 50 mg/kg/day was 4\m=.\7 young and of four of eleven rats given 25 mg was 7\m=.\0 young. Twenty-nine controls averaged 10\m=.\1/litter. Doses of 100 mg AGP/kg/day stopped vaginal cycling, prevented ovulation in adults, and delayed dissolution of the vaginal membrane in pubertal rats. Histological studies of the ovaries from rats with initial ages of 17 or 21 days which were injected with 25 to 100 mg AGP/kg/day for 2 weeks showed an increase in the number and size of vesicular follicles. Treatment of 27-day-old rats with 25 mg/kg/day for 2 weeks reduced the number of CL and three of four rats given 50 mg had ovaries lacking such bodies; all control ovaries in this group contained CL. These findings are taken as evidence that AGP inhibits ovulation but does not prevent follicular maturation. INTRODUCTION Many pharmacological compounds originally developed as anaesthetics, tranquillizers and anticonvulsants modify endocrine structures and functions (see Gaunt, Chart & Renzi, 1965).