bioRxiv preprint doi: https://doi.org/10.1101/2020.04.18.047571; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. capCLIP: a new tool to probe protein synthesis in human cells through capture and identification of the eIF4E-mRNA interactome. Kirk B. Jensen,1,2,* B. Kate Dredge,3 John Toubia,3,4 Xin Jin,1,5 Valentina Iadevaia,6 Gregory J. Goodall3,7 and Christopher G. Proud1,2 1Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide 5000, Australia 2School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide 5005, Australia 3Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia 4ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide SA 5000, Australia 5School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China; 6School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom. 7Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia * Corresponding author: telephone +61 8 8128 4908;
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.18.047571; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Translation initiation of eukaryotic mRNAs commences with recognition of the m7G cap by the cap- binding protein eIF4E and the subsequent recruitment of additional translation initiation factors to the mRNA’s 5′ end.