Henning Companies Safety Program V2

Total Page:16

File Type:pdf, Size:1020Kb

Henning Companies Safety Program V2 Providing Solutions with a Positive Impact Henning Companies, LLC Safety Program (Name and/or Jobsite) Prepared by: Henning Companies, LLC This Safety Program is in association with: U.S. Compliance Systems, Inc. current as of 12/05/2017. Disclaimer: This Safety Program has been prepared exclusively for: Henning Companies, LLC 5800 Merle Hay Road, suite 14 Johnston, IA 50320 515-253-0943 To the best of our knowledge, the information contained herein is accurate. U.S. Compliance Systems, Inc. accepts no responsibility for errors or omissions. Prepared by: Henning Companies, LLC This Safety Program is in association with: U.S. Compliance Systems, Inc. current as of 12/05/2017. 05/03/2018 Table of Contents Safety and Health Policy Statement 2 New Hire Safety Orientation Policy Statement 3 Section I General Policies & Procedures 4 Safety Program Overview 6 Accident/Injury Prevention 7 Company Personnel 8 Safety Director 8 Safety Program Administrator 8 Employees 8 Subcontractor Involvement & Responsibilities 8 Safety Meetings 9 Housekeeping 9 Sanitation 10 Potable Water 10 Non-Potable Water 10 Toilets 10 Washing Facilities 10 Eating and Drinking Areas 10 Lifting, Pushing, and Pulling 11 Slips, Trips, and Falls 12 Drugs, Alcohol, and Other Prohibited Behaviors 12 Drug Free Job Sites 12 Smoking 13 Prohibited Behaviors 13 Emergency Action Plan 14 Emergency Medical Response 15 Fire Protection 15 Fire Prevention Plan 15 Portable Fire Extinguishers 16 First Aid and First Aid Kits 17 Minor Burns 18 Major Burns 18 Chemical Burns 18 Eye - Foreign Object 18 Eye — Wounds 18 Eye — Chemical Burn 18 Heat Exhaustion 19 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !1 05/03/2018 Heat Stroke 19 First Aid Kits 20 Class 20 Type 22 Accident Investigation 24 Record Keeping: Injuries & Illnesses 24 OSHA Forms 300; 300A & 301 24 Electronic Submission of Records 24 Compliance Schedule 25 Retention of Forms 25 Items to be recorded on OSHA Forms 300, 300A and 301 25 Employee Involvement 25 Catastrophic Reporting Requirements 26 Information to Be Reported 26 Location of OSHA Forms 300 and 301 27 Incident Rate 27 Postings 28 Access to Employee Medical Records & Exposure Records 28 Employee Information 29 Access to Records 29 Analysis Using Medical or Exposure Records 29 Confidentiality 30 Transfer of records 30 Enforcement 30 Schedule of Enforcement Actions 31 Section II Site/Job Specific Policies and Procedures 32 Abrasive Blasting 34 Operational Procedures and General Safety 36 Symptoms of Silicosis 38 Three Types of Silicosis 38 NIOSH Safety Recommendations 39 Abrasive Wheels 40 Aerial Lifts 41 Combustible & Flammable Liquid Handling 42 Gasoline: General Information 42 Combustible Gas Indicators 43 Company Vehicles 44 Compressed Air 45 Safe Use of Compressed Air 45 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !2 05/03/2018 Compressed Gas Cylinders 46 Compressed Gas Cylinders Use 46 Transportation of Compressed Gas Cylinders 47 Compressed Gas Cylinders Storage 47 Inspection of Compressed Gas Cylinders 47 Concrete and Masonry Construction 48 Definitions 48 Rebar Protection 50 Major Hazards 50 Safety Procedures 50 Concrete Cutting 52 Concrete Pumps and Placing Booms 52 Delivery Crane Trucks 53 Demolition 56 General Requirements 56 Preparatory Operations 56 Stairs, Passageways and Ladders 57 Chutes 57 Manual Removal of Floors 59 Storage 59 Disposable Respirators 60 Electrical Work - Workplace Safety 61 Electrical Safety Measures 65 Working Clearances 66 Electrical Shock/Electrocution 67 Confined and Enclosed Spaces 69 Training 69 Training for Qualified Persons 70 Training for Unqualified Persons 70 Retraining 70 Training Documentation 71 Elevated Work Platforms and Aerial Devices 72 Training 72 Elevated Work Platforms 72 Aerial Devices 72 Additional Aerial Device Operating Procedures 73 Additional Elevated Work Platform Procedures 74 Excavating, Trenching, & Shoring 76 Protective Systems 77 Daily Inspections 77 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !3 05/03/2018 Fall Protection 77 Extension Cords 78 Flagmen - Traffic Control 79 Glass & Glazing 80 Ground Fault Circuit Interrupters 80 Hazardous Job Site Chemical Awareness and Exposure 81 Asbestos Awareness 81 Crystalline Silica Awareness 83 Employee Information and Training 83 Lead Hazard Awareness 84 Heavy Construction Equipment 87 Equipment Batteries 88 Maintenance 88 Heavy Equipment and Electrical Power Lines 89 Hoists 90 Ladders 91 Lighting 92 LP — Gas Storage 93 LP — Gas Temporary Heating 93 Machine Guarding 94 Machinery 94 Material Storage 95 Mold & Mildew 96 NFPA 70E 97 Training 97 Electrical Safety Program 99 Operations Verification 99 Illumination of Work Areas 100 Pile Driving 101 General Requirements 101 Post-Tensioning Operations 104 Rigging for Material Handling 106 Scissor-Lift Fall Protection 107 Signs & Tags 108 Silica Exposure 109 Overview 109 Definitions 109 Respiratory Protection 117 Respiratory Protection Program 117 Specified Exposure Control Methods 117 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !4 05/03/2018 Housekeeping 117 Written Exposure Control Plan 117 Medical Surveillance 118 Initial Examination 118 Periodic Examinations 118 Additional Examinations 119 Employee Information and Training 120 Record-keeping 120 Stairs 122 Steel Erection Activities 123 Connection and a Staggered Connection 123 Training 124 Special Training Programs 124 Working Under Loads 127 Hoisting 128 Tools - Hand 128 Tools - Pneumatic Powered 129 Tools — Powder-Actuated 130 Ventilation 131 Welding, Cutting, & Brazing 132 Section III Specific Compliance Programs 136 Bloodborne Pathogens - Exposure Control Plan 138 Policy Statement 138 Definitions 139 Exposure Control Plan 141 Methods of Compliance 141 Eating, Drinking, Smoking 142 Handwashing Equipment and Procedures 142 Contaminated Needles & Other Contaminated Sharps 142 Personal Protective Equipment (PPE) 144 Housekeeping 145 Hepatitis B Epidemiology 145 Sharps Injury Log 147 Recordkeeping 149 Training 149 Waste Management 150 Summary 150 Exposure Determination Form - List I 151 Exposure Determination Form - List II 152 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !5 05/03/2018 Exposure Determination Form - List III 153 Housekeeping Schedule & Checklist 154 Hepatitis B Declination Form 155 Sharps Injury Log 156 Annual Exposure Control Plan Review 157 Exposure Incident Report 158 Confined Spaces in Construction 159 Definitions 159 General Requirements 163 Conditions Required to Use Alternate Procedures 164 Classification/Reclassification of a Space 165 Permit-Required Confined Space Program 165 Permitting Process 169 Training 170 Duties of Authorized Entrants 170 Duties of Attendants 171 Duties of Entry Supervisors 172 Rescue and Emergency Services 172 Employee Participation 173 Provision of Documents to Secretary 173 Emergency Phone Numbers 174 Confined Space/Permit Space Evaluation Survey 175 Permit-Space Information & Attendant Designation 176 Entry Roster 177 Entry Permit 178 Pre-Entry Checklist 180 Atmospheric Check 181 Record of Continuous Monitoring 186 Cranes and Derricks in Construction 188 Actions Required Prior to Assembly 188 Ground Conditions 188 Electrical Hazards 189 Dedicated Spotter Requirements 191 Assembly/Disassembly 191 Post-assembly 193 Rigging 193 Inspections 193 Wire Rope Inspection 195 Safety Devices 195 Crane Operations 195 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !6 05/03/2018 Power Line Safety 196 Hazard Assessment and Precautions 196 Signals 198 Work Control Area 199 Protecting employees in the hazard area 199 Fall Protection 206 Overview 207 Pre-Project Planning 208 Definitions 208 Where Fall Protection is Required 211 Fall Protection Plan 218 Accidents and Near Accidents 219 Training/Retraining 219 Fall Protection at the Job Site 219 Fall Protection Plan 222 Changes to Fall Protection Plan 226 Safety Net Installation Certification 230 Forklifts 232 Overview 232 General Requirements 233 Hazards 234 Other Concerns 235 Operator Protection 235 Forklift Operations 235 Maintenance 236 Training 236 Hazard Communication 239 Purpose 239 Labels and Other Forms of Warning 240 Employee Information and Training 241 Documentation of Training 242 Request for Safety Data Sheets 244 List of Hazardous Chemicals 245 Lockout/Tagout - Control of Hazardous Energy 246 Overview 246 Definitions 246 Procedures for Control of Hazardous Energy 248 General Procedures 248 Re-energizing Electrical Equipment 252 Special Considerations 252 Henning Companies, LLC © 2017 U.S. Compliance Systems, Inc. (888) 475-5353. Permission is granted to copy for internal use. Page !7 05/03/2018 Group Lockout and/or Tagout Procedures 253 Shift and/or Personnel Changes 253 Periodic Inspections 254 Training 254 Energy Sources Evaluation & Control Procedures Form Machine/Equipment 255 Group Leader Documentation Form 258 Periodic Inspection Documentation Form 259 Personal Protective Equipment - General 260 Overview 260 Duties of the PPE Program Administrator 260 Hazard Assessment and PPE Selection 260 Dissemination of PPE Selection Information 261 ANSI Standards and PPE 261 Sizing and Fitting
Recommended publications
  • 6. Annular Space & Sealing
    6. Annular Space & Sealing (this page left intentionally blank) 6. Annular Space & Sealing Chapter Table of Contents Chapter Table of Contents Chapter Description ......................................................................................................................................................................................... 6 Regulatory Requirements – Annular Space & Sealing of a New Well ..................................................................................................... 6 Relevant Sections – The Wells Regulation.............................................................................................................................................. 6 The Requirements – Plainly Stated .......................................................................................................................................................... 6 Well Record – Relevant Sections............................................................................................................................................................14 Best Management Practice – Report use of Centralizers .......................................................................................................... 15 Key Concepts ..................................................................................................................................................................................................16 The Annular Space ...................................................................................................................................................................................16
    [Show full text]
  • Underwater Inspection and Repair of Bridge Substructures
    [.Tl [•1•] NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM SYNTHESIS OF HIGHWAY PRACTICE UNDERWATER INSPECTION AND REPAIR OF BRIDGE SUBSTRUCTURES Supv ) ç J j p1 JUNO 81982 3 up2Leder I.T.D. DIV OF H!GHWAYS BRIDGE SECTION FUe_OUT MAIL TRANSPORTATION RESEARCH BOARD NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1981 Officers Chairman THOMAS D. LARSON Secretary, Pennsylvania Department of Transportation Vice Chairman DARRELL V MANNING, Director, Idaho Transportation Department Secretary THOMAS B. DEEN, Executive Director, Transportation Research Board Members RAY A. BARNHART, Federal Highway Administrator, U.S. Department of Transportation (cx officio) ROBERT W. BLANCHETTE, Federal Railroad Administrator, U.S. Department of Transportation (cx officio) FRANCIS B. FRANCOIS, Executive Director, American Association of State Highway and Transportation Officials (cx officio) WILLIAM J. HARRIS, JR., Vice President—Research and lest Department, Association of American Railroad.. (ex officio) J. LYNN HELMS, Federal Aviation Administrator, U.S. Department of Transportation (cx officio) PETER G. KOLTNOW, President, Highway Users Federation for Safety and Mobility (cx officio. Past Chairman, 1979) ELLIOTT W. MONTROLL, Chairman, Co,n,nission on Sociotechnical Systems, National Research Council (cx officio) RAYMOND A. PECK, JR., National Highway Traffic Safety Administrator, U.S. Department of Transportation (cx officio) ARTHUR E. TEELE, JR., Urban Mass Transportation Administrator, U.S. Department of Transportation (cx officio) JOHN F. WING, Senior Vice President, Booz. Allen & Hamilton. Inc. (cx officio, MTRB liaison) CHARLEY V. WOOTAN. Director, Texas Transportation Institute, Texas A&M University (cx officio, Past Chairman 1980) GEORGE J. BEAN. Director of Aviation, Hilisborough County (Florida) Aviation Authority THOMAS W. BRADSHAW, JR., Secretary, North Carolina Department of Transportation RICHARD P.
    [Show full text]
  • Construction of Tremie Concrete Cutoff Wall, Wolf Creek Dam, Kentucky
    c / y (y ¥ f t D n a a n in_r uir D 0!ID§Ii I <__ -j M IS C E L L A N E O U S PAPER SL-80-10 CONSTRUCTION OF TREMIE CONCRETE CUTOFF WALL, WOLF CREEK DAM, KENTUCKY by Terence C. Holland, Joseph R. Turner Structures Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1980 Final Report Approved For Public Release; Distribution Unlimited Prepared for Office, Chief of Engineers, U. S. Army TA Washington, D. C. 20314 7 .W34m Under C W IS 3 I5 5 3 SL-80-10 1980 », Ar ' \ 8 ;v ;>"* % * OCT 2 7 1980 Water & : as Service Denver, Colorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. SURÈAU OF RECLAMATrON DENVER u *W ff \& A /P 92059356 \y£ ,\s> , *c£p £ > b <0 Unclassified V * ie05*l35Ï.V SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) O' READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER Miscellaneous Paper SL-80-10 ' 4. T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED V CONSTRUCTION OF TREMIE CONCRETE CUTOFF WALL, Final report WOLF CREEK DAM, KENTUCKY 6.
    [Show full text]
  • Underwater Concrete in Drilled Shafts: the Key Issues and Case Histories
    Underwater Concrete in Drilled Shafts: the Key Issues and Case Histories Sam X. Yao1 and Robert B. Bittner2 ABSTRACT: In construction of drilled shafts under water, placing concrete in the shafts is technically demanding and involves complex construction logistics. Past construction experience has demonstrated that high quality concrete can be placed in drilled shafts under water with a proper concrete mix and proper placement techniques. However, a significant number of failures have occurred which have resulted in excessive cost overruns and delays. These problems may have occurred because proper underwater concrete construction techniques have not been widely disseminated within the industry. This is a technical area where competent design and sound construction planning can achieve a significant reduction in both risk and cost. This paper will discuss some key technical issues in the concrete mix design, concrete production and placement for the drilled shaft construction. The paper also describes two lesson-learned case histories from drilled shaft construction projects. INTRODUCTION Placing concrete in the shafts is one of the most critical and complex operations that often determine success or failure of many drilled shaft construction projects. If the concrete is placed under water, the construction is even more technically demanding and involves complex construction logistics. A number of failures have occurred due to improper concrete mix or improper construction procedures. The following sections present some important technical issues that are frequently encountered in underwater construction of drilled shafts. CONCRETE MIX DESIGN Because concrete placed underwater is inherently susceptible to cement washout, laitance, segregation, cold joints, and water entrapment, it must possess some unique properties that are not otherwise required.
    [Show full text]
  • Chapter 15 – Table of Contents
    Bridge Maintenance Course Series Reference Manual Chapter 15 – Table of Contents Chapter 15 - Channel and Waterway ....................................................................................... 15-1 15.1 Identifying Scour and Erosion – Waterway Mechanics ..................................................... 15-1 15.2 Preventive and Basic Maintenance for Channels and Waterway ..................................... 15-5 15.2.1 Debris Removal ............................................................................................................... 15-5 15.2.2 Vegetation Removal ........................................................................................................ 15-8 15.3 Repair and Rehabilitation of Channel and Waterway ....................................................... 15-8 15.3.1 Placement of Riprap and Gabions ................................................................................ 15-11 15.2.2 Tremie Concrete ........................................................................................................... 15-19 15.2.3 Grout Bag Placement .................................................................................................... 15-20 15.2.4 Sheet Piling.................................................................................................................... 15-24 15.2.5 Articulated Block ........................................................................................................... 15-25 15.3 Chapter 15 Reference List ...............................................................................................
    [Show full text]
  • 69% APPROXIMATE VOLUMES for GROUT Drilled Loop Hole Inside Vol. Vol. Dia. Dia
    THERIv1-EX GROUT™ PLUS is an engineered system for use as backfill material in earth-coupled heat pump systems. Its elevated thermal conductivity and low p'crmcability allow for excellent heat exchange while T protecting groundwater supplies. TI-IERM-EX GROUT " PLUS should be pumped using a positive displacement pump capable of generating pressures in excess of 300 psi. Developed using high swelling Wyoming Bentonite, this new generation of grouting material offers efficient installation of closed-loop geothermal heat pump systems. APPROXIMATE VOLUMES FOR GROUT Drilled Loop Anlr. Anlr. MATERIAL SPECIFICATIONS: Hole Inside Vol. Vol. Dia. Dia. (cu.ft.zft.) (gal. ft.) 1.13 Btulhr-ft-oF 1.2 Btu/hr-ft- of Thermal Conductivity: 4 % 0.08 0.57 6 x 10-8 6 x 10-8 I Permeability: 4.5 % O.IO 0.74 Solid Content: 69% 71 % 5 % 0.13 0.94 , Slurry Weight: 14.1 Ibs/gal 15.2Ibs/gal ! 5.5 % 0.15 1.15 Slurry Volume/Batch: 41 gals 41.5 gals 6 % 0.19 1.39 5 1 0.12 0.88 5.5 1 0.15 1.10 6 1 0.18 1.33 ~..~--~..-.--....---.-- c\PPLICATION R~TE: The combination of fresh water, THERM-EX GROUT~MPLUS and silica sand constitute "the system" for backfil1ing geothermal loops. Use locally available dry silica sand. For best results, use sand ranging in size from 30 mesh to 70 mesh CAFS GFN particle size classification 38 to 50). .._....... ·1 Mix as follows: 1.13 Btu/hr-ft- uF 1.2 Btu/hr-ft-"F ! Water 21 gal 22 gal I THERM-EX GROU(M PLUS 1 - 50 lb bag 1- 50 Ib bag 3501b 4001b Silica Sand .- IJ Add the THERM-EX GROUT™ PLUS to the water while agitating.
    [Show full text]
  • Design and Construction of Marine Structures
    Technical Fundamentals for Design and Construction October 6, 2018 Design and Construction of Marine Structures Key Points 1. Approximately 71 percent of the earth's surface is covered in water, and the oceans hold about 96 percent of all the earth's water. 2. Construction and further development in the marine environment is essentially our primary remaining frontier on earth. 3. There exists a real opportunity and need for innovation and new technologies that have the potential to improve the quality of marine structures effectively while reducing the cost, time, and risk of construction. 4. The marine environment offers significant opportunities that do not exist with on‐land construction. The most important of these is the ability to construct massive structures at an optimum location in a fully controlled environment with skilled labor and then transport an essentially complete structure great distances for installation in a severe marine environment. These structures include bridge foundations, tunnels, offshore platforms, gravity‐base structures, dams, airfields, breakwaters, surge barriers, and power stations harnessing energy from wave, wind, tides, and currents. It can be a truly exciting and satisfying adventure. Design for Construction of Marine Structures When designing a structure for the marine environment, it is essential to first envision the means, methods, and equipment needed to build the structure. This can be considered the initial construction engineering task of marine construction. This task includes design of systems to move extreme heavy loads vertically and horizontally both in and out of water, and design of systems to control and maintain buoyancy and stability during all in‐water construction phases including launch, transport, and immersion.
    [Show full text]
  • Tremie Concrete
    ATCEATCEATCE-II--IIIIII Advanced Topics in Civil Engineering Tremie Concrete ATCEATCE-II-IIII Advanced Topics in Civil Engineering Tremie Concrete ATCEATCE-II--IIII Advanced Topics in Civil Engineering Tremie Concrete Underwater concrete plays an important role in the construction of offshore structures. It may be used to tie together various elements in composite action (i.e., to tie piling to the footing). 2 ATCEATCE-II--IIII Advanced Topics in Civil Engineering Tremie Concrete Mix Special mix with plasticizer High slump concrete with set retarders Smaller aggregate sizes Four-hour workability Designed for placement under water via tremie pipe 3 Professor Kamran M. Nemati Second Semester 2005 1 ATCEATCEATCE-II--IIIIII Advanced Topics in Civil Engineering Tremie Concrete ATCEATCE-II--IIII Advanced Topics in Civil Engineering Tremie Concrete Underwater Concrete Mixes : Structural concrete Coarse Aggregate : Gravel of 3/4” max. size. Use 50-55 % of the total aggregate by weight. Fine Aggregate : Sand, 45-50% of the total aggregate by weight. Cement : Type II ASTM (moderate heat of hydration) , 600 lbs/yd 3. Pozzolans : ASTM 616 Type N or F, 100 lbs/ yd 3. 4 ATCEATCE-II--IIII Advanced Topics in Civil Engineering Tremie Concrete Water/Cement Ratio : 0.42 (0.45 Maximum). Water-Reducing Admixture (preferably it is also plasticizer): Do not use superplasticizers. Air-Entrainment Admixtures : To give 6% total air. Retarding Admixture : To increase setting time to 4-24 hours, as required. Slump : 6 1/2 in. ± 1 in. This mix will develop compressive strength in the range of 5,600 – 7,000 psi at 28 days. It will flow out on a slope of 6:1 to 8:1 horizontal/ vertical and, if properly placed, should give nominal segregation and laitance.
    [Show full text]
  • Bridge Engineering Handbook
    Gerwick, Jr. B.C. "Substructures of Major Overwater Bridges." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 47 Substructures of Major Overwater Bridges 47.1 Introduction 47.2 Large Diameter Tubular Piles Description • Offshore Structure Practice • Steel Pile Design and Fabrication • Transportation and Upending of Piles • Driving of Piles • Utilization of Piles in Bridge Piers • Prestressed Concrete Cylinder Piles • Footing Blocks 47.3 Cofferdams for Bridge Piers Description • Design Requirements • Internally-Braced Cofferdams • Circular Cofferdams • Excavation • Driving of Piles in Cofferdams • Tremie Concrete Seal • Pier Footing Block • Pier Shaft 47.4 Open Caissons Description • Installation • Penetration of Soils • Founding on Rock • Contingencies 47.5 Pneumatic Caissons Description • Robotic Excavation 47.6 Box Caissons Description • Construction • Prefabrication Concepts • Installation of Box Caissons by Flotation • Installing Box Caissons by Direct Lift • Positioning • Grouting Ben C. Gerwick, Jr. Ben C. Gerwick Inc. and University 47.7 Present and Future Trends of California, Berkeley Present Practice • Deep Water Concepts 47.1 Introduction The design and construction of the piers for overwater bridges present a series of demanding criteria. In service, the pier must be able to support the dead and live loads successfully, while resisting environmental forces such as current, wind, wave, sea ice, and unbalanced soil loads, sometimes even including downslope rock fall. Earthquake loadings present a major challenge to design, with cyclic reversing motions propagated up through the soil and the pier to excite the superstructure. Accidental forces must also be resisted. Collision by barges and ships is becoming an increasingly serious hazard for bridge piers in waterways, both those piers flanking the channel and those of approaches wherever the water depth is sufficient.
    [Show full text]
  • Underwater Bridge Repair, Rehabilitation, and Countermeasures
    Underwater Bridge Repair, Rehabilitation, and Countermeasures Publication No. FHWA-NHI-10-029 Pre-Publication Edition NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The contents of this report reflect the views of the contractor who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein only because they are considered essential to the object of this document. The conduct of underwater bridge inspections and repairs may frequently require the use of divers. While this manual contains information on diving equipment, it is neither intended to train personnel in diving nor enumerate all diving safety concerns and regulations. Actual diving operations can be extremely hazardous and should be undertaken only by personnel adequately trained to cope with the conditions that may be encountered. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-NHI-10-029 4. Title and Subtitle 4. Report Date April 2010 Underwater Bridge Repair, Rehabilitation, and Countermeasures 6. Performing Organization Code: 7. Author(s) 8. Performing Organization Report No. Terence M. Browne, P.E.; Thomas J. Collins, S.E., P.E.; Michael J. Garlich, S.E., P.E.; John E. O’Leary, S.E., P.E.; Katherine C.
    [Show full text]
  • EUCO TREMIE GROUT Material: 088R 50
    Version: 6.0 Revision Date: 01/03/2020 SAFETY DATA SHEET 1. Identification Material name: EUCO TREMIE GROUT Material: 088R 50 Recommended use and restriction on use Recommended use : Cement, Portland, chemicals Restrictions on use: Not known. Manufacturer/Importer/Supplier/Distributor Information EUCLID CHEMICAL COMPANY 19218 REDWOOD ROAD CLEVELAND OH 44110 US Contact person : EH&S Department Telephone : 216-531-9222 Emergency telephone number : 1-800 -424 -9300 (US); 1 -613 -996 -6666 (Canada) 2. Hazard(s) identification Hazard Classification Health Hazards Skin Corrosion/Irritation Category 2 Serious Eye Damage/Eye Irritation Category 1 Skin sensitizer Category 1 Carcinogenicity Category 1A Specific Target Organ Toxicity - Category 3 1. Single Exposure Specific Target Organ Toxicity - Category 1 2. Repeated Exposure Target Organs 1. Respiratory tract irritation. 2. Lung Unknown toxicity - Health Acute toxicity, oral 93.65 % Acute toxicity, dermal 94.82 % Acute toxicity, inhalation, vapor 99.96 % Acute toxicity, inhalation, dust 52.49 % or mist Label Elements Hazard Symbol : 1/20 800000050750 Version: 6.0 Revision Date: 01/03/2020 Signal Word: Danger Hazard Statement: Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause cancer. May cause respiratory irritation. Causes damage to organs through prolonged or repeated exposure. Precautionary Statements Prevention: Wash thoroughly after handling. Wear protective gloves/protective clothing/eye protection/face protection. Contaminated work clothing should not be allowed out of the workplace. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Use personal protective equipment as required. Use only outdoors or in a well-ventilated area.
    [Show full text]
  • Water Well Disinfection Manual
    MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY DRINKING WATER AND ENVIRONMENTAL HEALTH DIVISION ENVIRONMENTAL HEALTH SECTION SOURCE WATER UNIT WELL CONSTRUCTION PROGRAM Michigan’s Water Well Disinfection Manual EGLE Environmental Assistance Center Michigan.gov/EGLE Telephone: 1-800-662-9278 (Rev. 06/2020) Acknowledgements This manual is the product of contributions from numerous individuals interested in providing information on the disinfection of onsite water supplies to well drilling contractors, environmental health professionals and others. Without their willingness to share information, experiences, time, and expertise, this manual would not have been possible. Special thanks to: Kalamazoo County (Michigan) Water Well Disinfection Work Group Members, including water well drilling contractors Dick Clark, Sandy Slevatz, Mike Smith, and Miles Foune, and Environmental Sanitarians Deb Werner, Bill Speeter, and Heidi Wines from the Kalamazoo County Human Services Department. Individuals who took the time to review and comment on drafts of this manual, including John Schnieders, Stuart Smith, Neil Mansuy, Dr. Roy Cullimore, Alan W. Coombs and environmental health professionals from the Michigan Department of Environment, Great Lakes, and Energy, Drinking Water and Environmental Health Division, including Anita Ladouceur, Joe Crigier, Jim McEwan, and John Chickering. This manual was originally prepared by Ronald J. Holben, R.S. and Michael Gaber, R.S., M.P.H. This manual was reformatted June 2020. Web Address: Michigan.gov/WaterWellConstruction Mailing Address: Michigan Department of Environment, Great Lakes, and Energy Drinking Water and Environmental Health Division Environmental Health Section PO Box 30817 Lansing, Michigan 48909-8311 Email Address: [email protected] 2 of 48 Table of Contents Page Introduction ...................................................................................................
    [Show full text]