Chapter 13 Lecture

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 13 Lecture ChapterChapter 1 13 Clickers Lecture Essentials of Oceanography Eleventh Edition Biological Productivity and Energy Transfer Alan P. Trujillo Harold V. Thurman © 2014 Pearson Education, Inc. Chapter Overview • Primary productivity is photosynthesis. • Productivity is globally and seasonally variable. • Feeding relationships are represented by food chains and food webs. • Oceans are being overfished. © 2014 Pearson Education, Inc. Primary Productivity • Rate at which energy is stored in organic matter – Photosynthesis uses solar radiation. – Chemosynthesis uses chemical reactions. • 99.9% of the ocean’s biomass relies directly or indirectly on photosynthesis for food. © 2014 Pearson Education, Inc. Photosynthesis © 2014 Pearson Education, Inc. Measurement of Primary Productivity • Directly – capture plankton in plankton nets • Measure radioactive carbon in seawater © 2014 Pearson Education, Inc. Measurement of Primary Productivity • Monitor ocean color with satellites – Photosynthetic phytoplankton use green pigment chlorophyll • SeaWiFS (Sea-viewing Wide Field of View Sensor) satellite sensor collected ocean color data 1997–2010 • MODIS (Moderate Resolution Imaging Spectroradiometer) – current – Measures 36 spectral frequencies © 2014 Pearson Education, Inc. Factors Affecting Primary Productivity • Nutrient availability – Nitrate, phosphorous, iron, silica – Most from river runoff – Productivity high along continental margins – Redfield ratio – C:N:P © 2014 Pearson Education, Inc. Factors Affecting Primary Productivity • Solar radiation – Uppermost surface seawater and shallow seafloor – Compensation depth – net photosynthesis becomes zero – Euphotic zone —from surface to about 100 meters (330 feet) • Enough light for photosynthesis © 2014 Pearson Education, Inc. Light Transmission in Ocean Water • Visible light portion of the electromagnetic spectrum • Blue wavelengths penetrate deepest • Longer wavelengths (red, orange) absorbed first © 2014 Pearson Education, Inc. Transmission of Light in Seawater © 2014 Pearson Education, Inc. Color in the Ocean • Color of ocean ranges from deep blue to yellow-green • Factors – Turbidity from runoff – Photosynthetic pigment (chlorophyll) • Secchi Disk – measures water transparency © 2014 Pearson Education, Inc. Color in the Ocean • Coastal and upwelling areas productive – Light green – Eutrophic • Open ocean lacks productivity – Dark blue – Oligotrophic © 2014 Pearson Education, Inc. SeaWiFS Image of Ocean Chlorophyll © 2014 Pearson Education, Inc. Upwelling and Nutrient Supply • Flow of deep water to surface • Cooler, deeper seawater is nutrient- rich. • Areas of coastal upwelling are sites of high productivity. – Western continental margins © 2014 Pearson Education, Inc. Upwelling and Nutrient Supply © 2014 Pearson Education, Inc. Types of Photosynthetic Marine Organisms • Anthophyta – Seed-bearing plants • Macroscopic (large) algae • Microscopic (small) algae • Photosynthetic bacteria © 2014 Pearson Education, Inc. Anthophyta • Only in shallow coastal waters • Primarily grasses and mangroves © 2014 Pearson Education, Inc. Macroscopic Algae • “Sea Weeds” • Brown algae – Middle latitudes – Colder water © 2014 Pearson Education, Inc. Macroscopic Algae • Green algae – Common in freshwater – Chlorophyll • Red algae – Most abundant and most widespread – Varied colors © 2014 Pearson Education, Inc. Microscopic Algae • Produce food for 99% of marine animals • Most planktonic • Golden algae – Diatoms – tests (shells) made of silica, accumulated shells produce diotomaceous earth – Coccolithophores – plates of calcium carbonate © 2014 Pearson Education, Inc. Microscopic Algae • Dinoflagellates – Red tide (harmful algal bloom) – Toxins – Fish kills – Human illness © 2014 Pearson Education, Inc. Red Tides • Natural conditions may stimulate dinoflagellate productivity. • Some produce toxins inadvertently consumed by fish and shellfish. • Humans who eat affected fish may get paralytic shellfish poisoning (PSP). © 2014 Pearson Education, Inc. Red Tides • April through September most dangerous in N. Hemisphere • Dinoflagellates associated with ciguatera – type of seafood poisoning – Causes most human cases of seafood poisoning © 2014 Pearson Education, Inc. Ocean Eutrophication and Dead Zones • Eutrophication – artificial enrichment of waters by previously scarce nutrient – Can cause harmful algal bloom – Sewage, fertilizer, animal waste © 2014 Pearson Education, Inc. Ocean Eutrophication and Dead Zones • Dead zones – hypoxic (oxygen-poor) water – Mouths of major rivers – Spring runoffs • Suffocates bottom dwellers © 2014 Pearson Education, Inc. Ocean Eutrophication and Dead Zones • Global dead zones – significant increase since 1960s • More than 500 worldwide © 2014 Pearson Education, Inc. Gulf of Mexico Dead Zone • Second largest in world – 22,000 sq. km (8500 sq. mi) • Runoff of nutrients, esp. nitrates – Algal blooms © 2014 Pearson Education, Inc. Photosynthetic Bacteria • Extremely small • May be responsible for half of total photosynthetic biomass in oceans • Exert critical influence on marine ecosystems © 2014 Pearson Education, Inc. Regional Primary Productivity Variations • Values range from 1 gC/m 2/year to 4000 gC/m 2/year – Uneven distribution of nutrients – Changes in availability of sunlight • 90% of biomass from euphotic zone decomposes before descending © 2014 Pearson Education, Inc. Ecosystem Primary Productivity © 2014 Pearson Education, Inc. Regional Primary Productivity Variations • Only 1% of organic matter is not decomposed in the deep ocean. • Biological pump – moves material from euphotic zone to sea floor • Subtropical gyre thermoclines and pycnoclines prevent the resupply of nutrients to the surface. © 2014 Pearson Education, Inc. Polar Ocean Productivity • Winter darkness • Summer sunlight • Phytoplankton (diatoms) bloom • Zooplankton (mainly small crustaceans) productivity follows • Example: Arctic Ocean’s Barents Sea © 2014 Pearson Education, Inc. Polar Ocean Productivity • Antarctic productivity slightly greater than Arctic • North Atlantic Deep Water upwells near Antarctica • Productivity decrease from UV radiation – ozone hole © 2014 Pearson Education, Inc. Polar Ocean Productivity • Isothermal waters – little mixing • Plankton remain at surface • Blue whales migrate to feed on maximum zooplankton productivity. © 2014 Pearson Education, Inc. Polar Ocean Productivity • Blue whales dependent upon zooplankton – Time migration to zooplankton maximum – Fast-growing calves evidence for large biomass in zooplankton © 2014 Pearson Education, Inc. Productivity in Tropical Oceans • Permanent thermocline is barrier to vertical mixing • Low rate of primary productivity – lack of nutrients © 2014 Pearson Education, Inc. Productivity in Tropical Oceans • High primary productivity in areas of – Equatorial upwelling – Coastal upwelling – Coral reefs • Symbiotic algae • Recycle nutrients within the ecosystem © 2014 Pearson Education, Inc. Temperate Ocean Productivity • Productivity limited by – Available sunlight – Available nutrients © 2014 Pearson Education, Inc. Temperate Ocean Productivity • Highly seasonal pattern • Winter low – Many nutrients, little sunlight • Spring high – Spring bloom • Summer low – Few nutrients, abundant sunlight • Fall high – Fall bloom © 2014 Pearson Education, Inc. Temperate Ocean Seasonal Cycle © 2014 Pearson Education, Inc. Comparison of Global Productivities © 2014 Pearson Education, Inc. Energy Flow in Marine Systems • Biotic community – assemblage of organisms in definable area • Ecosystem – biotic community plus environment • Energy flow is unidirectional based on solar energy input. © 2014 Pearson Education, Inc. Energy Flow in Marine Systems • Producers – Nourish themselves with photosynthesis or chemosynthesis – Autotrophic • Consumers – Eat other organisms – Heterotrophic • Decomposers – Break down dead organisms or waste – Heterotrophic © 2014 Pearson Education, Inc. Energy Flow in Marine Systems © 2014 Pearson Education, Inc. Consumers in Marine Ecosystems • Herbivores – eat plants • Carnivores – eat other animals • Omnivores – eat plants and animals • Bacteriovores – eat bacteria © 2014 Pearson Education, Inc. Nutrient Flow in Marine Ecosystems • Detritus – dead remains and waste products • Biogeochemical cycles – chemical parts of matter cycled through ecosystem © 2014 Pearson Education, Inc. Feeding Strategies • Suspension feeding or filter feeding – Take in seawater and filter out usable organic matter • Deposit feeding – Take in detritus and sediment and extract usable organic matter • Carnivorous feeding – Capture and eat other animals © 2014 Pearson Education, Inc. Feeding Strategies © 2014 Pearson Education, Inc. Trophic Levels • Feeding stage • Chemical energy transferred from producers to consumers • About 10% of energy transferred to next trophic level • Gross ecological efficiency – ratio of energy passed to next higher trophic level divided by energy received from level below © 2014 Pearson Education, Inc. Trophic Levels © 2014 Pearson Education, Inc. Ecosystem Energy Flow and Efficiency © 2014 Pearson Education, Inc. Food Chains • Primary producer • Herbivore • One or more carnivores © 2014 Pearson Education, Inc. Food Webs • Branching network of many consumers • Consumers more likely to survive with alternative food sources © 2014 Pearson Education, Inc. Biomass Pyramid • The number of individuals and total biomass decrease at successive trophic levels. • Organisms increase in size up pyramid. © 2014 Pearson Education, Inc.
Recommended publications
  • Probing the Changing Redfield Ratio of Phytoplankton
    Probing the Changing Redfield Ratio of phytoplankton Supervisory Team Rosalind Rickaby www.earth.ox.ac.uk/people/rosalind-rickaby Katsumi Matsumoto www.esci.umn.edu/people/katsumi-matsumoto Key Research Question What controls the Redfield Ratio amongst algae? Overview under different conditions of Fe and C availability In 1934, Alfred Redfield made the notable to test the hypothesis that it is the nutrient observation that the relative ratios of C:N:P of efficiency of photosynthesis that dictates the C:N organic matter appeared to be constant throughout ratio of organic matter. the surface oceans, and also matched the Applicants would ideally have a background in dissolved ratios of those nutrients (C106N16P1). Biology/Chemistry/Earth Sciences or The Redfield ratio is fundamental in dictating the Environmental Sciences. strength of the biological sequestration of carbon, and the amount of oxygen that is used for respiration hence is an intimate control on the biotic feedback of phytoplankton on future climate. Despite efforts to understand the co-evolution of Methodology these ratios between the phytoplankton and the Methods to be used will include: Phytoplankton seawater from experimental, field observations Culture and sterile techniques, EA IRMS, and modelling efforts, there is still no mechanistic Spectrophotometry, and Microscopy. understanding of what drives the enormous variability seen across different phytoplankton lineages with various environmental conditions (Garcia et al., 2018). References & Further Reading Nature Geoscience
    [Show full text]
  • Discovery of Chemosynthesis-Based Association on the Cretaceous Basal Leatherback Sea Turtle from Japan
    Editors' choice Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan ROBERT G. JENKINS, ANDRZEJ KAIM, KEI SATO, KAZUHIRO MORIYA, YOSHINORI HIKIDA, and REN HIRAYAMA Jenkins, R.G., Kaim, A., Sato, K., Moriya, K., Hikida, Y., and Hirayama, R. 2017. Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontologica Polonica 62 (4): 683–690. We report a Late Cretaceous chemosynthetic community fueled by decomposing basal leatherback sea turtle on the ocean floor in the western Pacific. The fossil association representing this community has been recovered from the matrix of a concretion containing a single carapace of Mesodermochelys sp. from Late Cretaceous outer shelf to upper slope deposit of northern Hokkaido, Japan. The carapace displays boreholes most likely performed by boring bivalves, and is associated with molluscan shells, mainly Provanna cf. nakagawensis and Thyasira tanabei. Since this association is similar to fauna already known from Late Cretaceous hydrocarbon seeps, sunken wood, and plesiosaur-falls in Hokkaido, it is suggested that all types of chemosynthesis-based communities in the Late Cretaceous of western Pacific may have belonged to the same regional pool of animals and were not yet fully differentiated into three independent types of com- munities as it is known today. This finding also indicates that the sulfophilic stage of the vertebrate-fall communities was supported not only by plesiosaur carcasses, which were previously reported, but also by sea turtle carcasses. It highlights the possibility of surviving vertebrate-fall communities through the end-Cretaceous mass extinction event on carcasses of sea turtles which are the only large marine vertebrates surviving this event.
    [Show full text]
  • Chapter 5 Hmdscience.Com EN Online Vir Onmental Science Work Ecosystems How
    DO NOT EDIT--Changes must be made through “File info” printcode=a Chapter 5 Section 1 Energy Flow in Ecosystems How Section 2 The Cycling of Matter Section 3 How Ecosystems Change Why It Matters Ecosystems This frog gets the energy it needs to survive by eating other organisms, such as damselflies. Frogs and damselflies are both consumers in an aquatic food chain. Work How does energy continue to be transferred in this food chain? CASESTUDY Learn how pollutants, like the pesticide DDT, are transferred through a food chain in the case study DDT in an Aquatic Food Chain on page 120. Online enVirOnmental Science HMDScience.com Go online to access additional resources, including labs, worksheets, multimedia, and resources in Spanish. Inc. Cosmos Blank/Photo Researchers, ©A. 116 DO NOT EDIT--Changes must be made through “File info” printcode=a Section 1 Energy Flow in Objectives Describe how energy is transferred from the sun Ecosystems to producers and then to consumers. organisms need energy to survive, grow, and reproduce. Different organisms Describe one way in which get energy from different sources, but the ultimate source of energy for almost all consumers depend on producers. organisms on earth is the sun. Identify two types of consumers. Explain how energy transfer in a Life Depends on the Sun food web is more complex than Energy from the sun enters an ecosystem when organisms use sunlight energy transfer in a food chain. to make sugar in a process called photosynthesis. During photosynthesis, plants, algae, and some bacteria capture light energy from the sun and Explain why an energy pyramid use it to convert carbon dioxide and water into sugar and oxygen, as is a representation of trophic shown in Figure 1.1.
    [Show full text]
  • Ch. 9: Ocean Biogeochemistry
    6/3/13 Ch. 9: Ocean Biogeochemistry NOAA photo gallery Overview • The Big Picture • Ocean Circulation • Seawater Composition • Marine NPP • Particle Flux: The Biological Pump • Carbon Cycling • Nutrient Cycling • Time Pemitting: Hydrothermal venting, Sulfur cycling, Sedimentary record, El Niño • Putting It All Together Slides borrowed from Aradhna Tripati 1 6/3/13 Ocean Circulation • Upper Ocean is wind-driven and well mixed • Surface Currents deflected towards the poles by land. • Coriolis force deflects currents away from the wind, forming mid-ocean gyres • Circulation moves heat poleward • River influx is to surface ocean • Atmospheric equilibrium is with surface ocean • Primary productivity is in the surface ocean Surface Currents 2 6/3/13 Deep Ocean Circulation • Deep and Surface Oceans separated by density gradient caused by differences in Temperature and Salinity • This drives thermohaline deep circulation: * Ice forms in the N. Atlantic and Southern Ocean, leaving behind cold, saline water which sinks * Oldest water is in N. Pacific * Distribution of dissolved gases and nutrients: N, P, CO2 Seawater Composition • Salinity is defined as grams of salt/kg seawater, or parts per thousand: %o • Major ions are in approximately constant concentrations everywhere in the oceans • Salts enter in river water, and are removed by porewater burial, sea spray and evaporites (Na, Cl). • Calcium and Sulfate are removed in biogenic sediments • Magnesium is consumed in hydrothermal vents, in ionic exchange for Ca in rock. • Potassium adsorbs in clays. 3 6/3/13 Major Ions in Seawater The Two-Box Model of the Ocean Precipitation Evaporation River Flow Upwelling Downwelling Particle Flux Sedimentation 4 6/3/13 Residence time vs.
    [Show full text]
  • Chemosynthesis: What It We Can Learn from Hydrothermal Vents
    Chemosynthesis:Chemosynthesis: WhatWhat itit wewe cancan learnlearn fromfrom hydrothermalhydrothermal ventsvents Ryan Perry Geol 062 II.. IInnttrroo ttoo MMeettaabboolliissmm 1. CCaarrbboonn fifixxaattiioonn aanndd PPhhoottoossyynntthheessiiss 2. FFaammiilliiaarr ooxxiiddaattiivvee mmeettaabboolliissmm 3. OOxxyyggeenniicc PPhhoottoossyynntthh.. 4. GGeeoollooggiicc ccoonnsseeqquueenncceess IIII.. CChheemmoossyynntthheessiiss 1. HHyyddrrootthheerrmmaall VVeennttss 2. AArrcchheeaann 3. CChheemmoossyynntthheettiicc mmeettaabboolliissmm:: MMiiccrroobbeess RRuullee!!!!!! 4. CChheemmoossyynntthheettiicc eeccoossyysstteemmss IIIIII.. WWhhyy aarree eexxttrreemmoopphhiilleess ssoo ccooooll?? 1. BBiioommeeddiiccaall 2. IInndduussttrriiaall 3. WWhhaatt eexxttrreemmoopphhiilleess tteeaacchh uuss aabboouutt eeaarrllyy lliiffee 4. EExxoobbiioollooggyy IIVV.. EExxoobbiioollooggyy PPrreebbiioottiicc CChheemmiissttrryy oonn EEaarrtthh PPoossssiibbllee ((pprroobbaabbllee??)) oorriiggiinnss ooff lliiffee.. PPoossssiibbiillee lliiffee eellsseewwhheerree iinn tthhee ssoollaarr ssyysstteemm.. MMeettaabboolliissmm • The complete set of chemical reactions that take place within a cell. • Basis of all life processes. • Catabolic and Anabolic MMeettaabboolliissmm • CCaattaabbllooiicc mmeettaabboolliissmm---- hhiigghh eenneerrggyy mmoolleeccuulleess ((eelleeccttrroonn--ddoonnoorrss,, ffoooodd)) aarree ooxxiiddiizzeedd,, hhaavviinngg tthheeiirr eelleeccttrroonnss ttrraannssffeerrrreedd ttoo aann eelleeccttrroonn--aacccceeppttoorr.. • EElleeccttrroonn ppaasssseess ddoowwnn
    [Show full text]
  • The Chemosynthetic Cafe
    ocean INSPIRE: Chile Margin 2010 The Chemosynthetic Cafe www.oceanexplorer.noaa.gov Focus Chemosynthesis in hydrothermal vent ecosystems Grade Level 9-12 (Biology/Chemistry) Focus Question How is energy obtained and transferred in photosynthesis and chemosynthesis, and how are these processes similar and different? Learning Objectives n Students will compare and contrast photosynthesis and chemosynthesis. n Students will define oxidation and reduction as these terms apply to electron transfer. n Students will explain the overall process by which energy is captured and transferred during photosynthesis and chemosynthesis. Materials q None Audio-Visual Materials q (Optional) video or computer projection equipment to show images from the INSPIRE: Chile Margin 2010 Web page (http:// oceanexplorer.noaa.gov/explorations/10chile/welcome.html) Teaching Time Two 45-minute class periods, plus time for student assignments Seating Arrangement Groups of 3-4 students Maximum Number of Students 32 Image captions/credits on Page 2. Key Words Hydrothermal vent Autotroph Photosynthesis 1 www.oceanexplorer.noaa.gov INSPIRE: Chile Margin 2010: The Chemosynthetic Cafe Grades 9-12 (Biology/Chemistry) Chemosynthesis Electron transport Chile Triple Junction Background Information NOTE: Explanations and procedures in this lesson are written at a level appropriate to professional educators. In presenting and discussing this material with students, educators may need to adapt the language and instructional approach to styles that are best suited to specific student groups. Earthquakes and volcanoes are among Earth’s most spectacular and terrifying geological events. The Mount St. Helens eruption of 1980 Images from Page 1 top to bottom: Map of the Southeast Pacific Ocean and South and the Haiti (7.0 magnitude) and Chile (8.8 magnitude) earthquakes American continent showing the Chile Rise spreading center, the Peru-Chile Margin, and of 2010 are recent and memorable examples of the extreme power the location of the Chile Triple Junction.
    [Show full text]
  • Chemosynthesis for the Classroom (Adapted from the Expedition to the Deep Slope 2006)
    o c e a n Expl ration & Research Lessons from the Deep: Exploring the Gulf of Mexico’s Deep-Sea Ecosystems Education Materials Collection Chemosynthesis for the Classroom (adapted from the Expedition to the Deep Slope 2006) Focus Chemosynthetic bacteria Grade Level 9-12 (Chemistry/Biology) Focus Question What changes affect succession in the development of chemosynthetic bacterial communities? Learning Objectives m Students will observe the development of chemosynthetic bacterial communities. m Students will recognize that organisms modify their environment in ways that create opportunities for other organisms to thrive. m Students will be able to explain the process of chemosynthesis. m Students will be able to explain the relevance of chemosynthesis to biological communities in the vicinity of cold seeps. Materials m Directions for Setting Up Winogradsky Columns, one copy for each student group Materials for Winogradsky columns for each student group: m 2 1-liter plastic soda bottles m 1 Liter black mud from a local river, lake, or estuary m 1 Liter water from each mud/sand location used Image captions/credits on Page 2. m 1 Small bucket m 1 500 ml plastic beaker m 1 Paint stirrer or large spoon m 1 Sheet of newspaper 1 www.oceanexplorer.noaa.gov Lessons from the Deep: Exploring the Gulf of Mexico’s Deep-Sea Ecosystems Chemosysthesis for the Classroom - Grades 9-12 (Chemistry/Biology) m 1 Tablespoon powdered chalk (see Learning Procedure, Step 1d) m 1 Crushed multivitamin pill m Calcium sulfate (Plaster of Paris), approximately 80 g
    [Show full text]
  • Marine Microorganisms and Global Nutrient Cycles Kevin R
    03 Arrigo 15-21 6/9/05 11:17 AM Page 15 NATURE|Vol 437|15 September 2005|doi:10.1038/nature04158 INSIGHT REVIEW Marine microorganisms and global nutrient cycles Kevin R. Arrigo1 The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community. To understand how carbon and nutrients, such as nitrogen and phos- through the activities of marine phytoplankton. phorus, cycle through the atmosphere, land and oceans, we need a Unfortunately, a clear mechanism explaining the observed magni- clearer picture of the underlying processes. This is particularly impor- tude of the Redfield C:N:P ratio of 106:16:1 for either phytoplankton tant in the face of increasing anthropogenic nutrient release and or the deep ocean has been elusive. It has long been recognized that climate change. Marine microbes, which are responsible for approxi- conditions exist under which phytoplankton stoichiometry diverges mately half of the
    [Show full text]
  • Ocean Primary Production
    Learning Ocean Science through Ocean Exploration Section 6 Ocean Primary Production Photosynthesis very ecosystem requires an input of energy. The Esource varies with the system. In the majority of ocean ecosystems the source of energy is sunlight that drives photosynthesis done by micro- (phytoplankton) or macro- (seaweeds) algae, green plants, or photosynthetic blue-green or purple bacteria. These organisms produce ecosystem food that supports the food chain, hence they are referred to as primary producers. The balanced equation for photosynthesis that is correct, but seldom used, is 6CO2 + 12H2O = C6H12O6 + 6H2O + 6O2. Water appears on both sides of the equation because the water molecule is split, and new water molecules are made in the process. When the correct equation for photosynthe- sis is used, it is easier to see the similarities with chemo- synthesis in which water is also a product. Systems Lacking There are some ecosystems that depend on primary Primary Producers production from other ecosystems. Many streams have few primary producers and are dependent on the leaves from surrounding forests as a source of food that supports the stream food chain. Snow fields in the high mountains and sand dunes in the desert depend on food blown in from areas that support primary production. The oceans below the photic zone are a vast space, largely dependent on food from photosynthetic primary producers living in the sunlit waters above. Food sinks to the bottom in the form of dead organisms and bacteria. It is as small as marine snow—tiny clumps of bacteria and decomposing microalgae—and as large as an occasional bonanza—a dead whale.
    [Show full text]
  • Introduction to Marine Primary Productivity and Carbon Cycle
    Introduction to marine primary productivity and carbon cycle Satya Prakash [email protected] 400 Law Dome Ice Core, Antarctica 380 Mauna Loa, Hawaii Slope: 360 1970 - 1979: 1.3 ppm y-1 -1 340 2000 - 2006: 1.9 ppm y 320 Concentration (ppm) 2 CO 300 280 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 Year CO2 – Temperature Relationship CO2 Concentration Temperature 380 4 2 340 0 300 -2 (ppmv) 2 260 -4 Degree C Degree CO -6 220 -8 180 -10 0 50 100 150 200 250 300 350 400 450 Age (Kyr) VOSTOK Ice Core data How much is 100 ppm?? 1 ppm = 2.12 * 1015 gm = 2.12*109 tonnes 100 ppm = 2.12 thousand crore tonnes 1m. 1m. = 1000 kg = 2.44 टन 1m. CO2 1m. Water or one tonne 1m. 1m. Partition of Anthropogenic Carbon Emissions into Sinks [2000-2006] 45% of all CO2 emissions accumulated in the atmosphere 55% were removed by natural sinks Ocean removes ~ 24% Land removes ~ 30% Upper Photic Layer Photosynthesis O2 O2 CO2 CO2 Respiration Deeper Aphotic Layer The Ocean Euphotic zone light - ~little N Aphotic zone no light - lots N Photosynthesis is a process that generates the organic matter in phytoplankton cells. The process of photosynthesis can be represented as: hv 106CO2 + 122H2O + 16HNO3 + H3PO4 (CH2O)106(NH3)16H3PO4 + 138O2 Available solar energy in the waveband 400-700 nm. This reaction illustrates the need for the nutrients: nitrate and phosphate. It also shows that for every 106 CO2 molecules taken up, approximately 138 O2 molecules are produced.
    [Show full text]
  • A Review of the Methods and Metrics in Research, Implementation, and Management of Integrated Multi-Trophic Aquaculture
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-14-2020 A Review of the Methods and Metrics in Research, Implementation, and Management of Integrated Multi-Trophic Aquaculture Cassandra Erickson [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Sustainability Commons, and the Water Resource Management Commons Recommended Citation Erickson, Cassandra, "A Review of the Methods and Metrics in Research, Implementation, and Management of Integrated Multi-Trophic Aquaculture" (2020). Master's Projects and Capstones. 1028. https://repository.usfca.edu/capstone/1028 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master’s Project A Review of Methods and Metrics in Research, Implementation, and Management of Integrated Multi-Trophic Aquaculture By: Cassandra Erickson is submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ..................................................
    [Show full text]
  • 1 Students Will Grow and Observe Succession and Chemosynthesis Of
    GROWING CHEMOSYNTHETIC BACTERIA OVERVIEW Students will grow and observe succession and chemosynthesis of bacterial colonies: one lighted, the other in the dark. This activity uses the concepts of the Winogradsky column, a device which enriches and isolates certain organisms involved in the sulfur and nitrogen cycles. The activity provides a rough analog to both processes of chemosynthesis and succession; processes which occur at deep sea hydro- thermal vents and form the base of the food chain in the absence of sunlight. (Note that the original Winogradsky column was made by a Russian microbiologist Sergei N. Winogradsky.) CONCEPTS • Some organisms cannot draw energy from the Sun and must find other energy sources to live. • Both photosynthesis (uses sunlight) and chemosynthesis are means of producing sugar (stored chemical energy) • Photosynthetic organisms use light as their energy source; chemosynthetic organisms use chemi- cals. The result for both organisms is the same: energy. The by-products are different, however. In photosynthesis, oxygen is given off as a waste product. In chemosynthesis sulfate is given off. • As organisms thrive in a given environment their by-products create a new environment where new species thrive. This is called succession. MATERIALS For each group: • Black mud (enough to fill the graduated cylinders). See Preparation section. • 80 g of CaSO4 (Plaster of Paris: found in any hardware store) • 20 Jars or beakers for mixing • Stirring rods • Organic straw or filter paper bits. (Tear strips of lab filter paper) • 3 Liters (about 3 quarts) of pond, salty sea water or swamp water • 4 Grams baking soda • 20 Multivitamin pills and something with which to crush them • Plastic wrap • Rubber bands • A light source that can stay on for six weeks or longer • Tape and markers for labeling columns • Flashlight with red cellophane on lighted end (can be attached with rubber band) • Two 500 milliliter graduated cylinders or columns PREPARATION Divide the class into pairs or small groups.
    [Show full text]