Glycobiology Solutions for Your Research and Development Needs an Esoteric Discipline?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1. -
Glycobiology Protocols M E T H O D S I N M O L E C U L a R B I O L O G Y™
Glycobiology Protocols M E T H O D S I N M O L E C U L A R B I O L O G Y™ John M. Walker, SERIES EDITOR 384. Capillary Electrophoresis: Methods and Protocols, 357. Cardiovascular Proteomics: Methods and Protocols, edited by Philippe Schmitt-Kopplin, 2007 edited by Fernando Vivanco, 2006 383. Cancer Genomics and Proteomics: Methods and 356. High-Content Screening: A Powerful Approach Protocols, edited by Paul B. Fisher, 2007 to Systems Cell Biology and Drug Discovery, 382. Microarrays, Second Edition: Volume 2, Applications edited by D. Lansing Taylor, Jeffrey Haskins, and Data Analysis, edited by Jang B. Rampal, 2007 and Ken Guiliano, 2007 381. Microarrays, Second Edition: Volume 1, Synthesis 355. Plant Proteomics: Methods and Protocols, edited Methods, edited by Jang B. Rampal, 2007 by Hervé Thiellement, Michel Zivy, Catherine 380. Immunological Tolerance: Methods and Protocols, Damerval, and Valerie Mechin, 2006 edited by Paul J. Fairchild, 2007 354. Plant–Pathogen Interactions: Methods and 379. Glycovirology Protocols, edited by Richard J. Protocols, edited by Pamela C. Ronald, 2006 Sugrue, 2007 353. DNA Analysis by Nonradioactive Probes: Methods 378. Monoclonal Antibodies: Methods and Protocols, and Protocols, edited by Elena Hilario and John. F. edited by Maher Albitar, 2007 MacKay, 2006 377. Microarray Data Analysis: Methods and 3352.52 Protein Engineering Protocols, edited by Kristian Applications, edited by Michael J. Korenberg, 2007 Müller and Katja Arndt, 2006 376. Linkage Disequilibrium and Association 3351.51 C. elegans: Methods and Applications, edited by Mapping: Analysis and Application, edited by Kevin Strange, 2006 Andrew R. Collins, 2007 3350.50 Protein Folding Protocols, edited by Yawen Bai 375. -
CHEM 537: Carbohydrate Biochemistry and Glycobiology Instructor: Professor Anthony S
CHEM 537: Carbohydrate Biochemistry and Glycobiology Instructor: Professor Anthony S. Serianni Fall 2014 8:10-9:15 AM, MWF, 322 Jordan November 14 – December 12, 2014 PART A: Monosaccharides, Oligosaccharides and Polysaccharides Textbook Biochemistry, 4th Edition, Voet/Voet, Wiley, 2011 Chapter 11: Sugars and Polysaccharides Chapter 23: Other Pathways of Carbohydrate Metabolism Supplemental Text (useful for course; on reserve in Chem/Phys Library) M. E. Taylor and K. Drickamer, Introduction to Glycobiology, 3rd Ed., Oxford, 2011 Literature Reading: Distributed electronically Topics: Aldoses and ketoses: structures, nomenclature, absolute configuration Cyclization: furanose and pyranose ring forms; anomeric configuration Anomerization (implications for saccharide binding proteins) Relative stabilities of cyclic forms Acyclic forms: aldehydo and keto forms, and their hydrates Ring conformation: conformational averaging Exocyclic conformations (C-O, N-acetyl, CH2OH) Amphiphilic character of saccharides (implications for receptor binding) Saccharide solvation: H-bonding behaviors Monosaccharide derivatives: Phosphate esters Sulfate esters Aminosugars Deoxysugars Alditols Aldonic acids (lactones) Uronic acids Dicarbonyl sugars (osones) α-ketoacids (sialic acid, KDO) Aldose-ketose isomerization (chemical, biological) Di- and oligosaccharide nomenclature Formation of glycosidic bonds: disaccharides (chemical, biological)s Mechanisms of glycoside bond formation and hydrolysis Phi/psi plots for glycosidic linkages Factors affecting linkage conformation; -
How Does Protein Zero Assemble Compact Myelin?
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2020 doi:10.20944/preprints202005.0222.v1 Peer-reviewed version available at Cells 2020, 9, 1832; doi:10.3390/cells9081832 Perspective How Does Protein Zero Assemble Compact Myelin? Arne Raasakka 1,* and Petri Kursula 1,2 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland; [email protected] * Correspondence: [email protected] Abstract: Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin – the lipid-rich, periodic structure that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes together via homophilic adhesion, forming a dense, macroscopic ultrastructure known as the intraperiod line. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs the formation of myelin. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when is P0 trafficked and modified to enable myelin compaction, and how disease mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies. -
B Cell Checkpoints in Autoimmune Rheumatic Diseases
REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases -
Comparative Analysis of High-Throughput Assays of Family-1 Plant Glycosyltransferases
International Journal of Molecular Sciences Article Comparative Analysis of High-Throughput Assays of Family-1 Plant Glycosyltransferases Kate McGraphery and Wilfried Schwab * Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-8161-712-912; Fax: +49-8161-712-950 Received: 27 January 2020; Accepted: 21 March 2020; Published: 23 March 2020 Abstract: The ability of glycosyltransferases (GTs) to reduce volatility, increase solubility, and thus alter the bioavailability of small molecules through glycosylation has attracted immense attention in pharmaceutical, nutraceutical, and cosmeceutical industries. The lack of GTs known and the scarcity of high-throughput (HTP) available methods, hinders the extrapolation of further novel applications. In this study, the applicability of new GT-assays suitable for HTP screening was tested and compared with regard to harmlessness, robustness, cost-effectiveness and reproducibility. The UDP-Glo GT-assay, Phosphate GT Activity assay, pH-sensitive GT-assay, and UDP2-TR-FRET assay were applied and tailored to plant UDP GTs (UGTs). Vitis vinifera (UGT72B27) GT was subjected to glycosylation reaction with various phenolics. Substrate screening and kinetic parameters were evaluated. The pH-sensitive assay and the UDP2-TR-FRET assay were incomparable and unsuitable for HTP plant GT-1 family UGT screening. Furthermore, the UDP-Glo GT-assay and the Phosphate GT Activity assay yielded closely similar and reproducible KM, vmax, and kcat values. Therefore, with the easy experimental set-up and rapid readout, the two assays are suitable for HTP screening and quantitative kinetic analysis of plant UGTs. This research sheds light on new and emerging HTP assays, which will allow for analysis of novel family-1 plant GTs and will uncover further applications. -
Proteins That Interact with the Mucin-Type Glycoprotein Msb2p
bioRxiv preprint doi: https://doi.org/10.1101/786475; this version posted September 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Msb2p Interacting Proteins Prabhakar et al. Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include Regulators of the Actin Cytoskeleton by Aditi Prabhakar, Nadia Vadaie, Thomas Krzystek, and Paul J. Cullen† Department of Biological Sciences at SUNY-Buffalo, 14260-1300 Running title: Msb2p interacting proteins Key Words: protein microarray, mucin, MAP kinase, actin cytoskeleton, Msb2p, actin capping, secretion, glutamine synthetase. † Corresponding author: Paul J. Cullen Address: Department of Biological Sciences 532 Cooke Hall State University of New York at Buffalo Buffalo, NY 14260-1300 Phone: (716)-645-4923 FAX: (716)-645-2975 e-mail: [email protected] 36 pages, 8 Figures, 3 Tables, , 1 Supplemental Table; 50,465 characters 1 bioRxiv preprint doi: https://doi.org/10.1101/786475; this version posted September 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Msb2p Interacting Proteins Prabhakar et al. ABSTRACT Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein, Msb2p. -
Characterization of a Novel Peripheral Nervous System Myelin
Characterization ofa Novel Peripheral Nervous System Myelin Protein (PMP22/SR13) G. Jackson Snipes,** Ueli Suter, * Andrew A. Welcher, * and Eric M. Shooter* *Department ofNeurobiology and f Department of Pathology (Neuropathology), Stanford University School of Medicine, Stanford, CA 94305 Abstract. We have recently described a novel cDNA, protein could be detected by either immunoblot analysis SR13 (Welcher, A . A., U. Suter, M . De Leon, G. J. or by immunohistochemistry. Northern and immunoblot Snipes, and E. M. Shooter. 1991. Proc. Natl. Acad. analysis of SRI 3 mRNA and protein expression during Sci. USA. 88 .7195-7199), that is repressed after sciatic development of the peripheral nervous system reveal a nerve crush injury and shows homology to both the pattern similar to other myelin proteins. Furthermore, growth arrest-specific mRNA, gas3 (Manfioletti, G., we demonstrate by in situ mRNA hybridization on tis- M. E. Ruaro, G. Del Sal, L. Philipson, and sue sections and on individual nerve fibers that SR13 C. Schneider. 1990. Mol. Cell Biol. 10:2924-2930), mRNA is produced predominantly by Schwann cells. and to the myelin protein, PASII (Kitamura, K., M. We conclude that the SR13 protein is apparently exclu- Suzuki, and K. Uyemura. 1976. Biochim. Biophys. sively expressed in the peripheral nervous system Acta. 455 :806-816). In this report, we show that the where it is a major component of myelin. Thus, we 22-kD SR13 protein is expressed in the compact portion propose the name Peripheral Myelin Protein-22 (PMP- of essentially all myelinated fibers in the peripheral 22) for the proteins and cDNAs previously designated nervous system. -
Inhibin Α Subunit Is Expressed by Bovine Ovarian Theca Cells and Its Knockdown Suppresses Androgen Production
www.nature.com/scientificreports OPEN ‘Free’ inhibin α subunit is expressed by bovine ovarian theca cells and its knockdown suppresses androgen production Mhairi Laird1, Claire Glister1, Warakorn Cheewasopit1,2, Leanne S. Satchell1, Andrew B. Bicknell1 & Phil G. Knight1* Inhibins are ovarian dimeric glycoprotein hormones that suppress pituitary FSH production. They are synthesised by follicular granulosa cells as α plus βA/βB subunits (encoded by INHA, INHBA, INHBB, respectively). Inhibin concentrations are high in follicular fuid (FF) which is also abundant in ‘free’ α subunit, presumed to be of granulosal origin, but its role(s) remains obscure. Here, we report the unexpected fnding that bovine theca cells show abundant INHA expression and ‘free’ inhibin α production. Thus, theca cells may contribute signifcantly to the inhibin α content of FF and peripheral blood. In vitro, knockdown of thecal INHA inhibited INSL3 and CYP17A1 expression and androgen production while INSL3 knockdown reduced INHA and inhibin α secretion. These fndings suggest a positive role of thecal inhibin α on androgen production. However, exogenous inhibin α did not raise androgen production. We hypothesised that inhibin α may modulate the opposing efects of BMP and inhibin on androgen production. However, this was not supported experimentally. Furthermore, neither circulating nor intrafollicular androgen concentrations difered between control and inhibin α-immunized heifers, casting further doubt on thecal inhibin α subunit having a signifcant role in modulating androgen production. Role(s), if any, played by thecal inhibin α remain elusive. Inhibins are glycoproteins of gonadal origin that play a key role in the negative feedback regulation of FSH pro- duction by pituitary gonadotrophs. -
Supplementary Information
Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle. -
Elevated Alpha-1 Antitrypsin Is a Major Component of Glyca-Associated Risk for Future Morbidity and Mortality
bioRxiv preprint doi: https://doi.org/10.1101/309138; this version posted April 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Elevated alpha-1 antitrypsin is a major component of GlycA-associated risk for future morbidity and mortality Scott C. Ritchie1,2,3,4*, Johannes Kettunen5,6,7, Marta Brozynska1,2,3,4, Artika P. Nath1,8, Aki S. Havulinna6,9, Satu Männisto6, Markus Perola6,9, Veikko Salomaa6, Mika Ala-Korpela5,7,10,11,12,13, Gad Abraham1,2,3,4, Peter Würtz14,15, Michael Inouye1,2,3,4* 1Systems Genomics Lab, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia 2Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom 3Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia 4School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia 5Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu 90014, Finland 6National Institute for Health and Welfare, Helsinki 00271, Finland 7NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland 8Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia 9Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland 10Population Health Science, -
Glycomics Hits the Big Time
Leading Edge Essay Glycomics Hits the Big Time Gerald W. Hart1,* and Ronald J. Copeland1 1Department of Biological Chemistry, School of Medicine, Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA *Correspondence: [email protected] DOI 10.1016/j.cell.2010.11.008 Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease. By analogy to the genome, transcriptome, O-GlcNAc (Hart et al., 2007). Even though Dynamic Structural Complexity or proteome, the ‘‘glycome’’ is the the generic term ‘‘glycosylation’’ is often Underlies Glycan Functions complete set of glycans and glycoconju- used to categorize and lump all glycan Glycoconjugates provide dynamic struc- gates that are made by a cell or organism modifications of proteins into one bin, tural diversity to proteins and lipids that under specific conditions. Therefore, side by side with other posttranslational is responsive to cellular phenotype, to ‘‘glycomics’’ refers to studies that attempt modifications such as phosphorylation, metabolic state, and to the developmental to define or quantify the glycome of a cell, acetylation, ubiquitination, or methylation, stage of cells. Complex glycans play crit- tissue, or organism (Bertozzi and Sasise- such a view is not only inaccurate, but ical roles in intercellular and intracellular kharan, 2009). In eukaryotes, protein also is completely misleading. If one only processes, which are fundamentally glycosylation generally involves the cova- considers the linkage of the first glycan important to the development of multicel- lent attachment of glycans to serine, to the polypeptide in both prokaryotic lularity (Figure 1).