A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins

Total Page:16

File Type:pdf, Size:1020Kb

A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins membranes Review A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins Takahiko Aoki Laboratory of Quality in Marine Products, Graduate School of Bioresources, Mie University, 1577 Kurima Machiya-cho, Mie, Tsu 514-8507, Japan; [email protected]; Tel.: +81-59-231-9569; Fax: +81-59-231-9557 Received: 18 August 2017; Accepted: 24 September 2017; Published: 29 September 2017 Abstract: Human red blood cells (RBC), which are the cells most commonly used in the study of biological membranes, have some glycoproteins in their cell membrane. These membrane proteins are band 3 and glycophorins A–D, and some substoichiometric glycoproteins (e.g., CD44, CD47, Lu, Kell, Duffy). The oligosaccharide that band 3 contains has one N-linked oligosaccharide, and glycophorins possess mostly O-linked oligosaccharides. The end of the O-linked oligosaccharide is linked to sialic acid. In humans, this sialic acid is N-acetylneuraminic acid (NeuAc). Another sialic acid, N-glycolylneuraminic acid (NeuGc) is present in red blood cells of non-human origin. While the biological function of band 3 is well known as an anion exchanger, it has been suggested that the oligosaccharide of band 3 does not affect the anion transport function. Although band 3 has been studied in detail, the physiological functions of glycophorins remain unclear. This review mainly describes the sialo-oligosaccharide structures of band 3 and glycophorins, followed by a discussion of the physiological functions that have been reported in the literature to date. Moreover, other glycoproteins in red blood cell membranes of non-human origin are described, and the physiological function of glycophorin in carp red blood cell membranes is discussed with respect to its bacteriostatic activity. Keywords: red blood cell; glycoproteins; biological function; glycophorin; band 3; O-linked oligosaccharides; N-acetylneuraminic acid; N-glycolylneuraminic acid 1. Introduction The blood of mammals, such as humans, as well as of birds, reptiles, and teleosts, contains red blood cells (erythrocytes). Human red blood cells, which are the most commonly studied by researchers, are approximately 7 µm in diameter, and their centre has a dented discoid shape. Studies on biological membranes normally use human red blood cells (RBC) because these erythrocytes have no nuclei and are easy to obtain for cell membrane preparation. For the preparation of membrane proteins, it is necessary to solubilize the phospholipid bilayer by using detergents. Fairbanks et al. [1] developed a method in which red blood cell membranes were solubilized by sodium dodecyl sulfate (SDS), and then the extracted membrane proteins were separated by acrylamide gel electrophoresis (SDS-PAGE). As a result, membrane proteins and glycoproteins could be detected on SDS gels. Figure1 shows the typical human red blood cell membrane proteins separated by SDS-PAGE using the method of Laemmli [2], which was later improved by Fairbanks et al. [1]. Table1 depicts the nomenclature of each cell membrane protein according to Fairbanks et al. [1], along with apparent molecular mass (kDa) and physiological function. Band 3, band 4.1, and band 4.2 are called the designated names at present. Membranes 2017, 7, 56; doi:10.3390/membranes7040056 www.mdpi.com/journal/membranes Membranes 2017, 7, 56 2 of 19 Membranes 2017, 7, 56 2 of 18 FigureFigure 1. 1. SodiumSodium dodecyl dodecyl sulfate sulfate (SDS) (SDS)-polyacrylamide-polyacrylamide gel gelelectrophoresis electrophoresis of human of human red blood red blood cell (RBC)cell (RBC) membranes. membranes. Healthy Healthy human human RBC RBC membranes membranes stained stained with with Coomassie Coomassie brilliant brilliant blue. blue. ElectrophoresisElectrophoresis was performed according to the method of Laemmli [[2].2]. TableTable 1. Red blood cell membrane pro proteins.teins. Band Molecular Mass (kDa) Designation Function 1 Band240 Molecular Mass (kDa)spectrin (α Designation chain) Function 2 1220 240spectrin spectrin (β chain) (α chain) components of cytoskeleton components of cytoskeleton 2.1 2210 220ankylin spectrin (β chain) 3 2.1100 210band 3 (AE1) ankylin anion transporter 4.1 382 100band band 4.1 3 (AE1) anion transporter components of cytoskeleton 4.1 82 band 4.1 4.2 76 band 4.2 components of cytoskeleton 4.5 4.255 76band 4.5 (GLUT1) band 4.2 glucose transporter 5 4.543 55actin band 4.5 (GLUT1)components glucose transporter of cytoskeleton 6 535 43glyceraldehyde-3-phoshate dehydrogenase actin (GAPDH) componentsglycolytic of cytoskeleton enzyme 7 631 35 glyceraldehyde-3-phoshatestomatin dehydrogenase (GAPDH) glycolytic– enzyme 7 31 stomatin – Band 3 is a glycoprotein and is detected as a diffuse band on SDS gel due to the microheterogeneityBand 3 is a glycoprotein of the attached and is detectedoligosaccharides as a diffuse [3]. band Band on 3 SDSis detectable gel due to on the the microheterogeneity SDS gel by using proteinof the attached staining oligosaccharides with Coomassie [3]. Brilliant Band 3 is Blue detectable (CBB) on because the SDS band gel by 3 using has proteina small staining amount with of oligosaccharides.Coomassie Brilliant Band Blue 3 (CBB)contains because approximately band 3 has 7% a small carbohydrate amount of and oligosaccharides. contributes toBand approximately 3 contains 10%approximately of the total membrane 7% carbohydrate carbohydrate and contributes [4]. By contrast, to approximately the sialooligosaccharide 10% of the-rich total glycoproteins membrane arecarbohydrate detectable [4by]. Bystaining contrast, with the the sialooligosaccharide-rich periodic acid-Schiff’s glycoproteins(PAS) reagent are[1,5]. detectable The glycoproteins by staining detectedwith the by periodic PAS staining acid-Schiff’s are called (PAS) glycophorins. reagent [1,5]. Figure The glycoproteins 2 shows the detectednomenclature by PAS of staininghuman red are cellcalled membrane glycophorins. sialoglycoproteins. Figure2 shows theThe nomenclature designation of of humanglycophorins red cell is membrane confusing sialoglycoproteins.because different nomenclaturesThe designation have of glycophorinsbeen used by different is confusing researchers. because In different the first nomenclaturespart of the 1970s, have the beenglycophorins used by weredifferent called researchers. as PAS 1 In–4 theand, first at partpresent, of the they 1970s, are thetermed glycophorins glycophorins were A called–D, respectively as PAS 1–4 and,[6]. Glycophorinat present, they α is the are same termed as glycophorin glycophorins A, A–D, and glycophorin respectively δ, [ 6β,]. and Glycophorin γ are glycophorinsα is the B, same C, and as D,glycophorin respectively A, [6 and–8]. glycophorin δ, β, and γ are glycophorins B, C, and D, respectively [6–8]. GlycophorinGlycophorin A A (dimer) (dimer) is is o observedbserved below below band band 3 3 on SDS SDS-polyacrylamide-polyacrylamide gels gels (Figure (Figure 22),), isis aa majormajor component component of of red red cell cell membrane membrane glycoproteins, glycoproteins, and and is is reported reported to to have have an an apparent apparent molecular molecular massmass of 29 [9] [9] to 36 kDa [10,11]. [10,11]. TheThe electrophoreticelectrophoretic migration migration of glycophorinof glycophorin is relatively is relatively low when low compared when compared to other membrane to other membranecomponents components because glycophorin because glycophorin is heavily glycosylated. is heavily glycosylated. Although the Although molecular the mass molecular of the mass other ofmembrane the other proteins membrane can estimatedproteins can by migrationestimated on by SDS-PAGE, migration theon SDS molecular-PAGE, mass the ofmolecular each glycophorin mass of eachcannot glycophorin be estimated cannot in this be manner.estimated in this manner. Membranes 2017, 7, 56 3 of 19 Membranes 2017, 7, 56 3 of 18 Figure 2. SDS-polyacrylamide gel electrophoresis of human red blood cell (RBC) membranes. Healthy Figure 2. SDS-polyacrylamide gel electrophoresis of human red blood cell (RBC) membranes. Healthy human RBC membranes stained with periodic acid-Schiff (PAS) stain [1]. Electrophoresis was human RBC membranes stained with periodic acid-Schiff (PAS) stain [1]. Electrophoresis was performed according to the method of LaemmliLaemmli [[2].2]. 2. Structure of the Human Red Blood Cell Membrane 2. Structure of the Human Red Blood Cell Membrane Red blood cell membrane proteins [12–14] can be classified into transmembrane proteins and Red blood cell membrane proteins [12–14] can be classified into transmembrane proteins and peripheral membrane proteins that associate with the cytoplasmic side of the lipid bilayer. Band 3 peripheral membrane proteins that associate with the cytoplasmic side of the lipid bilayer. Band 3 and and glycophorins are transmembrane proteins. Transmembrane proteins associate with the glycophorins are transmembrane proteins. Transmembrane proteins associate with the peripheral peripheral proteins that constitute the protein meshwork (cytoskeleton). Figure 3 shows a schematic proteins that constitute the protein meshwork (cytoskeleton). Figure3 shows a schematic drawing drawing of the site of band 3 and glycophorins in human red blood cell membrane structure, with of the site of band 3 and glycophorins in human red blood cell membrane structure, with reference reference to the review on the red cell membrane skeleton [14,15]. The main component of the to the review on the red cell membrane skeleton [14,15]. The main component
Recommended publications
  • Blood, Lymph, and Immunity Joann Colville
    Blood, Lymph, and Immunity Joann Colville CHAPTER OUTLINE .»: BLOOD Function Introduction Lymphatic Structures Plasma THE IMMUNE SYSTEM Cellular Components of Blood Function Red Blood Cells Immune Reactions Platelets Immunization: Protection Against Disease White Blood Cells THE LYMPHATICSYSTEM Lymph Formation Characteristics LEARNING OBJECTIVES • List and describe the functions of blood • List the functions of the lymphatic system • Describe the composition of blood plasma • Describe the structure and functions of the lymph nodes, • Describe the characteristics of mature erythrocytes spleen, thymus, tonsils, and GALT Describe the structure of the hemoglobin molecule and • List the functions of the immune system explain the fate of hemoglobin following intravascular and • Differentiate between specific and nonspecific immune extravascular hemolysis reactions • Give the origin of thrombocytes and describe their • Differentiate between cell-mediated and humoral immunity characteristics and functions • List the components involved in cell-mediated immunity • Listthe types of leukocytes and describe the functions of each and explain the role of each • Describe the formation of lymph fluid and its circulation List and describe the classes of immunoglobulins through the lymphatic system • Differentiate between active and passive immunity BLOOD vessels of the cardiovascular system. It has three main func- tions: transportation, regulation, and defense. INTRODUCTION Blood. Say the word, and some people cringe, others faint, Function and if you believe authors Bram Stoker, Stephen King, and 1. Blood is a transport system. Christopher Moore (all authors of vampire books), others • It carries oxygen, nutrients, and other essential com- drool. But no matter what you think about blood, animals pounds to every living cell in the body.
    [Show full text]
  • Duffy, and Mnss Group Systems
    Blood Groups – Duffy, and MNSs Group Systems Qun Lu, MD Assistant Professor Division of Transfusion Medicine Department of Pathology and Laboratory Medicine UCLA, School of Medicine Los Angeles, California 2009-03-12 Duffy Blood Group System History . 1950: Mrs. Duffy, a multiply transfused hemophiliac woman, developed an antibody not reacting with the known RBC antigens. Corresponding antigen was named after Mrs. Duffy . 1951: Fyb antibody was described in a woman with 3 pregnancies. 1955: Majority of blacks tested Fy(a-b-) . 1975: Fy(a-b-) RBCs were shown to resist infection by malaria organism Plasmodium vivax. Later: more Duffy antigens (Fy3, Fy4, Fy5, Fy6) were discovered . ISBT: 008 for the Duffy Blood Group Duffy Antigens . Most common: Fya and Fyb. Present at 6 weeks of gestation, well developed at birth – anti- Fy can cause hemolytic disease of newborn . Duffy antigens can be destroyed by enzymes such as ficin, papain, bromelain, chymotrypsin, ZZAP . When compared to Rh or Kell antigens, Duffy antigens are not very immunogenic. So, anti-Fya or anti-Fyb is not common. Fy (a-b-) is not Fy null, but homozygous for Fyb gene, they express Fyb antigen in other tissues, but not on RBCs → only will produce anti-Fya, not anti-Fyb. Fy (a-b-) is negative for Fy6 antigen which is the receptor for P. vivax (Fy6 is + when Fya + or Fyb+) Duffy Antigens . Phenotype Frequencies Chinese Phenotype Whites % Blacks % % Fy (a+b-) 17 9 90.8 Fy (a+b+) 49 1 8.9 Fy (a-b+) 34 22 0.3 Fy (a-b-) rare 68 0 White donor population: Fya: 66% Caucasians, 10% Blacks, 99% Asians Fya – units: 35% Fyb: 83% Caucasians, 23% Blacks, 18.5% Asians Fyb – units: 15% Fy3: 100% Caucasians, 32% Blacks, 99.9% Asians Duffy Antigens .
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • The Diagnosis of Paroxysmal Nocturnal Hemoglobinuria: Role of Flow Cytometry
    THE DIAGNOSIS OF PAROXYSMAL NOCTURNAL HEMOGLOBINURIA: ROLE OF FLOW CYTOMETRY Alberto Orfao Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain Paroxysmal nocturnal hemoglobinuria (PNH) on one or multiple populations of peripheral blood is an acquired clonal disorder typically affecting red cells and/or leucocytes of PNH patients, this young adults, which involves the phosphatidylino- translating into a new diagnostic test. Because sitol glycan anchor biosynthesis class A gene of this flow cytometry became an essential tool (PIGA) coded in chromosome X, in virtually every in the diagnosis of PNH. In turn, it could be also case. The altered gene encodes for a defective pro- demonstrated that investigation of the presence of tein product, the pig-a enzyme which is involved GPI-deficient cells among circulating mature neu- in the early steps of the synthesis of glycosylphos- trophils and monocytes, increases the sensitivity phatidylinositol (GPI). This later molecule (GPI) of red blood cell screening because of the shorter acts as an anchor of a wide range of proteins to lifetime of both populations of leucocytes. Despite the cell surface. At present a large number of GPI- all the above, routine assessment of CD55 and anchor associated proteins have been described CD59 is also associated with several limitations which are expressed by one or multiple distinct due to distinct patterns of expression among dif- compartments of hematopoietic cells. The altered ferent cell populations, dim and heterogeneous PIGA gene leads to an altered GPI anchor which expression among normal individuals and the lack leads to defective expression of GPI-AP on the of experience in many labs as regards the normal cytoplasmic membrane, on the cell surface.
    [Show full text]
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • The Gerbich Blood Group System: a Review
    Review The Gerbich blood group system: a review P.S. Walker and M.E. Reid Antigens in the Gerbich blood group system are expressed on glycoproteins are also known as CD236R, and they attach glycophorin C (GPC) and glycophorin D (GPD), which are both to the RBC membrane through an interaction with protein encoded by a single gene, GYPC. The GYPC gene is located on 4.1R and p55. GPC and GPD contain three domains: an ex- the long arm of chromosome 2, and Gerbich antigens are in- tracellular NH2 domain, a transmembrane domain, and an herited as autosomal dominant traits. There are 11 antigens in intracellular or cytoplasmic COOH domain (Figure 1). GPC the Gerbich blood group system, six of high prevalence (Ge2, Ge3, Ge4, GEPL [Ge10*], GEAT [Ge11*], GETI [Ge12*]) and and GPD are encoded by the same gene, GYPC. When the five of low prevalence (Wb [Ge5], Lsa [Ge6], Ana [Ge7], Dha fi rst AUG initiation codon is used, GPC is encoded, whereas [Ge8], GEIS [Ge9]). GPC and GPD interact with protein 4.1R, when the second AUG is used, GPD is encoded. Thus, GPD contributing stability to the RBC membrane. Reduced lev- is a shorter version of GPC, and the amino acids in GPD els of GPC and GPD are associated with hereditary elliptocy- are identical to those found in GPC but lacking the fi rst 21 tosis, and Gerbich antigens act as receptors for the malarial amino acids at the N-terminal of GPC.9,10 parasite Plasmodium falciparum. Anti-Ge2 and anti-Ge3 have caused hemolytic transfusion reactions, and anti-Ge3 has pro- duced hemolytic disease of the fetus and newborn (HDFN).
    [Show full text]
  • How Does Protein Zero Assemble Compact Myelin?
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2020 doi:10.20944/preprints202005.0222.v1 Peer-reviewed version available at Cells 2020, 9, 1832; doi:10.3390/cells9081832 Perspective How Does Protein Zero Assemble Compact Myelin? Arne Raasakka 1,* and Petri Kursula 1,2 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland; [email protected] * Correspondence: [email protected] Abstract: Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin – the lipid-rich, periodic structure that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes together via homophilic adhesion, forming a dense, macroscopic ultrastructure known as the intraperiod line. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs the formation of myelin. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when is P0 trafficked and modified to enable myelin compaction, and how disease mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
    [Show full text]
  • Chapter 06 Lecture Outline
    Chapter 06 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © 2016 McGraw-Hill Education. Permission required for reproduction or display. 1 Cardiovascular System: Blood © SPL/Science Source, (inset) © Andrew Syred/Science Source 2 Points to ponder • What type of tissue is blood and what are its components? • What is found in plasma? • Name the three formed elements in blood and their functions. • How does the structure of red blood cells relate to their function? • Describe the structure and function of each white blood cell. • What are disorders of red blood cells, white blood cells, and platelets? • What do you need to know before donating blood? • What are antigens and antibodies? • How are ABO blood types determined? • What blood types are compatible for blood transfusions? • What is the Rh factor and how is this important to pregnancy? • How does the cardiovascular system interact with other systems to maintain homeostasis? 3 6.1 Blood: An Overview What are the functions of blood? • Transportation: oxygen, nutrients, wastes, carbon dioxide, and hormones • Defense: against invasion by pathogens • Regulatory functions: body temperature, water- salt balance, and body pH 4 6.1 Blood: An Overview What is the composition of blood? • Remember: blood is a fluid connective tissue. • Formed elements are produced in red bone marrow. – Red blood cells/erythrocytes (RBCs) – White blood cells/leukocytes (WBCs) – Platelets/thrombocytes 5 6.1 Blood: An Overview What is the composition of blood? • Plasma – It consists of 91% water and 9% salts (ions) and organic molecules. – Plasma proteins are the most abundant organic molecules.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease
    Molecular Neurobiology (2019) 56:5009–5024 https://doi.org/10.1007/s12035-018-1421-1 Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease Anna Bartoletti-Stella1 & Patrizia Corrado2 & Nicola Mometto2 & Simone Baiardi2 & Pascal F. Durrenberger3 & Thomas Arzberger4,5 & Richard Reynolds6 & Hans Kretzschmar5 & Sabina Capellari1,2 & Piero Parchi1,7 Received: 18 July 2018 /Accepted: 1 November 2018 /Published online: 16 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/ inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regu- lation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002).
    [Show full text]
  • Quantitation of the Number of Molecules of Glycophorins C and D on Normal Red Blood Cells Using Radioiodinatedfab Fragments of Monoclonal Antibodies
    Quantitation of the Number of Molecules of Glycophorins C and D on Normal Red Blood Cells Using RadioiodinatedFab Fragments of Monoclonal Antibodies By Jon Smythe, Brigitte Gardner, andDavid J. Anstee Two rat monoclonal antibodies (BRAC 1 and BRAC 1 1 ) cytes. Fabfragments of BRAC 1 1 and ERIC 10 gave values have been produced. BRAC 1 recognizes an epitope com- of 143,000 molecules GPC per red blood cell (RBC). Fab mon to the human erythrocyte membrane glycoproteins fragments of BRAC1 gave 225,000 molecules of GPC and glycophorin C (GPC) and glycophorin D (GPD). BRAC 11 GPD per RBC. These results indicate that GPC and GPD is specific for GPC. Fabfragments of these antibodies and together are sufficiently abundantto provide membrane at- BRlC 10, a murine monoclonal anti-GPC,were radioiodin- tachment sites for all ofthe protein 4.1 in normal RBCs. ated and used in quantitative binding assays to measure 0 1994 by The American Societyof Hematology. the number of GPC and GPD molecules on normal erythro- HE SHAPE AND deformability of the mature human (200,000)" and those reported for GPC (50,000).7 This nu- Downloaded from http://ashpublications.org/blood/article-pdf/83/6/1668/612763/1668.pdf by guest on 24 September 2021 T erythrocyte is controlled by a flexible two-dimensional merical differencehas led to the suggestion that a significant lattice of proteins, which together comprise the membrane proportion of protein 4.1 in normal erythrocyte membranes skeleton.' The major components of the skeleton are spec- must be bound to sites other than GPC and GPD.3 The trin, actin, ankyrin, and protein 4.1.
    [Show full text]