A Phenome-Wide Association Study (Phewas)

Total Page:16

File Type:pdf, Size:1020Kb

A Phenome-Wide Association Study (Phewas) RESEARCH ARTICLE A phenome-wide association study (PheWAS) in the Population Architecture using Genomics and Epidemiology (PAGE) study reveals potential pleiotropy in African Americans 1 2,3 4 5 Sarah A. PendergrassID , Steven BuyskeID , Janina M. Jeff , Alex Frase , 5 5 6 7 8 a1111111111 Scott DudekID , Yuki Bradford , Jose-Luis AmbiteID , Christy L. Avery , Petra Buzkova , 6 9 10 7,11 a1111111111 Ewa Deelman , Megan D. Fesinmeyer , Christopher Haiman , Gerardo HeissID , Lucia 12 13 14 15 16 a1111111111 A. Hindorff , Chun-Nan HsuID , Rebecca D. Jackson , Yi Lin , Loic Le Marchand , 3 10 17 7,11 a1111111111 Tara C. MatiseID , Kristine R. Monroe , Larry Moreland , Kari E. North , Sungshim a1111111111 L. Park10, Alex Reiner18, Robert Wallace19, Lynne R. Wilkens16, Charles Kooperberg15, 5☯ 20,21☯ Marylyn D. Ritchie , Dana C. CrawfordID * 1 Genentech, Inc., South San Francisco, California, United States of America, 2 Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America, 3 Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America, 4 Illumina, Inc., San Diego, California, United OPEN ACCESS States of America, 5 Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 6 Information Citation: Pendergrass SA, Buyske S, Jeff JM, Frase Sciences Institute; University of Southern California, Marina del Rey, California, United States of America, A, Dudek S, Bradford Y, et al. (2019) A phenome- 7 Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of wide association study (PheWAS) in the Population America, 8 Department of Biostatistics, University of Washington, Seattle, Washington, United States of Architecture using Genomics and Epidemiology America, 9 Amgen, Thousand Oaks, California, United States of America, 10 Department of Preventive (PAGE) study reveals potential pleiotropy in African Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Americans. PLoS ONE 14(12): e0226771. https:// Los Angeles, California, United States of America, 11 Carolina Center for Genome Sciences, University of doi.org/10.1371/journal.pone.0226771 North Carolina, Chapel Hill, North Carolina, United States of America, 12 National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 13 Center for Research Editor: Gregory P. Copenhaver, The University of in Biological Systems, Department of Neurosciences, University of California, San Diego, La Jolla, California, North Carolina at Chapel Hill, UNITED STATES United States of America, 14 The Ohio State University, Columbus, Ohio, United States of America, 15 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, Received: December 2, 2019 United States of America, 16 Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America, 17 University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, Accepted: December 3, 2019 18 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America, Published: December 31, 2019 19 Departments of Epidemiology and Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America, 20 Cleveland Institute for Computational Biology, Cleveland, Ohio, United States of America, Copyright: This is an open access article, free of all 21 Departments of Population and Quantitative Health Sciences and Genetics and Genome Sciences, Case copyright, and may be freely reproduced, Western Reserve University, Cleveland, Ohio, United States of America distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. ☯ These authors contributed equally to this work. The work is made available under the Creative * [email protected] Commons CC0 public domain dedication. Data Availability Statement: The datasets generated as part of the PAGE study can be Abstract accessed through the dbGaP repository (http:// www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study. We performed a hypothesis-generating phenome-wide association study (PheWAS) to cgi?study_id=phs000356). identify and characterize cross-phenotype associations, where one SNP is associated with Funding: The Population Architecture Using two or more phenotypes, between thousands of genetic variants assayed on the Metabo- Genomics and Epidemiology (PAGE) program is chip and hundreds of phenotypes in 5,897 African Americans as part of the Population funded by the National Human Genome Research Architecture using Genomics and Epidemiology (PAGE) I study. The PAGE I study was a Institute (NHGRI), and this work was supported by U01HG004803 (CALiCo), U01HG004798 (EAGLE), National Human Genome Research Institute-funded collaboration of four study sites PLOS ONE | https://doi.org/10.1371/journal.pone.0226771 December 31, 2019 1 / 37 Pleiotropy in African Americans from PAGE U01HG004802 (MEC), U01HG004790 (WHI), and accessing diverse epidemiologic studies genotyped on the Metabochip, a custom genotyp- U01HG004801 (Coordinating Center), and their ing chip that has dense coverage of regions in the genome previously associated with car- respective NHGRI ARRA supplements. The contents of this paper are solely the responsibility dio-metabolic traits and outcomes in mostly European-descent populations. Here we focus of the authors and do not necessarily represent the on identifying novel phenome-genome relationships, where SNPs are associated with more official views of the NIH. The complete list of PAGE than one phenotype. To do this, we performed a PheWAS, testing each SNP on the Metabo- members can be found at http://www.pagestudy. chip for an association with up to 273 phenotypes in the participating PAGE I study sites. org. The data and materials included in this report result from a collaboration between the following We identified 133 putative pleiotropic variants, defined as SNPs associated at an empirically studies: The "Epidemiologic Architecture for Genes derived p-value threshold of p<0.01 in two or more PAGE study sites for two or more pheno- Linked to Environment (EAGLE)" is funded through type classes. We further annotated these PheWAS-identified variants using publicly avail- the NHGRI PAGE program (U01HG004798 and its able functional data and local genetic ancestry. Amongst our novel findings is SPARC NHGRI ARRA supplements). The Multiethnic Cohort study (MEC) characterization of rs4958487, associated with increased glucose levels and hypertension. SPARC has been epidemiological architecture is funded through the implicated in the pathogenesis of diabetes and is also known to have a potential role in fibro- NHGRI PAGE program (U01HG004802 and its sis, a common consequence of multiple conditions including hypertension. The SPARC NHGRI ARRA supplement). The MEC study is funded through the National Cancer Institute example and others highlight the potential that PheWAS approaches have in improving our (R37CA54281, R01 CA63, P01CA33619, understanding of complex disease architecture by identifying novel relationships between U01CA136792, and U01CA98758). Funding genetic variants and an array of common human phenotypes. support for the ªEpidemiology of putative genetic variants: The Women's Health Initiativeº study is provided through the NHGRI PAGE program (U01HG004790 and its NHGRI ARRA supplement). The WHI program is funded by the National Heart, Lung, and Blood Institute; NIH; and U.S. Department of Health and Human Services through Introduction contracts N01WH22110, 24152, 32100-2, 32105- Pleiotropy, however defined, has long been recognized as a feature of genomes with respect to 6, 32108-9, 32111-13, 32115, 32118-32119, their relationships to individual traits and outcomes that characterize phenomes [1±3]. Interest 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for in human pleiotropy has spiked in the last decade owing to the availability of large genotype- their dedication, and the study participants for phenotype datasets generated from genome-wide association studies (GWAS). The analysis making the program possible. A full listing of WHI and catalog collection of one phenotype versus many genotypes studies revealed that a sizable investigators can be found at: http://www. proportion of common genetic variants are associated with multiple related and independent whiscience.org/publications/WHI_investigators_ phenotypes [4, 5]. These observations have led to the development of more systematic shortlist.pdf. Funding support for the Genetic Epidemiology of Causal Variants Across the Life approaches to identify variant-level pleiotropy [6, 7], many of which have been applied to pop- Course (CALiCo) program was provided through ulations of mostly European-descent individuals ascertained in clinical settings (e.g., [8]). the NHGRI PAGE program (U01HG004803 and its Here, we describe a phenotype wide association study (PheWAS), a systematic approach to NHGRI ARRA supplement). The following study identify cross-phenotype associations, in the Population Architecture using Genomics and contributed to this manuscript and is funded by the Epidemiology (PAGE) I study. The PAGE I study was established by the National Human following agencies: The Atherosclerosis Risk in Genome Research
Recommended publications
  • Proteome-By-Phenome Mendelian Randomisation Detects 38 Proteins with Causal
    bioRxiv preprint doi: https://doi.org/10.1101/631747; this version posted May 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proteome-by-phenome Mendelian Randomisation detects 38 proteins with causal 2 roles in human diseases and traits 3 ANDREW D. BRETHERICK1*, ORIOL CANELA-XANDRI1,2, PETER K. JOSHI3, DAVID W. CLARK3, 4 KONRAD RAWLIK2, THIBAUD S. BOUTIN1, YANNI ZENG1,4,5,6, CARMEN AMADOR1, PAU 5 NAVARRO1, IGOR RUDAN3, ALAN F. WRIGHT1, HARRY CAMPBELL3, VERONIQUE VITART1, 6 CAROLINE HAYWARD1, JAMES F. WILSON1,3, ALBERT TENESA1,2, CHRIS P. PONTING1, J. 7 KENNETH BAILLIE2, AND CHRIS HALEY1,2* 8 9 1 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University 10 of Edinburgh, Western General Hospital, Crewe Road, EH4 2XU, Scotland, UK. 11 2 The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, Scotland, UK. 12 3 Centre for Global Health Research, Usher Institute of Population Health Sciences and 13 Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK. 14 4 Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, 15 74 Zhongshan 2nd Road, Guangzhou 510080, China. 16 5 Guangdong Province Translational Forensic Medicine Engineering Technology 17 Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 18 2nd Road, Guangzhou 510080, China. 19 6 Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan 20 School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 21 510080, China.
    [Show full text]
  • Genetic Determinants of Skin Color, Aging, and Cancer Genetische Determinanten Van Huidskleur, Huidveroudering En Huidkanker
    Genetic Determinants of Skin Color, Aging, and Cancer Genetische determinanten van huidskleur, huidveroudering en huidkanker Leonie Cornelieke Jacobs Layout and printing: Optima Grafische Communicatie, Rotterdam, The Netherlands Cover design: Annette van Driel - Kluit © Leonie Jacobs, 2015 All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior written permission of the author or, when appropriate, of the publishers of the publications. ISBN: 978-94-6169-708-0 Genetic Determinants of Skin Color, Aging, and Cancer Genetische determinanten van huidskleur, huidveroudering en huidkanker Proefschrift Ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van rector magnificus Prof. dr. H.A.P. Pols en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op vrijdag 11 september 2015 om 11:30 uur door Leonie Cornelieke Jacobs geboren te Rotterdam PROMOTIECOMMISSIE Promotoren: Prof. dr. T.E.C. Nijsten Prof. dr. M. Kayser Overige leden: Prof. dr. H.A.M. Neumann Prof. dr. A.G. Uitterlinden Prof. dr. C.M. van Duijn Copromotor: dr. F. Liu COntents Chapter 1 General introduction 7 PART I SKIn COLOR Chapter 2 Perceived skin colour seems a swift, valid and reliable measurement. 29 Br J Dermatol. 2015 May 4; [Epub ahead of print]. Chapter 3 Comprehensive candidate gene study highlights UGT1A and BNC2 37 as new genes determining continuous skin color variation in Europeans. Hum Genet. 2013 Feb; 132(2): 147-58. Chapter 4 Genetics of skin color variation in Europeans: genome-wide association 59 studies with functional follow-up.
    [Show full text]
  • A Review of Automatic Phenotyping Approaches Using Electronic Health Records
    electronics Article A Review of Automatic Phenotyping Approaches using Electronic Health Records Hadeel Alzoubi 1,*, Raid Alzubi 2, Naeem Ramzan 3, Daune West 3, Tawfik Al-Hadhrami 4,* and Mamoun Alazab 5 1 School of Computer and Information Technology, Jordan University of Science and Technology, Irbid 22110, Jordan 2 Department of Computer Science, Faculty of Information Technology, Middle East University, Amman 11831, Jordan; [email protected] 3 School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] (N.R.); [email protected] (D.W.) 4 School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK 5 College of Engineering, IT and Environment, Charles Darwin University, Darwin 0815, Australia; [email protected] * Correspondences: [email protected] (H.A.); Tawfi[email protected] (T.A.-H.); Tel.: +44-115-848-4818 (T.A.-H.) Received: 27 September 2019; Accepted: 22 October 2019; Published: 29 October 2019 Abstract: Electronic Health Records (EHR) are a rich repository of valuable clinical information that exist in primary and secondary care databases. In order to utilize EHRs for medical observational research a range of algorithms for automatically identifying individuals with a specific phenotype have been developed. This review summarizes and offers a critical evaluation of the literature relating to studies conducted into the development of EHR phenotyping systems. This review describes phenotyping systems and techniques based on structured and unstructured EHR data. Articles published on PubMed and Google scholar between 2013 and 2017 have been reviewed, using search terms derived from Medical Subject Headings (MeSH).
    [Show full text]
  • The Genome and Phenome of the Green Alga Chloroidium Sp
    The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimati- zation David R. Nelson1,2,*, Basel Khraiwesh1,2, Weiqi Fu1, Saleh Alseekh3, Ashish Jaiswal1, Amphun Chaiboonchoe1, Khaled M. Hazzouri2, Matthew J. O’Connor4, Glenn L. Butterfoss2, Nizar Drou2, Jil- lian D. Rowe2, Jamil Harb3,5, Alisdair R. Fernie3, Kristin C. Gunsalus2,6, Kourosh Salehi-Ashtiani1,2,* 1Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York Uni- versity Abu Dhabi, Abu Dhabi, UAE 2Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE 3Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany 4Core Technology Platform, New York University Abu Dhabi, Abu Dhabi, UAE 5Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine 6Center for Genomics & Systems Biology and Department of Biology, New York University, New York, NY, USA *Correspondence and requests for materials should be addressed to D.R.N. ([email protected]) or K.S.- A ([email protected]) Abstract To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays re- vealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources.
    [Show full text]
  • Phenome-Wide Mendelian Randomization Mapping The
    5 6 Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex 7 diseases 8 9 Jie Zheng*§1, Valeriia Haberland*1, Denis Baird*1, Venexia Walker*1, Philip C. Haycock*1, Mark R. Hurle2, Alex Gutteridge3, Pau Erola1, Yi Liu1, 10 Shan Luo1,4, Jamie Robinson1, Tom G. Richardson1, James R. Staley1,5, Benjamin Elsworth1, Stephen Burgess5, Benjamin B. Sun5, John 11 Danesh5,6,7,8,9,10, Heiko Runz11, Joseph C. Maranville12, Hannah M. Martin13, James Yarmolinsky1, Charles Laurin1, Michael V. Holmes1,14,15,16, 12 Jimmy Z. Liu11, Karol Estrada11, Rita Santos17, Linda McCarthy3, Dawn Waterworth2, Matthew R. Nelson2, George Davey Smith*1,18, Adam S. 13 Butterworth*5,6,7,8,9, Gibran Hemani*1, Robert A. Scott*§3, and Tom R. Gaunt*§1,18 14 15 1MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK. 16 2Human Genetics, GlaxoSmithKline, Collegeville, PA, USA. 17 3Human Genetics, GlaxoSmithKline, Stevenage, Hertfordshire, UK. 18 4School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China. 19 5BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 20 6BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK. 21 7NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, 22 Cambridge, UK. 23 8NIHR Cambridge Biomedical Research Centre, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK. 24 9Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK.
    [Show full text]
  • Functional Phenomics: an Emerging Field Integrating High-Throughput Phenotyping, 2 Physiology, and Bioinformatics
    bioRxiv preprint doi: https://doi.org/10.1101/370288; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Functional phenomics: An emerging field integrating high-throughput phenotyping, 2 physiology, and bioinformatics 3 Larry M. York* 4 *Corresponding Author 5 Noble Research Institute. Ardmore, OK 73401 USA 6 580-224-6720 7 [email protected] 8 Submitted April 10, 2018 9 3 figures, 4 boxes 10 Word count: 3781 11 bioRxiv preprint doi: https://doi.org/10.1101/370288; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Functional phenomics: Integrating high-throughput phenotyping, physiology, and 13 bioinformatics 14 Running title: Functional phenomics 15 Highlight: Functional phenomics is an emerging field in plant biology that relies on high- 16 throughput phenotyping, big data analytics, controlled manipulative experiments, and 17 simulation modelling to increase understanding of plant physiology. 18 Abstract 19 The emergence of functional phenomics signifies the rebirth of physiology as a 21st 20 century science through the use of advanced sensing technologies and big data analytics. 21 Functional phenomics highlights the importance of phenotyping beyond only identifying 22 genetic regions because a significant knowledge gap remains in understanding which plant 23 properties will influence ecosystem services beneficial to human welfare.
    [Show full text]
  • Epigenome and Phenome Study Reveals Circulating Markers Pertinent to Brain Health
    medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21263066; this version posted September 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Epigenome and phenome study reveals circulating markers pertinent to brain health Danni A Gadd1,, Robert F Hillary1, Daniel L McCartney1, Liu Shi2, Robert I McGeachan3, Aleks Stolicyn4, Stewart W Morris1, Rosie M Walker5, Archie Campbell1, Miruna C Barbu4, Mathew A Harris4, Ellen V Backhouse5, Joanna M Wardlaw5,6,7,8, J Douglas Steele9, Diego A Oyarzún10, Graciela Muniz-Terrera12, Craig Ritchie12, Alejo Nevado-Holgado2, Caroline Hayward1,13, Kathryn L Evans1, David J Porteous1, Simon R Cox14,15, Heather C Whalley4, Andrew M McIntosh4, Riccardo E Marioni1,† 1 Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU 2 Department of Psychiatry, University of Oxford, UK, OX3 7JX 3 Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK 4 Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK 5 Centre for Clinical Brain Sciences, Chancellor’s Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB 6 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK 7 Edinburgh Imaging, University of
    [Show full text]
  • Graph Analytics for Phenome-Genome Associations Inference
    bioRxiv preprint doi: https://doi.org/10.1101/682229; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Graph analytics for phenome-genome associations inference Davide Cirillo1,*, Dario Garcia-Gasulla1,*, Ulises Cortés1,3, Alfonso Valencia1,2 1 Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain 2 ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain. 3 Universitat Politècnica de Catalunya (UPC), C/ Jordi Girona 31, 08034, Barcelona, Spain * corresponding authors: [email protected]; [email protected] Abstract Motivation: Biological ontologies, such as the Human Phenotype Ontology (HPO) and the Gene Ontology (GO), are extensively used in biomedical research to find enrichment in the annotations of specific gene sets. However, the interpretation of the encoded information would greatly benefit from methods that effectively interoperate between multiple ontologies providing molecular details of disease-related features. Results: In this work, we present a statistical framework based on graph theory to infer direct associations between HPO and GO terms that do not share co-annotated genes. The method enables to map genotypic features to phenotypic features thus providing a valid tool for bridging functional and pathological annotations. We validated the results by (a) supporting evidence of known drug-target associations (PanDrugs), protein-protein physical and functional interactions (BioGRID and STRING), and common pathways (Reactome); (b) comparing relationships inferred from early ontology releases with knowledge contained in the latest versions. Applications: We applied our method to improve the interpretation of molecular processes involved in pathological conditions, illustrating the applicability of our predictions with a number of biological examples.
    [Show full text]
  • Phenome-Wide Association Studies in Diverse Populations
    Genomic Research in Action: Phenome-Wide Association Studies in Diverse Populations Sarah A. Pendergrass PhD, MS Assistant Professor Biomedical and Translational Informatics Geisinger Health System October 14, 2016 How Did I Get Here? MathUndergraduate and analytical thinking in Physics and programming, from Smith never College ending problem setsMasters in Biomedical Engineering from Thayer School of Working on disease based problems with computational solutions Engineering at Dartmouth PhD in Genetics from Dartmouth College Emerging world of bioinformatics and using these tools to study disease Postdoctoral work at Vanderbilt University Genetic Staff epidemiology Scientist atand Penn bioinformatics State – how can we leverage complex multifaceted data for discovery?? Investigator at Geisinger Health System PheWAS What are Phenome Wide Association Studies (PheWAS)? . Genome Wide Association Studies (GWAS) . Single Nucleotide Polymorphisms (SNPs) . One phenotype, or a limited phenotypic domain Phenome Wide Association Studies (PheWAS) . Comprehensively calculating the association between . Small to large number of SNPs . Diverse range of phenotypes from phenotypically rich datasets We can also use other data types too! . Other genetic variants: copy number variants, rare variants, mitochondrial variants . Quantitative lab variables instead of SNPs for biomarker identification PheWAS Phenome Wide Association Studies . Datasets with thousands of collected phenotypes . Unlikely that time would be spent to carefully investigate each phenotype for use . Hypothesis generation . Can we identify SNPs and/or phenotypes for further research ? Also exploring cross-phenotype associations . Exploring the relationship between associations for the same genetic variant and multiple phenotypes MegaPheWAS Performed a comprehensive genome-wide PheWAS . 632,574 genetic variants, MAF > 1% . 38,662 EA . 541 ICD-9 derived case-control diagnoses and a series of clinical lab measures Anurag Verma, Anastasia Lucas MegaPheWAS Performed a comprehensive genome-wide PheWAS .
    [Show full text]
  • Genome to Phenome: Improving Animal Health, Production, and Well-Being – a New USDA Blueprint for Animal Genome Research 2018–2027
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Roman L. Hruska U.S. Meat Animal Research U.S. Department of Agriculture: Agricultural Center Research Service, Lincoln, Nebraska 5-16-2019 Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint for Animal Genome Research 2018–2027 Caird Rexroad USDA, Agricultural Research Service, [email protected] Jeffrey Vallet United States Department of Agriculture Lakshmi Kumar Matukumalli United States Department of Agriculture James Reecy Iowa State University Derek Bickhart United States Department of Agriculture FSeeollow next this page and for additional additional works authors at: https:/ /digitalcommons.unl.edu/hruskareports Rexroad, Caird; Vallet, Jeffrey; Matukumalli, Lakshmi Kumar; Reecy, James; Bickhart, Derek; Blackburn, Harvey; Boggess, Mark; Cheng, Hans; Clutter, Archie C.; Cockett, Noelle; Ernst, Catherine; Fulton, Janet E.; Liu, John; Lunney, Joan; Neibergs, Holly; Purcell, Catherine; Smith, Timothy P. L.; Sonstegard, Tad; Taylor, Jerry; Telugu, Bhanu; Eenennaam, Alison Van; Van Tassell, Curtis P.; and Wells, Kevin, "Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint for Animal Genome Research 2018–2027" (2019). Roman L. Hruska U.S. Meat Animal Research Center. 454. https://digitalcommons.unl.edu/hruskareports/454 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Roman L. Hruska U.S. Meat Animal Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Caird Rexroad, Jeffrey Vallet, Lakshmi Kumar Matukumalli, James Reecy, Derek Bickhart, Harvey Blackburn, Mark Boggess, Hans Cheng, Archie C.
    [Show full text]
  • Integrated Omics: Tools, Advances and Future Approaches
    62 1 Journal of Molecular B B Misra et al. Approaches and tools in 62:1 R21–R45 Endocrinology integrated omics REVIEW Integrated omics: tools, advances and future approaches Biswapriya B Misra1, Carl Langefeld1,2, Michael Olivier1 and Laura A Cox1,3 1Center for Precision Medicine, Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North California, USA 2Department of Biostatistics, Wake Forest School of Medicine, Winston-Salem, North California, USA 3Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA Correspondence should be addressed to L A Cox: [email protected] Abstract With the rapid adoption of high-throughput omic approaches to analyze biological Key Words samples such as genomics, transcriptomics, proteomics and metabolomics, each f integrated analysis can generate tera- to peta-byte sized data files on a daily basis. These data file f omics sizes, together with differences in nomenclature among these data types, make the f genomics integration of these multi-dimensional omics data into biologically meaningful context f transcriptomics challenging. Variously named as integrated omics, multi-omics, poly-omics, trans-omics, f proteomics pan-omics or shortened to just ‘omics’, the challenges include differences in data f metabolomics cleaning, normalization, biomolecule identification, data dimensionality reduction, f network biological contextualization, statistical validation, data storage and handling, sharing and f statistics data archiving. The ultimate goal is toward the holistic realization of a ‘systems biology’ f Bayesian understanding of the biological question. Commonly used approaches are currently f machine learning limited by the 3 i’s – integration, interpretation and insights.
    [Show full text]
  • Multiscale Plant Modeling: from Genome to Phenome and Beyond
    Emerging Topics in Life Sciences (2021) 5 231–237 https://doi.org/10.1042/ETLS20200276 Review Article Multiscale plant modeling: from genome to phenome and beyond Megan L. Matthews1,2,3 and Amy Marshall-Colón2,3,4 1Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; 2Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; 3Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; 4Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA Downloaded from http://portlandpress.com/emergtoplifesci/article-pdf/5/2/231/912719/etls-2020-0276c.pdf by guest on 29 September 2021 Correspondence: Amy Marshall-Colón ([email protected]) Plants are complex organisms that adapt to changes in their environment using an array of regulatory mechanisms that span across multiple levels of biological organization. Due to this complexity, it is difficult to predict emergent properties using conventional approaches that focus on single levels of biology such as the genome, transcriptome, or metabolome. Mathematical models of biological systems have emerged as useful tools for exploring pathways and identifying gaps in our current knowledge of biological pro- cesses. Identification of emergent properties, however, requires their vertical integration across biological scales through multiscale modeling. Multiscale models that capture and predict these emergent properties will allow us to predict how plants will respond to a changing climate and explore strategies for plant engineering. In this review, we (1) sum- marize the recent developments in plant multiscale modeling; (2) examine multiscale models of microbial systems that offer insight to potential future directions for the model- ing of plant systems; (3) discuss computational tools and resources for developing multi- scale models; and (4) examine future directions of the field.
    [Show full text]