Integrated Omics: Tools, Advances and Future Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Omics: Tools, Advances and Future Approaches 62 1 Journal of Molecular B B Misra et al. Approaches and tools in 62:1 R21–R45 Endocrinology integrated omics REVIEW Integrated omics: tools, advances and future approaches Biswapriya B Misra1, Carl Langefeld1,2, Michael Olivier1 and Laura A Cox1,3 1Center for Precision Medicine, Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North California, USA 2Department of Biostatistics, Wake Forest School of Medicine, Winston-Salem, North California, USA 3Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA Correspondence should be addressed to L A Cox: [email protected] Abstract With the rapid adoption of high-throughput omic approaches to analyze biological Key Words samples such as genomics, transcriptomics, proteomics and metabolomics, each f integrated analysis can generate tera- to peta-byte sized data files on a daily basis. These data file f omics sizes, together with differences in nomenclature among these data types, make the f genomics integration of these multi-dimensional omics data into biologically meaningful context f transcriptomics challenging. Variously named as integrated omics, multi-omics, poly-omics, trans-omics, f proteomics pan-omics or shortened to just ‘omics’, the challenges include differences in data f metabolomics cleaning, normalization, biomolecule identification, data dimensionality reduction, f network biological contextualization, statistical validation, data storage and handling, sharing and f statistics data archiving. The ultimate goal is toward the holistic realization of a ‘systems biology’ f Bayesian understanding of the biological question. Commonly used approaches are currently f machine learning limited by the 3 i’s – integration, interpretation and insights. Post integration, these f principal component very large datasets aim to yield unprecedented views of cellular systems at exquisite analysis resolution for transformative insights into processes, events and diseases through f correlation various computational and informatics frameworks. With the continued reduction in f clustering costs and processing time for sample analyses, and increasing types of omics datasets generated such as glycomics, lipidomics, microbiomics and phenomics, an increasing number of scientists in this interdisciplinary domain of bioinformatics face these challenges. We discuss recent approaches, existing tools and potential caveats in the integration of omics datasets for development of standardized analytical pipelines that Journal of Molecular could be adopted by the global omics research community. Endocrinology (2019) 62, R21–R45 Introduction Access to large-scale omics datasets (genomics, tran- integration has created both exciting opportunities scriptomics, proteomics, metabolomics, metagenomics, and immense challenges for biologists, computational phenomics, etc.) has revolutionized biology and led to biologists, biostatisticians and biomathematicians. As an the emergence of systems approaches to advance our example of a comprehensive analysis approach, Yugi understanding of biological processes. With decreasing et al. (2016) proposed a trans-omics concept of dynamic time and cost to generate these datasets, omics data networks that includes the three most commonly used https://jme.bioscientifica.com © 2019 Society for Endocrinology https://doi.org/10.1530/JME-18-0055 Published by Bioscientifica Ltd. Printed in Great Britain Downloaded from Bioscientifica.com at 10/01/2021 05:51:28PM via free access -18-0055 Journal of Molecular B B Misra et al. Approaches and tools in 62:1 R22 Endocrinology integrated omics layers of omics datasets – transcriptomics, proteomics and of readouts from each omics regime independently, (ii) metabolomics and also included newer datasets such as recognizing non-obvious relationships that exist between phosphoproteomics, protein–protein interactions, DNA– omics regimes within their original biological context and protein interactions and allosteric regulation, which (iii) capitalizing on time resolution in omics data, such as can reveal critical components of dynamic biological time course studies, to inform directionality (Buescher & networks when omics data are successfully integrated. Driggers 2016). A recent review provided data integration Using three case studies in datasets from bacteria and strategies for genomics and proteomics datasets (Huang rats, they showed the interplay of the omics layers, and et al. 2017), but did not mention and include approaches, introduced phenome-wide association, pathway-wide which allow integration of metabolomics datasets. association and trans-ome-wide association (Trans-OWAS) Although all individual omics datasets might not studies to connect phenotypes with omics networks that have the four vs associated with integration of ‘big data’, reflect genetic and environmental factors. These multi- i.e., volume, variety, velocity and veracity, they pose layered, multifactorial approaches are computationally similar challenges, especially in studies with large sample challenging and difficult to display and comprehend numbers. In addition, for high-dimensional datasets of visually. Additional data from microRNA/gene, protein/ more than 1000 variables, popularly known as the ‘curse protein, DNA/protein, and protein/RNA interactions of dimensionality’, variances among samples become further increase the complexity. A recent review enlists large and sparse and render cluster analysis uninformative genome-based systems biology tools and applications (Ronan et al. 2016), further posing challenges interpreting available for network analysis, pathway construction, integrated omic datasets. For clarity, we use ‘integrated genome alignments, assemblies, tree viewers and omics’ to denote multi-omics approaches integrating phylogenies, microarray and RNA-Seq viewers, genome three or more omics datasets and include the major omics browsers, visualization tools for comparative genomics, data types, i.e., genomics, transcriptomics, proteomics and tools for building visual prototypes (Pavlopoulos et al. and metabolomics. 2015). Similarly, tools, resources, databases and software for analysis and visualization of proteomics (Oveland et al. 2015) and metabolomics data (Misra & van der Strengths and challenges of individual omics Hooft 2016, Misra et al. 2017, Misra 2018) are reviewed on Genomics and transcriptomics a yearly basis. However, none of these recent publications provide a comprehensive overview of approaches for Genomics and transcriptomics have been applied to various integrating three or more omics datasets. aspects of research and clinical applications ranging from Although the need for, and the importance of, the pharmaceutical industry, diagnostics and therapeutics, integration of omics data has been realized for a broad gene therapy applications, pharmacogenomics and disease range of research areas, including food and nutrition prevention, to developmental biology, evolutionary science (Kato et al. 2011), systems microbiology (Fondi genomics and comparative genomics. Thus, the ability & Liò 2015), analysis of microbiomes (Muller et al. to manage and analyze these types of data has become 2014), genotype–phenotype interactions (Ritchie et al. necessary for a biomedical scientist’s skill set. The surge 2015), systems biology (Mochida & Shinozaki 2011, in advancements of next-generation sequencing (NGS) Fukushima & Kusano 2013), natural product discovery technologies and progress in genomic data analysis (Yang et al. 2011) and disease biology (Pathak & Dave have led to high-throughput data generation for 2014), successful implementation of more than two genomes (single nucleotide polymorphisms (SNPs), copy omics datasets is very rare. Since Gehlenborg et al. number variants (CNVs), loss of heterozygosity variants, (2010) produced a useful comprehensive compendium genomic rearrangements, and rare variants), epigenomes for visualization of omics data for systems biology using (DNA methylation, histone modifications, chromatin data from microarrays, RNA deep sequencing, mass accessibility, transcription factor (TF) binding) and spectrometry (MS), nuclear magnetic resonance (NMR) transcriptomes (gene expression, alternative splicing, long and protein interactions, considerable progress has been non-coding RNAs and small RNAs such as microRNAs) made to develop additional tools and approaches for (Ritchie et al. 2015). Generally speaking, the nucleic integrated omics analysis. Broad experimental challenges acid-based omics approaches for data generation rely on in these integrated omics approaches include, but are five major steps: appropriate sample collection, high- not limited to (i) understanding the statistical behavior quality nucleic acid extraction, library preparation, clonal https://jme.bioscientifica.com © 2019 Society for Endocrinology https://doi.org/10.1530/JME-18-0055 Published by Bioscientifica Ltd. Printed in Great Britain Downloaded from Bioscientifica.com at 10/01/2021 05:51:28PM via free access Journal of Molecular B B Misra et al. Approaches and tools in 62:1 R23 Endocrinology integrated omics amplification, and sequencing (e.g., pyrosequencing, liquid chromatography (LC) approaches, followed by sequencing-by ligation, or sequencing-by synthesis). The MS, peptide and protein identification and quantification specific approach used for each step varies based on the and additional bioinformatics analyses such
Recommended publications
  • Serum N-Glycomics Stratifies Bacteremic Patients Infected With
    Journal of Clinical Medicine Article Serum N-Glycomics Stratifies Bacteremic Patients Infected with Different Pathogens Sayantani Chatterjee 1,2 , Rebeca Kawahara 1,2, Harry C. Tjondro 1,2, David R. Shaw 3, Marni A. Nenke 4,5,6, David J. Torpy 4,5 and Morten Thaysen-Andersen 1,2,* 1 Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; [email protected] (S.C.); [email protected] (R.K.); [email protected] (H.C.T.) 2 Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia 3 Infectious Diseases Clinic, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; [email protected] 4 Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; [email protected] (M.A.N.); [email protected] (D.J.T.) 5 School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia 6 Department of Endocrinology and Diabetes, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia * Correspondence: [email protected]; Tel.: +61-2-9850-7487; Fax: +61-2-9850-6192 Abstract: Bacteremia—i.e., the presence of pathogens in the blood stream—is associated with long- term morbidity and is a potential precursor condition to life-threatening sepsis. Timely detection of bacteremia is therefore critical to reduce patient mortality, but existing methods lack precision, speed, and sensitivity to effectively stratify bacteremic patients. Herein, we tested the potential of quantitative serum N-glycomics performed using porous graphitized carbon liquid chromatography tandem mass spectrometry to stratify bacteremic patients infected with Escherichia coli (n = 11), Citation: Chatterjee, S.; Kawahara, Staphylococcus aureus (n = 11), Pseudomonas aeruginosa (n = 5), and Streptococcus viridans (n = 5) from R.; Tjondro, H.C.; Shaw, D.R.; Nenke, healthy donors (n = 39).
    [Show full text]
  • Glycomics Meets Genomics, Epigenomics and Other High Throughput Omics for System Biology Studies
    COCHBI-1014; NO. OF PAGES 7 Available online at www.sciencedirect.com Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies 1 1 2,3 Vlatka Zoldosˇ , Tomislav Horvat and Gordan Lauc Majority of eukaryotic proteins are glycosylated and their Both inherited (genetic) and acquired (environmental) glycan moieties have numerous important structural, functional factors that modulate glycosylation affect numerous mol- and regulatory roles. Because of structural complexity of ecular processes, including interactions with specific glycans and technological limitations glycomics, and receptors or half-life of numerous membrane proteins particularly glycoproteomics was not able to follow rapid [3]. Both quantitative and qualitative changes in the progress in genomics and proteomics over last 30 years. repertoire of glycan structures have been found in many However, the field of glycan has been progressing rapidly and complex diseases and cancer [4]. However, due to the first large-scale studies of the glycome have been completed structural complexity of glycans and technological limita- recently. These studies have revealed significant differences in tions the knowledge of functional importance of glycans glycome composition between individuals, which may is significantly lagging behind the knowledge of DNA and contribute to the human phenotypic variability. The current proteins. state-of-the-art in high-throughput glycomics and its integration with genomics, epigenomics and lipidomics is The development of high-throughput reviewed in this article. quantitative glycomic analysis Addresses Until only a few years ago glycan analysis was extremely 1 University of Zagreb, Faculty of Science, Zagreb, Croatia 2 laborious and complex, hampering large-scale studies of University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia the glycome.
    [Show full text]
  • The 'Omics Revolution: How an Obsession with Compiling Lists Is
    The ‘omics revolution: how an obsession with compiling lists is threatening the ancient art of experimental design. Claudio D Stern Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK. [email protected] The last quarter of a century ushered in a transformation in Biology following the huge successes in sequencing entire genomes of organisms (including humans) with increasing precision and speed and rapidly decreasing cost: genomics. Later other “omics” approaches followed: proteomics, metabolomics, epigenomics, and many more. Huge quantities of data were generated and new computational methods to find hidden correlations emerged. Almost imperceptibly, however, it seems that this has led to a crisis in our ability to design elegant experiments to establish causality. Imagine an extra-terrestrial excursion to planet Earth to discover about life on this planet. A spaceship with alien scientists lands in a park with many statues on display, representing important people from British history. The aliens unload their sophisticated analytical equipment and start to investigate. The first one uses a mass spectrometer – s/he approaches each statue and analyse it: one statue contains 5% copper, 10% iron, 17% aluminium, 63% lead. Another statue seems to consist mainly of carbon and a little water. A third object is made of granite. And so on. Another scientist follows: their analysis with a powerful super-resolution electron microscope reveals different sets of atomic structures. A third scientist uses a balance and lists the mass of each statue. A fourth measures the dimensions – some statues are very small, others quite large, and they have different overall shapes: some are tall, some are rather rounded.
    [Show full text]
  • Technology Development for Single-Molecule Protein Sequencing
    National Advisory Council for Human Genome Research May 18-19, 2020 Concept Clearance for RFA Technology Development for Single-Molecule Protein Sequencing Purpose: The purpose of this initiative is to accelerate innovation, development and early dissemination of single-molecule protein sequencing (SMPS) technologies. The ultimate goal is to achieve technological advances to the level where protein sequencing data can be generated at sufficient scale, speed, cost and accuracy to use routinely in studies of genome biology and function, and in biomedical research in general. This would enable analyses, such as deeper understanding of molecular phenotypes, identification of low abundance and ‘missing’ proteins, and true single-cell proteomics. This concept represents an ambitious and high-risk technology development challenge, and if successful, would provide a focused opportunity to transform the use of proteomics, in much the same way as modern next- generation nucleic acid sequencing (NGS) transformed genomics due to its high-throughput, low cost, and generalizability. Background: Through the Human Genome Project, and other efforts, NHGRI transformed biology by making genomics mainstream, with genomics now being a fundamental part of many studies of the biology of disease. Proteomics has not had the same widespread adoption, partially because of a lack of proteomics technologies that approach the scale of NGS, including improvements to the sensitivity and dynamic range of protein detection. The human proteome is extremely complex. A typical human cell expresses >10,000 unique protein gene products; and can contain ~100 times as many modified proteins, or proteoforms, for each gene product. In addition, the dynamic range of the proteome approaches seven orders of magnitude (from one copy per cell to ten million copies per cell) in tissues and cell lines, and up to ten orders of magnitude in blood plasma.
    [Show full text]
  • From Proteomics to Systems Biology Outline and Learning Objectives
    From Proteomics to Systems Biology Outline and learning objectives “Omics” science provides global analysis tools to study entire systems • How to obtain omics - data • What can we learn? Limitations? • Integration of omics - data • In-class practice: Omics-data visualization Integration of “omics”- information Omics - data provide systems-level information Omics - data provide systems-level information Whole-genome sequencing Microarrays 2D-electrophoresis, mass spectrometry Joyce & Palsson, 2006 Joyce & Palsson, 2006 Transcriptomics (indirectly) tells about Proteomics aims to detect and quantify RNA-transcript abundances a system’s entire protein content ! primary genomic readout Strengths: - very good genome-wide coverage - variety of commercial products Drawback: No protein-level info!! -> RNA degradation Strengths: -> Post-translational modifications -> info about post-translational modifications => validation by e.g. RT-PCR -> high throughput possible due to increasing quality and cycle speed of mass spec instrumentation Limitations: - coverage dependent on sample, preparation & separation method - bias towards most highly abundant proteins Omics - data provide systems-level information Metabolomics and Lipidomics Detector Metabolites GC-MS extracted NMR from cell lysate Glycan arrays, Lipids Glyco-gene chips, mass spec / NMR of carbohydrates ESI-MS/MS Joyce & Palsson, 2006 Metabolomics and Lipidomics Metabolomics and Lipidomics Metabolomics: Metabolomics: Large-scale measurement of cellular metabolites Large-scale measurement of
    [Show full text]
  • Computational Proteomics: High-Throughput Analysis for Systems Biology
    Pacific Symposium on Biocomputing 12:403-408(2007) COMPUTATIONAL PROTEOMICS: HIGH-THROUGHPUT ANALYSIS FOR SYSTEMS BIOLOGY WILLIAM CANNON Computational Biology & Bioinformatics, Pacific Northwest National Laboratory Richland, WA 99352 USA BOBBIE-JO WEBB-ROBERTSON Computational Biology & Bioinformatics, Pacific Northwest National Laboratory Richland, WA 99352, USA High-throughput proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. These high-throughput technological advances are fueling a revolution in biology, enabling analyses at the scale of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations generating large-scale global data are relying more and more on computational analyses, especially in the field of proteomics. 1. Introduction Proteomics is a rapidly advancing field offering a new perspective to biological systems. As proteins are the action molecules of life, discovering their function, expression levels and interactions are essential to understanding biology from a systems level. The experimental approaches to performing these tasks in a high- throughput (HTP) manner vary from evaluating small fragments of peptides using tandem mass spectrometry (MS/MS), to two-hybrid and affinity-based pull-down assays using intact proteins to identify interactions. No matter the approach, proteomics is revolutionizing the way we study biological systems, and will ultimately lead to advancements in identification and treatment of disease as well as provide a more fundamental understanding of biological systems. The challenges however are amazingly diverse, ranging from understanding statistical models of error in the experimental processes through categorization of tissue types.
    [Show full text]
  • Insights of New Tools in Glycomics Research Denong Wang1 * and Srinubabu Gedela2,3
    Journal of Proteomics & Bioinformatics - Open Access Editorial JPB/Vol.1/November 2008 Insights of New Tools In Glycomics Research Denong Wang1 * and Srinubabu Gedela2,3 1Stanford Tumor Glycome Laboratory, Stanford University School of Medicine, Beckman Center, Rm B006, 279 Campus Drive, Stanford, CA 94305-5120, USA 2Center for Biotechnology & International Center for Bioinformatics, Andhra University College of Engineering, Visakhapatnam-530003, India. 3Institute of Glycoproteomics & Systems Biology, Andhra Pradesh, India *Corresponding authors: Denong Wang, Stanford Tumor Glycome Laboratory, Stanford University School of Medicine, Beckman Center, Rm B006, 279 Campus Drive, Stanford, CA 94305-5120, USA, E-mail: [email protected] Srinubabu Gedela: [email protected] Received November 01, 2008; Accepted November 04, 2008; Published November 05, 2008 Citation: Denong W, Srinubabu G (2008) Insights of New tools in Glycomics Research. J Proteomics Bioinform 1: 374-378. doi:10.4172/jpb.1000046 Copyright: © 2008 Denong W, Srinubabu G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Since the origin of Journal of Proteomics & Bioinformatics the equivalence of papers published from different –omics disciplines is steadfast. The present editorial describes the new tools in glycomics research. -omics era Completion of the genome sequencing projects not only on the outer surfaces of the majority of viral, bacterial, pro- provides insight into the complex origin, history and related- tozoan and fungal pathogens. Many sugar structures are ness of the species, but also helps in understanding molecu- pathogen-specific, which makes them important molecular lar pathology of genetic diseases.
    [Show full text]
  • Proteome-By-Phenome Mendelian Randomisation Detects 38 Proteins with Causal
    bioRxiv preprint doi: https://doi.org/10.1101/631747; this version posted May 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proteome-by-phenome Mendelian Randomisation detects 38 proteins with causal 2 roles in human diseases and traits 3 ANDREW D. BRETHERICK1*, ORIOL CANELA-XANDRI1,2, PETER K. JOSHI3, DAVID W. CLARK3, 4 KONRAD RAWLIK2, THIBAUD S. BOUTIN1, YANNI ZENG1,4,5,6, CARMEN AMADOR1, PAU 5 NAVARRO1, IGOR RUDAN3, ALAN F. WRIGHT1, HARRY CAMPBELL3, VERONIQUE VITART1, 6 CAROLINE HAYWARD1, JAMES F. WILSON1,3, ALBERT TENESA1,2, CHRIS P. PONTING1, J. 7 KENNETH BAILLIE2, AND CHRIS HALEY1,2* 8 9 1 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University 10 of Edinburgh, Western General Hospital, Crewe Road, EH4 2XU, Scotland, UK. 11 2 The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, Scotland, UK. 12 3 Centre for Global Health Research, Usher Institute of Population Health Sciences and 13 Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK. 14 4 Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, 15 74 Zhongshan 2nd Road, Guangzhou 510080, China. 16 5 Guangdong Province Translational Forensic Medicine Engineering Technology 17 Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 18 2nd Road, Guangzhou 510080, China. 19 6 Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan 20 School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 21 510080, China.
    [Show full text]
  • Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions
    H OH metabolites OH Review Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions Lorraine Smith 1, Joran Villaret-Cazadamont 1, Sandrine P. Claus 2 ,Cécile Canlet 1, Hervé Guillou 1 , Nicolas J. Cabaton 1 and Sandrine Ellero-Simatos 1,* 1 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France; [email protected] (L.S.); [email protected] (J.V.-C.); [email protected] (C.C.); [email protected] (H.G.); [email protected] (N.J.C.) 2 LNC Therapeutics, 17 place de la Bourse, 33076 Bordeaux, France; [email protected] * Correspondence: [email protected] Received: 11 February 2020; Accepted: 7 March 2020; Published: 12 March 2020 Abstract: Metabolomics has found numerous applications in the study of liver metabolism in health and disease. Metabolomics studies can be conducted in a variety of biological matrices ranging from easily accessible biofluids such as urine, blood or feces, to organs, tissues or even cells. Sample collection and storage are critical steps for which standard operating procedures must be followed. Inappropriate sample collection or storage can indeed result in high variability, interferences with instrumentation or degradation of metabolites. In this review, we will first highlight important general factors that should be considered when planning sample collection in the study design of metabolomic studies, such as nutritional status and circadian rhythm. Then, we will discuss in more detail the specific procedures that have been described for optimal pre-analytical handling of the most commonly used matrices (urine, blood, feces, tissues and cells).
    [Show full text]
  • S41598-018-25035-1.Pdf
    www.nature.com/scientificreports OPEN An Innovative Approach for The Integration of Proteomics and Metabolomics Data In Severe Received: 23 October 2017 Accepted: 9 April 2018 Septic Shock Patients Stratifed for Published: xx xx xxxx Mortality Alice Cambiaghi1, Ramón Díaz2, Julia Bauzá Martinez2, Antonia Odena2, Laura Brunelli3, Pietro Caironi4,5, Serge Masson3, Giuseppe Baselli1, Giuseppe Ristagno 3, Luciano Gattinoni6, Eliandre de Oliveira2, Roberta Pastorelli3 & Manuela Ferrario 1 In this work, we examined plasma metabolome, proteome and clinical features in patients with severe septic shock enrolled in the multicenter ALBIOS study. The objective was to identify changes in the levels of metabolites involved in septic shock progression and to integrate this information with the variation occurring in proteins and clinical data. Mass spectrometry-based targeted metabolomics and untargeted proteomics allowed us to quantify absolute metabolites concentration and relative proteins abundance. We computed the ratio D7/D1 to take into account their variation from day 1 (D1) to day 7 (D7) after shock diagnosis. Patients were divided into two groups according to 28-day mortality. Three diferent elastic net logistic regression models were built: one on metabolites only, one on metabolites and proteins and one to integrate metabolomics and proteomics data with clinical parameters. Linear discriminant analysis and Partial least squares Discriminant Analysis were also implemented. All the obtained models correctly classifed the observations in the testing set. By looking at the variable importance (VIP) and the selected features, the integration of metabolomics with proteomics data showed the importance of circulating lipids and coagulation cascade in septic shock progression, thus capturing a further layer of biological information complementary to metabolomics information.
    [Show full text]
  • A Metabolomics Approach to Pharmacotherapy Personalization
    Journal of Personalized Medicine Review A Metabolomics Approach to Pharmacotherapy Personalization Elena E. Balashova *, Dmitry L. Maslov and Petr G. Lokhov Institute of Biomedical Chemistry, Pogodinskaya St. 10, Moscow 119121, Russia; [email protected] (D.L.M.); [email protected] (P.G.L.) * Correspondence: [email protected] Received: 29 June 2018; Accepted: 3 September 2018; Published: 5 September 2018 Abstract: The optimization of drug therapy according to the personal characteristics of patients is a perspective direction in modern medicine. One of the possible ways to achieve such personalization is through the application of “omics” technologies, including current, promising metabolomics methods. This review demonstrates that the analysis of pre-dose metabolite biofluid profiles allows clinicians to predict the effectiveness of a selected drug treatment for a given individual. In the review, it is also shown that the monitoring of post-dose metabolite profiles could allow clinicians to evaluate drug efficiency, the reaction of the host to the treatment, and the outcome of the therapy. A comparative description of pharmacotherapy personalization (pharmacogenomics, pharmacoproteomics, and therapeutic drug monitoring) and personalization based on the analysis of metabolite profiles for biofluids (pharmacometabolomics) is also provided. Keywords: pharmacometabolomics; metabolomics; pharmacogenomics; therapeutic drug monitoring; personalized medicine; mass spectrometry 1. Introduction The uniformity of the drug response or low inter-individual differences in drug response are commonly accepted tenets in the field of medicine. Almost all drugs are prescribed on the basis of this statement. This approach can be described as treatment of the “average patient” by “the average pill” or “one size fits all”. However, clinicians have long observed that the actual effectiveness of the pharmacotherapy may be variable.
    [Show full text]
  • Ncomms4301.Pdf
    ARTICLE Received 8 Jul 2013 | Accepted 23 Jan 2014 | Published 13 Feb 2014 DOI: 10.1038/ncomms4301 Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism Mikalai Malinouski1,2, Nesrin M. Hasan3, Yan Zhang1,4, Javier Seravalli2, Jie Lin4,5, Andrei Avanesov1, Svetlana Lutsenko3 & Vadim N. Gladyshev1 Trace elements are essential for human metabolism and dysregulation of their homoeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and post-translational modifications; and the iron levels are influenced by iron import and expression of the iron/haeme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated data set opens new directions for studies of human trace element metabolism. 1 Genetics Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 2 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. 3 Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA. 4 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
    [Show full text]