Glycomics Hits the Big Time

Total Page:16

File Type:pdf, Size:1020Kb

Glycomics Hits the Big Time Leading Edge Essay Glycomics Hits the Big Time Gerald W. Hart1,* and Ronald J. Copeland1 1Department of Biological Chemistry, School of Medicine, Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA *Correspondence: [email protected] DOI 10.1016/j.cell.2010.11.008 Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease. By analogy to the genome, transcriptome, O-GlcNAc (Hart et al., 2007). Even though Dynamic Structural Complexity or proteome, the ‘‘glycome’’ is the the generic term ‘‘glycosylation’’ is often Underlies Glycan Functions complete set of glycans and glycoconju- used to categorize and lump all glycan Glycoconjugates provide dynamic struc- gates that are made by a cell or organism modifications of proteins into one bin, tural diversity to proteins and lipids that under specific conditions. Therefore, side by side with other posttranslational is responsive to cellular phenotype, to ‘‘glycomics’’ refers to studies that attempt modifications such as phosphorylation, metabolic state, and to the developmental to define or quantify the glycome of a cell, acetylation, ubiquitination, or methylation, stage of cells. Complex glycans play crit- tissue, or organism (Bertozzi and Sasise- such a view is not only inaccurate, but ical roles in intercellular and intracellular kharan, 2009). In eukaryotes, protein also is completely misleading. If one only processes, which are fundamentally glycosylation generally involves the cova- considers the linkage of the first glycan important to the development of multicel- lent attachment of glycans to serine, to the polypeptide in both prokaryotic lularity (Figure 1). Unlike nucleic acids and threonine, or asparagine residues. Glyco- and eukaryotic organisms, there are at proteins, glycan structures are not hard- proteins occur in all cellular compart- least 13 different monosaccharides and wired into the genome, depending upon ments. Glycans are also attached to 8 different amino acids involved in glyco- a template for their synthesis. Rather, lipids, often ceramide, which is comprised protein linkages, with a total of at least the glycan structures that end up on of sphingosine, a hydrocarbon amino 41 different chemical bonds known to be a polypeptide or lipid result from the alcohol and a fatty acid. Complex glycans linking the glycan to the protein (Spiro, concerted actions of highly specific gly- are mainly attached to secreted or cell 2002). Importantly, each one of these cosyltransferases (Lairson et al., 2008), surface proteins, and they do not cycle unique glycan:protein linkages is surely which in turn are dependent upon the on and off of the polypeptide. In contrast, as different in both structure and function concentrations and localization of high- the monosaccharide O-linked N-acetyl- as protein methylation is from acetylation. energy nucleotide sugar donors, such as glucosamine (O-GlcNAc) cycles rapidly Of course, this modification is not only UDP-N-acetylglucosamine, the endpoint on serine or threonine residues of many about a single linkage. When structural of the hexosamine biosynthetic pathway. nuclear and cytoplasmic proteins. Identi- diversity of the additional oligosaccharide Therefore, the glycoforms of a glycopro- fying the number, structure, and function branches of glycans and the added diver- tein depend upon many factors directly of glycans in cellular biology is a daunting sity of complex terminal saccharides on tied to both gene expression and cellular task but one that has been made easier in glycans, such as fucose or sialic acids metabolism. recent years by advances in technology (about 50 different sialic acids are known There are at-least 250 glycosyltrans- and by our growing appreciation of how [Schauer, 2009]), are taken into account, ferases in the human genome, and it has integral glycans are to biology (Varki the molecular diversity and varied func- been estimated that about 2% of the et al., 2009). tions of protein-bound glycans rapidly human genome encodes proteins The scope of the glycomics challenge is increase exponentially. Just the ‘‘sia- involved in glycan biosynthesis, degrada- immense. The covalent addition of lome’’ (Cohen and Varki, 2010) rivals or tion, or transport (Schachter and Freeze, glycans to proteins and lipids represents exceeds many other posttranslational 2009). Biosynthesis of the nucleotide not only the most abundant posttransla- modifications in abundance and struc- sugar donors is directly regulated by nu- tional modification (PTM), but also by far tural/functional diversity. In addition, cleic acid, glucose, and energy metabo- the most structurally diverse. Although it chemical modifications, such as phos- lism, and the compartmentalization of is commonly stated that more than 50% phorylation, sulfation, and acetylation, these nucleotide sugar donors is highly of all polypeptides are covalently modified increase the glycan structural/functional regulated by specific transporters. Protein by glycans (Apweiler et al., 1999), even diversity even more. Thus, categorizing glycosylation is therefore controlled by this estimate is far too low because it fails glycosylation as a single type of post- rates of polypeptide translation and to include that myriad nuclear and translational modification is neither useful protein folding, localization of and compe- cytoplasmic proteins are modified by nor at all reflective of reality. tition between glycosyltransferases, 672 Cell 143, November 24, 2010 ª2010 Elsevier Inc. it is estimated that the binding sites of glycan-binding proteins (GBPs), such as antibodies, lectins, receptors, toxins, mi- crobial adhesions, or enzymes (Figure 1), can accommodate only up to two to six monosaccharides within a glycan struc- ture (Cummings, 2009). Therefore, the number of specific glycan substructures that bind to biologically important GBPs in a cell may be fewer than 10,000, a number that is within the realm of current analytical and, if targeted, chemi- cal or enzymatic synthetic capabilities. Until recently, the lack of tools and the inherent complexity of glycans have been major barriers preventing most biol- ogists from embracing the importance of glycans in biology. Recent technological advances have significantly lowered these barriers. Indeed, the tools of glycomics and the subfields of glycoproteomics, gly- colipidomics, and proteoglycomics have all progressed substantially in recent years (Krishnamoorthy and Mahal, 2009; Laremore et al., 2010). Major technolog- ical advances, many of which are shared with proteomics, have recently allowed Figure 1. Glycans Permeate Cellular Biology semiquantitative profiling of glycans and Complex glycans at the cell surface are targets of microbes and viruses, regulate cell adhesion and devel- glycoproteins (Krishnamoorthy and opment, influence metastasis of cancer cells, and regulate myriad receptor:ligand interactions. Glycans Mahal, 2009; Vanderschaeghe et al., within the secretory pathway regulate protein quality control, turnover, and trafficking of molecules to organelles. Nucleocytoplasmic O-linked N-acetylglucosamine (O-GlcNAc) has extensive crosstalk with 2010). Some of these advances are the phosphorylation to regulate signaling, cytoskeletal functions, and gene expression in response to nutrients result of the National Institute of General and stress. Medical Science’s (NIGMS) support of the Consortium for Functional Glycomics cellular concentration and localization of gene expression of glycan-processing (CFG), which has served to focus and nucleotide sugars, the localization of enzymes, by polypeptide structure at all assist more than 500 researchers on glycosidases, and membrane trafficking. levels, and by cellular metabolism. issues related to glycomics (Paulson Thus, individual glycosylation sites on the et al., 2006; Raman et al., 2006). same polypeptide can contain different Technology of Glycomics Kobata and colleagues were among the glycan structures that reflect both the A detailed understanding of cellular first to profile N-glycans, well before the type and status of the cell in which they processes will require a detailed appreci- current concepts of glycomics were are synthesized. For example, the glyco- ation of the glycans modulating proteins conceived. Despite the lack of many forms of the membrane protein Thy-1 are and pathways. Although this ultimate modern methods, their pioneering work very different in lymphocytes than they goal of glycomics is laudable, we are was characterized by a high level of rigor are in brain, despite having the same poly- a very long way from having the tech- in defining the arrays of N-glycan struc- peptide sequence (Rudd and Dwek, nology to completely characterize the gly- tures present in cells and tissues and on 1997). Conversely, even small changes in come of even a simple cell or tissue. Not specific proteins (Endo, 2010). Currently, polypeptide sequence or structure will only is the glycome much more complex a wide variety of high-resolution and alter the types of glycan structures than the genome, transcriptome, or pro- highly sensitive methods are available, attached to a polypeptide. For example, teome, as noted above, it is also much including capillary electrophoresis (CE), histocompatibility antigen polypeptides more dynamic, varying considerably
Recommended publications
  • Serum N-Glycomics Stratifies Bacteremic Patients Infected With
    Journal of Clinical Medicine Article Serum N-Glycomics Stratifies Bacteremic Patients Infected with Different Pathogens Sayantani Chatterjee 1,2 , Rebeca Kawahara 1,2, Harry C. Tjondro 1,2, David R. Shaw 3, Marni A. Nenke 4,5,6, David J. Torpy 4,5 and Morten Thaysen-Andersen 1,2,* 1 Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; [email protected] (S.C.); [email protected] (R.K.); [email protected] (H.C.T.) 2 Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia 3 Infectious Diseases Clinic, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; [email protected] 4 Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; [email protected] (M.A.N.); [email protected] (D.J.T.) 5 School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia 6 Department of Endocrinology and Diabetes, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia * Correspondence: [email protected]; Tel.: +61-2-9850-7487; Fax: +61-2-9850-6192 Abstract: Bacteremia—i.e., the presence of pathogens in the blood stream—is associated with long- term morbidity and is a potential precursor condition to life-threatening sepsis. Timely detection of bacteremia is therefore critical to reduce patient mortality, but existing methods lack precision, speed, and sensitivity to effectively stratify bacteremic patients. Herein, we tested the potential of quantitative serum N-glycomics performed using porous graphitized carbon liquid chromatography tandem mass spectrometry to stratify bacteremic patients infected with Escherichia coli (n = 11), Citation: Chatterjee, S.; Kawahara, Staphylococcus aureus (n = 11), Pseudomonas aeruginosa (n = 5), and Streptococcus viridans (n = 5) from R.; Tjondro, H.C.; Shaw, D.R.; Nenke, healthy donors (n = 39).
    [Show full text]
  • Glycobiology Protocols M E T H O D S I N M O L E C U L a R B I O L O G Y™
    Glycobiology Protocols M E T H O D S I N M O L E C U L A R B I O L O G Y™ John M. Walker, SERIES EDITOR 384. Capillary Electrophoresis: Methods and Protocols, 357. Cardiovascular Proteomics: Methods and Protocols, edited by Philippe Schmitt-Kopplin, 2007 edited by Fernando Vivanco, 2006 383. Cancer Genomics and Proteomics: Methods and 356. High-Content Screening: A Powerful Approach Protocols, edited by Paul B. Fisher, 2007 to Systems Cell Biology and Drug Discovery, 382. Microarrays, Second Edition: Volume 2, Applications edited by D. Lansing Taylor, Jeffrey Haskins, and Data Analysis, edited by Jang B. Rampal, 2007 and Ken Guiliano, 2007 381. Microarrays, Second Edition: Volume 1, Synthesis 355. Plant Proteomics: Methods and Protocols, edited Methods, edited by Jang B. Rampal, 2007 by Hervé Thiellement, Michel Zivy, Catherine 380. Immunological Tolerance: Methods and Protocols, Damerval, and Valerie Mechin, 2006 edited by Paul J. Fairchild, 2007 354. Plant–Pathogen Interactions: Methods and 379. Glycovirology Protocols, edited by Richard J. Protocols, edited by Pamela C. Ronald, 2006 Sugrue, 2007 353. DNA Analysis by Nonradioactive Probes: Methods 378. Monoclonal Antibodies: Methods and Protocols, and Protocols, edited by Elena Hilario and John. F. edited by Maher Albitar, 2007 MacKay, 2006 377. Microarray Data Analysis: Methods and 3352.52 Protein Engineering Protocols, edited by Kristian Applications, edited by Michael J. Korenberg, 2007 Müller and Katja Arndt, 2006 376. Linkage Disequilibrium and Association 3351.51 C. elegans: Methods and Applications, edited by Mapping: Analysis and Application, edited by Kevin Strange, 2006 Andrew R. Collins, 2007 3350.50 Protein Folding Protocols, edited by Yawen Bai 375.
    [Show full text]
  • Glycomics Meets Genomics, Epigenomics and Other High Throughput Omics for System Biology Studies
    COCHBI-1014; NO. OF PAGES 7 Available online at www.sciencedirect.com Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies 1 1 2,3 Vlatka Zoldosˇ , Tomislav Horvat and Gordan Lauc Majority of eukaryotic proteins are glycosylated and their Both inherited (genetic) and acquired (environmental) glycan moieties have numerous important structural, functional factors that modulate glycosylation affect numerous mol- and regulatory roles. Because of structural complexity of ecular processes, including interactions with specific glycans and technological limitations glycomics, and receptors or half-life of numerous membrane proteins particularly glycoproteomics was not able to follow rapid [3]. Both quantitative and qualitative changes in the progress in genomics and proteomics over last 30 years. repertoire of glycan structures have been found in many However, the field of glycan has been progressing rapidly and complex diseases and cancer [4]. However, due to the first large-scale studies of the glycome have been completed structural complexity of glycans and technological limita- recently. These studies have revealed significant differences in tions the knowledge of functional importance of glycans glycome composition between individuals, which may is significantly lagging behind the knowledge of DNA and contribute to the human phenotypic variability. The current proteins. state-of-the-art in high-throughput glycomics and its integration with genomics, epigenomics and lipidomics is The development of high-throughput reviewed in this article. quantitative glycomic analysis Addresses Until only a few years ago glycan analysis was extremely 1 University of Zagreb, Faculty of Science, Zagreb, Croatia 2 laborious and complex, hampering large-scale studies of University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia the glycome.
    [Show full text]
  • CHEM 537: Carbohydrate Biochemistry and Glycobiology Instructor: Professor Anthony S
    CHEM 537: Carbohydrate Biochemistry and Glycobiology Instructor: Professor Anthony S. Serianni Fall 2014 8:10-9:15 AM, MWF, 322 Jordan November 14 – December 12, 2014 PART A: Monosaccharides, Oligosaccharides and Polysaccharides Textbook Biochemistry, 4th Edition, Voet/Voet, Wiley, 2011 Chapter 11: Sugars and Polysaccharides Chapter 23: Other Pathways of Carbohydrate Metabolism Supplemental Text (useful for course; on reserve in Chem/Phys Library) M. E. Taylor and K. Drickamer, Introduction to Glycobiology, 3rd Ed., Oxford, 2011 Literature Reading: Distributed electronically Topics: Aldoses and ketoses: structures, nomenclature, absolute configuration Cyclization: furanose and pyranose ring forms; anomeric configuration Anomerization (implications for saccharide binding proteins) Relative stabilities of cyclic forms Acyclic forms: aldehydo and keto forms, and their hydrates Ring conformation: conformational averaging Exocyclic conformations (C-O, N-acetyl, CH2OH) Amphiphilic character of saccharides (implications for receptor binding) Saccharide solvation: H-bonding behaviors Monosaccharide derivatives: Phosphate esters Sulfate esters Aminosugars Deoxysugars Alditols Aldonic acids (lactones) Uronic acids Dicarbonyl sugars (osones) α-ketoacids (sialic acid, KDO) Aldose-ketose isomerization (chemical, biological) Di- and oligosaccharide nomenclature Formation of glycosidic bonds: disaccharides (chemical, biological)s Mechanisms of glycoside bond formation and hydrolysis Phi/psi plots for glycosidic linkages Factors affecting linkage conformation;
    [Show full text]
  • Insights of New Tools in Glycomics Research Denong Wang1 * and Srinubabu Gedela2,3
    Journal of Proteomics & Bioinformatics - Open Access Editorial JPB/Vol.1/November 2008 Insights of New Tools In Glycomics Research Denong Wang1 * and Srinubabu Gedela2,3 1Stanford Tumor Glycome Laboratory, Stanford University School of Medicine, Beckman Center, Rm B006, 279 Campus Drive, Stanford, CA 94305-5120, USA 2Center for Biotechnology & International Center for Bioinformatics, Andhra University College of Engineering, Visakhapatnam-530003, India. 3Institute of Glycoproteomics & Systems Biology, Andhra Pradesh, India *Corresponding authors: Denong Wang, Stanford Tumor Glycome Laboratory, Stanford University School of Medicine, Beckman Center, Rm B006, 279 Campus Drive, Stanford, CA 94305-5120, USA, E-mail: [email protected] Srinubabu Gedela: [email protected] Received November 01, 2008; Accepted November 04, 2008; Published November 05, 2008 Citation: Denong W, Srinubabu G (2008) Insights of New tools in Glycomics Research. J Proteomics Bioinform 1: 374-378. doi:10.4172/jpb.1000046 Copyright: © 2008 Denong W, Srinubabu G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Since the origin of Journal of Proteomics & Bioinformatics the equivalence of papers published from different –omics disciplines is steadfast. The present editorial describes the new tools in glycomics research. -omics era Completion of the genome sequencing projects not only on the outer surfaces of the majority of viral, bacterial, pro- provides insight into the complex origin, history and related- tozoan and fungal pathogens. Many sugar structures are ness of the species, but also helps in understanding molecu- pathogen-specific, which makes them important molecular lar pathology of genetic diseases.
    [Show full text]
  • 1 Metabolomic and Glycomic Findings in Posttraumatic Stress Disorder Marcela Konjevoda, Lucija Tudora, Dubravka Svob Straca
    CORE Metadata, citation and similar papers at core.ac.uk Metabolomic and glycomic findings in posttraumatic stress disorder Marcela Konjevoda, Lucija Tudora, Dubravka Svob Straca, Gordana Nedic Erjaveca,b, Coral Barbasb, Neven Zarkovica, Matea Nikolac Perkovica, Suzana Uzunc,d, Oliver Kozumplikc,d, Gordan Lauce, Nela Pivaca,* aRudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia bThe Centre of Metabolomics and Bioanalysis (CEMBIO), University San Pablo CEU, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain cClinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia dUniversity Josip Juraj Strossmayer Osijek, School of Medicine, Trg Svetog Trojstva 3, 31000 Osijek, Croatia eGENOS, Glycoscience Research Laboratory, Borongajska cesta 83, 10000 Zagreb, Croatia *Correspondence to: Professor Nela Pivac, PhD, Senior Scientist Division of Molecular Medicine Rudjer Boskovic Institute Bijenicka cesta 54, 10 000 Zagreb, Croatia Phone: + 385 1 457 1207; Fax: + 385 1 456 1010 E-mail: [email protected] 1 Abstract Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term “theranostics” combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses.
    [Show full text]
  • Microfluidics Coupled Mass Spectrometry for Multi- Omics/Targeted Assays in Translational Research
    MICROFLUIDICS COUPLED MASS SPECTROMETRY FOR MULTI- OMICS/TARGETED ASSAYS IN TRANSLATIONAL RESEARCH PD Rainville1, G Astarita1, JP Murphy1, ID Wilson2, JI Langridge1 1Waters Corporation, Milford, MA; 2Imperial College, London, United Kingdom INTRODUCTION Lipidomics of human plasma RESULTS Translation medicine is an interdisciplinary science that Sample Preparation Human plasma samples were prepared by modified Bligh-Dyer extraction with aims at combining the information taken from bench to Figure 4. BPI of multiple- bedside. In this process molecules are isolated and chloroform : methanol (2:1) with a (4:1) with human plasma. The samples were then centrifuged at 13,000 RCF for 5 min, dried down, reconstituted and omics experiments from identified in discovery and then utilized in the clinical injected onto the LC-MS system. human urine and plasma setting as biomarkers of health and disease to better run consecutively. The develop therapies. It has become recently apparent that LC-MS profiling of biofluids was carried out in repetitive proteomics, metabolomics, lipidomics, and glycomics data A 1 µL injection was made onto the LC-MS system. The sample was eluted order of polar plasma under gradient conditions with aqueous formic acid/acetonitrile (40/60) and combined are necessary to address the challenge of profiling, plasma acetonitrile/isopropanol (10/90) at a flow rate of 3 µL/min. Separation was translational research which places strain on available lipidomics, and urine carried out on an iKey CSH C18 100 Å, 1.7µm, 150 µm x 100 mm controlled 1-4 profiling over a period of sample and instrument utilization . Due to the at 60 °C.
    [Show full text]
  • Experimental Section
    EXPERIMENTAL SECTION Detailed description of N-glycomics analysis. N-glycan release from plasma samples The N-glycan release of the discovery set was performed in microcentrifuge tubes, while the glycan release of the testing set was performed in 96-well plates. Both methods were shown to perform similarly (Supplementary Figure 3). The procedures are the same and similar to previously published methods (1, 2). Briefly, 25 μL of a 200mM ammonium bicarbonate (Sigma-Aldrich, St. Louis, MO) solution with 10 mM dithiothreitol (DTT, Promega, Madison, WI) was added to 25 μL of plasma. For the discovery set, this was performed in microcentrifuge tubes; for the testing set, this was performed in 96-well plates. Proteins in the samples were denatured using six cycles alternating between 100°C and room temperature (RT) for 10 seconds each. One µL of PNGaseF (New England Biolabs, Ipswich, MA, corresponding to 1000 NEB units or 15 IUB mU) was added to the samples, and enzymatic glycan release was performed for the discovery set in a CEM (Matthews, NC) microwave at 20W for 10 min. Enzymatic release was performed in batches of 23 samples and one standard serum, to allow quality control. For the testing set, glycan release was performed overnight (16h) at 37°C and a standard serum sample was included in the plate after every ten samples to allow quality control. Upon glycan release, deglycosylated proteins were precipitated using 200 µL of ice-cold ethanol, and the samples were chilled at -80°C for 1 hour. Upon centrifugation, the supernatant was transferred, and dried in vacuo.
    [Show full text]
  • Semantics of Data for Life Sciences and Reproducible Research[Version 1
    F1000Research 2020, 9:136 Last updated: 16 AUG 2021 OPINION ARTICLE BioHackathon 2015: Semantics of data for life sciences and reproducible research [version 1; peer review: 2 approved] Rutger A. Vos 1,2, Toshiaki Katayama 3, Hiroyuki Mishima4, Shin Kawano 3, Shuichi Kawashima3, Jin-Dong Kim3, Yuki Moriya3, Toshiaki Tokimatsu5, Atsuko Yamaguchi 3, Yasunori Yamamoto3, Hongyan Wu6, Peter Amstutz7, Erick Antezana 8, Nobuyuki P. Aoki9, Kazuharu Arakawa10, Jerven T. Bolleman 11, Evan Bolton12, Raoul J. P. Bonnal13, Hidemasa Bono 3, Kees Burger14, Hirokazu Chiba15, Kevin B. Cohen16,17, Eric W. Deutsch18, Jesualdo T. Fernández-Breis19, Gang Fu12, Takatomo Fujisawa20, Atsushi Fukushima 21, Alexander García22, Naohisa Goto23, Tudor Groza24,25, Colin Hercus26, Robert Hoehndorf27, Kotone Itaya10, Nick Juty28, Takeshi Kawashima20, Jee-Hyub Kim28, Akira R. Kinjo29, Masaaki Kotera30, Kouji Kozaki 31, Sadahiro Kumagai32, Tatsuya Kushida 33, Thomas Lütteke 34,35, Masaaki Matsubara 36, Joe Miyamoto37, Attayeb Mohsen 38, Hiroshi Mori39, Yuki Naito3, Takeru Nakazato3, Jeremy Nguyen-Xuan40, Kozo Nishida41, Naoki Nishida42, Hiroyo Nishide15, Soichi Ogishima43, Tazro Ohta3, Shujiro Okuda44, Benedict Paten45, Jean-Luc Perret46, Philip Prathipati38, Pjotr Prins47,48, Núria Queralt-Rosinach 49, Daisuke Shinmachi9, Shinya Suzuki 30, Tsuyosi Tabata50, Terue Takatsuki51, Kieron Taylor 28, Mark Thompson52, Ikuo Uchiyama 15, Bruno Vieira53, Chih-Hsuan Wei12, Mark Wilkinson 54, Issaku Yamada 36, Ryota Yamanaka55, Kazutoshi Yoshitake56, Akiyasu C. Yoshizawa50, Michel
    [Show full text]
  • Prof Benjamin G. Davis
    Prof Benjamin G. Davis Professor of Chemistry, Fellow and Tutor in Organic Chemistry, Pembroke College Ben Davis got his B.A. (1993) and D.Phil. (1996) from the University of Oxford. During this time he learnt the beauty of carbohydrate chemistry under the supervision of Professor George Fleet. He then spent 2 years as a postdoctoral fellow in the laboratory of Professor Bryan Jones at the University of Toronto, exploring protein chemistry and biocatalysis. In 1998 he returned to the U.K. to take up a lectureship at the University of Durham. In the autumn of 2001 he moved to the Dyson Perrins Laboratory, University of Oxford and received a fellowship at Pembroke College, Oxford. He was promoted to Full Professor in 2005. His group's research centres on the chemical understanding and exploitation of biomolecular function (Synthetic Biology, Chemical Biology and Chemical Medicine), with an emphasis on carbohydrates and proteins. In particular, the group's interests encompass synthesis and methodology; target biomolecule synthesis; inhibitor/probe/substrate design; biocatalysis; enzyme & biomolecule mechanism; biosynthetic pathway determination; protein engineering; drug delivery; molecular biology; structural biology; cell biology; glycobiology; molecular imaging and in vivo biology. This work has been recognised by Prizes and Awards and named Lecturerships. He sits (has sat) on the Editorial / Editorial Advisory Boards of Carbohydrate Research (2005-2012), Chemical Biology and Drug Design (2006-), Organic and Biomolecular Chemistry (2006-2011), the Biochemical Journal (Advisory Board 2002-2005, Editorial Board 2009-2016), Chemical Science (2010-2012, 2015-) and ChemBioChem (2011-). He was the Editor-in-Chief of Bioorganic Chemistry (2011-2013) and an Associate Editor of Chemical Science (2012-14).
    [Show full text]
  • SYNTHESIS Template V2.0
    Journal of Chemical Reviews, 2020, Volume 2, Issue 1, Pages 1-27 Review Article A Review on Synthesis and Applications of Statin Family Drugs as a New Generations of Anti-Blood Medicines Sajedeh Safapoor a, Hamid Yazdani b,*, Parisa Shahabi c a Department of Chemistry, Iran University of Science and Technology, Tehran, Iran b Department of Chemical Engineering, Payame Noor University, Tehran, Iran c Department of Physical Chemistry , Alzahra University, Tehran, Iran Receive Date: 28 July 2019, Revise Date: 15 September 2019, Accept Date: 15 October2019 Abstract: Cardiovascular disease (CVD) represents one of the most important health problems. One of the main risk factors for CVD death is the high cholesterol levels. Statins have been shown to lower low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular disease, and are currently the first line of treatment for hypercholesterolemia. Atorvastatin is one of the most effective drugs and is part of the blood lipid lowering drug group. This work studies the mechanism of the use of statin family drugs and atorvastatin to determine the clinical requirements for improving the dermatology and the statins. DOI: 10.33945/SAMI/JCR.2020.1.1 Keywords: Atorvastatin, High cholesterol, Cardiovascular disease, Statins, Blood lipid lowering effect Graphical Abstract: Biography: Sajedeh Safapoor was born in Iran, (Mazandaran), in 1994. She completed her BSc (2017) degree from University of Mazandaran in pure chemistry. She is at the end of her Master’s Degree in Organic Chemistry at the University of Science and Technology where she is working on the synthesis of nanomaterials for biological & catalysis application.
    [Show full text]
  • Researchers Apply Systems Biology and Glycomics to Study Human Inflammatory Diseases 28 October 2008
    Researchers apply systems biology and glycomics to study human inflammatory diseases 28 October 2008 An innovative systems biology approach to complex biological functions and interactions understanding the carbohydrate structures in cells instead of studying individual units, such as a single is leading to new ways to understand how gene or protein, in isolation. inflammatory illnesses and cardiovascular disease develop in humans. The work was described in two "Systems biology is well-suited to this research recent publications by University at Buffalo because it helps us develop the mathematical chemical engineers. concepts to enable us to influence and enhance our understanding of how the glycome functions," said Supported by research grants from the National Neelamegham. "This then produces clues on how Institutes of Health, the ultimate goal of the project we might manipulate the adhesivity of white blood is to define novel strategies to perturb the glycome cells to the blood vessel wall." -- the complete set of an organism's carbohydrate structures in cells -- in ways that lead to the Glycans are carbohydrate molecules that mediate identification of new targets and molecular the microscopic interactions between white blood therapies to combat a broad range of inflammatory cells and blood vessel walls. These interactions diseases. play a major role in painful and debilitating inflammatory medical conditions such as asthma, The binding of white blood cells to blood vessels is psoriasis, Crohn's disease, reperfusion injury and a key step in the progression of inflammatory other cardiovascular ailments. diseases, explained Sriram Neelamegham, Ph.D., UB professor of chemical and biological In a recent paper in The FASEB Journal, the UB engineering in the School of Engineering and researchers describe one of the first studies to take Applied Sciences, and co-author of both papers.
    [Show full text]