On Sustainability and Financial Return of Fishery Resources

Total Page:16

File Type:pdf, Size:1020Kb

On Sustainability and Financial Return of Fishery Resources ON SUSTAINABILITY AND FINANCIAL RETURN OF FISHERY RESOURCES by Abdulrahman Ben Hasan A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Oceans and Fisheries) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2021 © Abdulrahman Ben Hasan, 2021 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: On sustainability and financial return of fishery resources submitted by Abdulrahman Ben Hasan in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceans and Fisheries Examining Committee: Villy Christensen, Professor, Oceans and Fisheries, UBC Supervisor Carl J. Walters, Professor Emeritus, Oceans and Fisheries, UBC Supervisory Committee Member Charles R. Menzies, Professor, Anthropology, UBC University Examiner Peter Arcese, Professor, Forest and Conservation Sciences, UBC University Examiner Additional Supervisory Committee Members: U. Rashid Sumaila, Professor, Oceans and Fisheries, UBC Supervisory Committee Member Brett van Poorten, Assistant Professor, Resource and Environmental Management, SFU Supervisory Committee Member ii Abstract Overexploitation and resource rent dissipation are some of the fundamental issues in fisheries management. The first undermines food security while the second implies a minimal economic return to the owning society. Sustainable fisheries are predominantly attained in conjunction with high management intensity, which keeps exploitation rates in check. Yet controlling exploitation becomes a daunting task under many complex fisheries contexts. Further, although profitability of fishing industry has improved after introducing quota-based systems, it is perceived that society is not receiving a fair share of the resource rent. In this dissertation, I focus on the Arabian Gulf region as a microcosm to examine various complex fisheries problems and underline, globally, the society’s compensation from the fishing industry. I begin by discussing situations where open access conditions are irreversible due to inherently poor management institutions or high dependency on fishing for livelihood. I show that well-designed size restriction— an easily implementable approach—can help avert overexploitation, rebuild depleted fish stocks and enhance yields without controlling exploitation rates. Next, I examine internationally shared fish stocks, whose sustainability requires managing exploitation rates at the international level rather than merely locally. I develop an age-structured model to evaluate bioeconomic trade-offs under alternative fishing scenarios. Harvesting a shared fish stock under cooperation or local but sustainable management provides much higher bioeconomic gains than competition. I then discuss the impacts of escalated market demand for dried swim bladder on fish, people and management in source countries. I highlight that while management interventions are required, the extremely high value of swim bladder would complicate regulatory efforts by stimulating black-market systems. Finally, I examine whether resource rent charges are imposed on catch share fisheries, and systematically compare that with forestry, oil, gas, and mining in 18 countries. I show that fishing is the only industry that consistently lacks resource rent charges, implying a forgoing stream of income in most countries. My dissertation contributes toward alleviating overfishing when exploitation rates are difficult to manage and underscores the need for national policies to consider the enhanced profitability of the fishing industry under catch share systems. iii Lay Summary Fishery resources provide food and livelihood for millions of people, and because they are public resources, they can generate a stream of income to coastal states. However, sustainability is difficult to achieve under many contexts, and society is perceived to be deprived of the income stream from exploiting its resources. I tackle the first problem by analyzing diverse fisheries contexts that complicate management, like fundamentally weak regulatory agencies, transboundary fish stocks, and escalated market demand. I deliver practical insights that help protect fish stocks and enhance fishery catches under these contexts. I address the second problem by investigating whether society is receiving compensation from fisheries. I find that out of 18 countries and among four other major extractive industries, fishing is the only industry that lacks resource rent charges in most countries. My research supports sustainability in challenging fisheries conditions and highlight a forgone economic return from fishery resources. iv Preface The Introduction in Chapter 1 includes edited parts of a published paper: Ben-Hasan, A. and V. Christensen. 2019. “Vulnerability of the marine ecosystem to climate change impacts in the Arabian Gulf—an urgent need for more research.” Global Ecology and Conservation 17:e00556. I was the lead author with responsibilities covering all major areas of concept formation, analyses, and manuscript structure and composition. V. Christensen contributed to concept formation as well as manuscript edits. A version of Chapter 2 has been published [Ben-Hasan, A., C. Walters, A. Hordyk, V. Christensen, M. Al-Husaini. 2021. Alleviating growth and recruitment overfishing through simple management changes: insights from an overexploited long-lived fish. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13 (2): 87–98]. I was the lead author with responsibilities covering all major areas of concept formation, analyses, and manuscript structure and composition. C. Walters was involved in concept formation, all analyses and manuscript structure and composition; A. Hordyk and V. Christensen contributed to concept formation as well as manuscript edits; and M. Al-Husaini contributed to data collection. A version of Chapter 3 has been published in Ocean & Coastal Management [Ghanbarzadeh, M., A. Ben-Hasan, A. Salarpouri, C. Walters, E. Kamrani, and M. S. Ranjbar. 2021. “Coping with Steep Exploitation Rates in an Open Access Fishery.” Ocean & Coastal Management 201 (February): 105499.]. I was the second author with responsibility covering concept formation, analyses, and manuscript structure and composition. C. Walters contributed to analyses and supervised my responsibilities particularly with respect to concept formation and analyses. A version of Chapter 4 has been published in ICES Journal of Marine Science [Ben- Hasan, A., C. Walters, V. Christensen, G. Munro, U. R. Sumaila, and A. Al-Baz. 2020. Age-structured bioeconomic model for strategic interaction: an application to pomfret stock in the Arabian/Persian Gulf. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsaa049]. I was the lead author with responsibility covering all major areas of concept formation, analyses, and manuscript structure and composition. C. Walters was involved in concept formation, all analyses and manuscript edits; V. Christensen, G. Munro, and U. R. Sumaila were involved in concept formation and manuscript edits; and A. Al-Baz contributed to data collection. A version of Chapter 5 is in press [A. Ben-Hasan, Y. Sadovy de Mitcheson, M. A. Cisneros-Mata, É. A. Jimenez, M. Daliri, A. M. Cisneros-Montemayor, R. J. Nair, S.A. Thankappan, C. J. Walters, V. Christensen. In press. China’s fish maw demand and its implications for fisheries in source countries. Marine Policy]. I was the lead author with responsibilities covering all major areas of concept formation, analyses, as well as v manuscript structure and composition. Y. Sadovy de Mitcheson was involved in the early stages of concept formation and contributed to manuscript edits; M. A. Cisneros- Mata, É. A. Jimenez, M. Daliri, A. M. Cisneros-Montemayor, R. J. Nair, S. A. Thankappan contributed to data collection and manuscript edits; and C. Walters and V. Christensen were involved in concept formation. A version of Chapter 6 is under review [Ben-Hasan, A., S. De La Puente, D. Flores, M. C. Melnychuk, E. Tivoli, V. Christensen, W. Cui, C. Walters. In review. Constrained public benefits from global catch share fisheries]. I was the lead author with responsibilities covering all major areas of concept formation as well as manuscript structure and composition, and, to a lesser degree, analyses. S. De La Puente contributed to concept formation, analyses and manuscript edits; D. Flores, M. C. Melnychuk, and E. Tivoli were involved in data collection, analyses and manuscript edits; V. Christensen, W. Cui, and C. Walters contributed to concept formation and manuscript edits. vi Table of Contents Abstract ........................................................................................................................... iii Lay Summary .................................................................................................................. iv Preface ............................................................................................................................ v Table of Contents ........................................................................................................... vii List of Tables .................................................................................................................. xii List of Figures ................................................................................................................
Recommended publications
  • Diagramma Pictum (Thunberg. 1792)
    Diagramma pictum (Thunberg. 1792) English Name: Painted sweetlips Family: HAEMULIDAE Local Name: Kilanbu guruva Order: Perciformes Size: Max. 90 cm Specimen: MRS/P048 1/97 Distinctive Characters: Dorsal fin with 9-10 spines and 17-20 rays. Anal fin with 3 spines and 7 rays. Pectoral fin with 16-17 rays. Second dorsal spine much longer than the first. 20 to 25 scales between lateral line and dorsal fin origin. Scales small and ctenoid. Mouth small, lips thick. Colour: Adults light grey with scattered large blackish blotches on sides, white on belly. Juveniles with conspicuous alternating black and white stripes, and yellowish on headand belly. Stripes eventually break up into spots that disappear in adults. Habitat and Biology: Found on shallow coastal areas and coral reefs down to a depth of 80 rn. Most common on silty areas. Feeds on bottom invertebrates and fish. Distribution: Indo-West Pacific. Remarks: Di gramma picluni can easily be distinguished from other sweetlips by its short. first dorsal spine and second (with the third) abruptly the longest. 172 Plectorhinchus albovittatus (Ruppell, 1838) English Name: Giant sweetlips Family: HAEMULIDAE Local Name: Maa guruva Order: Perciformes Size: Max. 1 m Specimen: MRS/P030l/88 Distinctive Characters: Dorsal fin with 13 spines and 18-19 rays. Anal fin with 3 spines and 7 rays. Pectoral fin 17 rays. Lips greatly enlarged. Caudal fin slightly emarginate. Colour: Adults dark grey with numerous pale spots and short irregular lines. Usually a broad diffused pale bar just behind pectoral fins, extending onto abdomen. Soft portion of dorsal fin and lobes of caudal fin with large black areas.
    [Show full text]
  • RNA Detection Technology for Applications in Marine Science: Microbes to Fish Robert Michael Ulrich University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-25-2014 RNA Detection Technology for Applications in Marine Science: Microbes to Fish Robert Michael Ulrich University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, and the Molecular Biology Commons Scholar Commons Citation Ulrich, Robert Michael, "RNA Detection Technology for Applications in Marine Science: Microbes to Fish" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5321 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. RNA Detection Technology for Applications in Marine Science: Microbes to Fish by Robert M. Ulrich A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy College of Marine Science University of South Florida Major Professor: John H. Paul, Ph.D. Valerie J. Harwood, Ph.D. Mya Breitbart, Ph.D. Christopher D. Stallings, Ph.D. David E. John, Ph.D. Date of Approval June 25, 2014 Keywords: NASBA, grouper, Karenia mikimotoi, Enterococcus Copyright © 2014, Robert M. Ulrich DEDICATION This dissertation is dedicated to my fiancée, Dr. Shannon McQuaig for inspiring my return to graduate school and her continued support over the last four years. On no other porch in our little town have there been more impactful scientific discussions, nor more words of encouragement. ACKNOWLEDGMENTS I gratefully acknowledge the many people who have encouraged and advised me throughout my graduate studies.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Species Identification Guide
    SPECIES IDENTIFICATION GUIDE Pilbara/Kimberley Region ABOUT THIS GUIDE a variety of marine and freshwater species including barramundi, tropical emperors, The Pilbara/Kimberley Region extends from sea-perches, trevallies, sooty grunter, the Ashburton River near Onslow to the threadfin, mud crabs, and cods. Northern Territory/South Australia border. The Ord and Fitzroy Rivers are two of the Recreational fishing activity in the region State’s largest river systems. They are shows distinct seasonal peaks, with the highly valued by visiting and local fishers. highest number of visitors during the winter Both river systems are relatively easy to months (dry season). Fishing pressure is access and are focal points for recreational also concentrated around key population fishers pursuing barramundi. centres. An estimated 6.5 per cent of the State’s recreational fishers fished marine Offshore islands, coral reef systems and waters in the Pilbara/Kimberley during continental shelf waters provide species of 1998/99, while a further 1.6 per cent major recreational interest, including many fished fresh waters in the region. members of the demersal sea perch family (Lutjanidae) such as scarlet sea perch and This guide provides a brief overview of red emperor, cods, coral and coronation some of the region’s most popular and trout, sharks, trevally, tuskfish, tunas, sought-after fish species. Fishing rules are mackerels and billfish. contained in a separate guide on fishing in the Pilbara/Kimberley Region. Fishing charters and fishing tournaments have becoming increasingly popular in the FISHING IN THE region over the past five years. The Dampier PILBARA/KIMBERLEY Classic and Broome sailfish tournaments are both state and national attractions, and Within the Pilbara/Kimberley Region, creek WA is gaining an international reputation for systems, mangroves, rivers and ocean the quality of its offshore pelagic sport and beaches provide shore and boat fishing for game fishing.
    [Show full text]
  • Table of Fishes of Sydney Harbour 2019
    Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Ensuring Seafood Identity: Grouper Identification by Real-Time Nucleic
    Food Control 31 (2013) 337e344 Contents lists available at SciVerse ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Ensuring seafood identity: Grouper identification by real-time nucleic acid sequence-based amplification (RT-NASBA) Robert M. Ulrich a, David E. John b, Geran W. Barton c, Gary S. Hendrick c, David P. Fries c, John H. Paul a,* a College of Marine Science, MSL 119, University of South Florida, 140 Seventh Ave. South, St. Petersburg, FL 33701, USA b Department of Biological Sciences, University of South Florida St. Petersburg, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA c EcoSystems Technology Group, College of Marine Science, University of South Florida, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA article info abstract Article history: Grouper are one of the most economically important seafood products in the state of Florida and their Received 19 September 2012 popularity as a high-end restaurant dish is increasing across the U.S. There is an increased incidence rate Accepted 3 November 2012 of the purposeful, fraudulent mislabeling of less costly and more readily available fish species as grouper in the U.S., particularly in Florida. This is compounded by commercial quotas on grouper becoming Keywords: increasingly more restrictive, which continues to drive both wholesale and restaurant prices higher each RT-NASBA year. Currently, the U.S. Food and Drug Administration recognize 56 species of fish that can use “grouper” FDA seafood list as an acceptable market name for interstate commerce. This group of fish includes species from ten Grouper fi fi Mislabeling different genera, making accurate taxonomic identi cation dif cult especially if distinguishing features such as skin, head, and tail have been removed.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • Recreational Fishing Guide 2021
    Department of Primary Industries and Regional Development Recreational fishing guide 2021 New rules apply from 1 July 2021 see page 3 for details Includes Statewide bag and size limits for Western Australia, and Recreational Fishing from Boat Licence information Published June 2021 Page i Important disclaimer The Director General of the Department of Primary Industries and Regional Development (DPIRD) and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. This publication is to provide assistance or information. It is only a guide and does not replace the Fish Resources Management Act 1994 or the Fish Resources Management Regulations 1995. It cannot be used as a defence in a court of law. The information provided is current at the date of printing but may be subject to change. For the most up-to-date information on fishing and full details of legislation contact select DPIRD offices or visit dpird.wa.gov.au Copyright © State of Western Australia (Department of Primary Industries and Regional Development) 2021 Front cover photo: Tourism WA Department of Primary Industries and Regional Development Gordon Stephenson House, 140 William Street, Perth WA 6000 +61 1300 374 731 [email protected] dpird.wa.gov.au Page ii Contents Fish for the future .............................................2 Using this guide .................................................2 Changes to the rules – 2021 .............................3
    [Show full text]
  • Description of Key Species Groups in the East Marine Region
    Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................
    [Show full text]
  • Commercial and Bycatch Market Fishes Panay Island, Republic Of
    Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines Nanarisari nga Isda nga Ginabaligya sa Merkado sa Isla sang Panay, Pilipinas Hiroyuki Motomura Ulysses B. Alama Nozomu Muto Ricardo P. Babaran Satoshi Ishikawa Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines 1 Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines Nanarisari nga Isda nga Ginabaligya sa Merkado sa Isla sang Panay, Pilipinas 2 H. Motomura · U. B. Alama · N. Muto · R. P. Babaran · S. Ishikawa (eds) For bibliographic purposes this book should be cited as follows: Motomura, H., U. B. Alama, N. Muto, R. P. Babaran, and S. Ishikawa (eds). 2017 (Jan.). Commercial and bycatch market fishes of Panay Island, Republic of the Philippines. The Kagoshima University Museum, Kagoshima, University of the Philippines Visayas, Iloilo, and Research Institute for Humanity and Nature, Kyoto. 246 pp, 911 figs Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines 3 Commercial and Bycatch Market Fishes ofPanay Island, Republic of the Philippines Edited by Hiroyuki Motomura, Ulysses B. Alama, Nozomu Muto, Ricardo P. Babaran, and Satoshi Ishikawa The Kagoshima University Museum, Japan University of the Philippines Visayas, Philippines Research Institute for Humanity and Nature, Japan 4 H. Motomura · U. B. Alama · N. Muto · R. P. Babaran · S. Ishikawa (eds) Copyright © 2017 by the Kagoshima University Museum, Kagoshima, University of the Philippines Visayas, Iloilo, and Research Institute for Humanity and Nature, Kyoto All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher.
    [Show full text]
  • Recreational Fishing Identification Guide
    Department of Primary Industries and Regional Development Recreational fishing identification guide June 2020 Contents About this guide.................................................................................................. 1 Offshore demersal .............................................................................................. 3 Inshore demersal ................................................................................................ 4 Nearshore .........................................................................................................12 Estuarine ..........................................................................................................19 Pelagic ..............................................................................................................20 Sharks ..............................................................................................................23 Crustaceans .....................................................................................................25 Molluscs............................................................................................................27 Freshwater........................................................................................................28 Cover: West Australian dhufish Glaucosoma hebraicum. Photo: Mervi Kangas. Published by Department of Primary Industries and Regional Development, Perth, Western Australia. Fisheries Occasional Publication No. 103, sixth edition, June 2020. ISSN: 1447 – 2058 (Print)
    [Show full text]