Cnidaria: Cubozoa: Carybdeida) at Ningaloo Reef Lisa-Ann Gershwin1 and Peter Hannay2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two New Species of Box Jellies (Cnidaria: Cubozoa: Carybdeida)
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 29 010–019 (2014) DOI: 10.18195/issn.0312-3162.29(1).2014.010-019 Two new species of box jellies (Cnidaria: Cubozoa: Carybdeida) from the central coast of Western Australia, both presumed to cause Irukandji syndrome Lisa-Ann Gershwin CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania 7000, Australia. Email: [email protected] ABSTRACT – Irukandji jellies are of increasing interest as their stings are becoming more frequently reported around the world. Previously only two species were known from Western Australia, namely Carukia shinju Gershwin, 2005 and Malo maxima Gershwin, 2005, both from Broome. Two new species believed to cause Irukandji syndrome have recently been found and are described herein. One, Malo bella sp. nov., is from the Ningaloo Reef and Dampier Archipelago regions. It differs from its congeners in its small size at maturity, its statolith shape, irregular warts on the perradial lappets, and a unique combination of other traits outlined herein. This species is not associated with any particular stings, but its phylogenetic affi nity would suggest that it may be highly toxic. The second species, Keesingia gigas gen. et sp. nov., is from the Shark Bay and Ningaloo Reef regions. This enormous species is unique in possessing key characters of three families, including crescentic phacellae and broadly winged pedalia (Alatinidae) and deeply incised rhopalial niches and feathery diverticulations on the velarial canals (Carukiidae and Tamoyidae). These two new species bring the total species known or believed to cause Irukandji syndrome to at least 16. Research into the biology and ecology of these species should be considered a high priority, in order to manage their potential impacts on public safety. -
Etiology of Irukandji Syndrome with Particular Focus on the Venom Ecology and Life History of One Medically Significant Carybdeid Box Jellyfish Alatina Moseri
ResearchOnline@JCU This file is part of the following reference: Carrette, Teresa Jo (2014) Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/40748/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/40748/ Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri Thesis submitted by Teresa Jo Carrette BSc MSc December 2014 For the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the College of Marine and Environmental Sciences James Cook University Dedication: “The sea, once it casts its spell, holds one in its net of wonder forever.” Jacques Yves Cousteau To my family – and my ocean home ii Acknowledgements Firstly, I have to acknowledge my primary supervisor Associate Professor Jamie Seymour. We have spent the last 17 years in a variable state of fatigue, blind enthusiasm, inspiration, reluctance, pain-killer driven delusion, hope and misery. I have you to blame/thank for it all. Just when I think all hope is lost and am about to throw it all in you seem to step in with the words of wisdom that I need. -
Biology, Ecology and Ecophysiology of the Box Jellyfish Biology, Ecology and Ecophysiology of the Box Jellyfishcarybdea Marsupialis (Cnidaria: Cubozoa)
Biology, ecology and ecophysiology of the box M. J. ACEVEDO jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) Carybdea marsupialis MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellyfish Biology, ecology and ecophysiology of the box jellyfishCarybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecofisiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been financed by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modification of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its infinite growth) are in conflict with natural principles (ecology, with the finiteness of natural systems) […] Jellyfish are just a symptom of this -
Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa)
GBE Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa) Anna M. L. Klompen 1,*EhsanKayal 2,3 Allen G. Collins 2,4 andPaulynCartwright 1 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA 2Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA Downloaded from https://academic.oup.com/gbe/article/13/6/evab081/6248095 by guest on 24 June 2021 3Sorbonne Universite, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France 4National Systematics Laboratory of NOAA’s Fisheries Service, Silver Spring, Maryland, USA *Corresponding author: E-mail: [email protected] Accepted: 19 April 2021 Abstract Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore- forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs. -
'Irukandji' Jellyfish: Carukia Barnesi
ResearchOnline@JCU This file is part of the following reference: Courtney, Robert (2016) Life cycle, prey capture ecology, and physiological tolerances of Medusae and polyps of the 'Irukandji' jellyfish: Carukia barnesi. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/49935/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/49935/ Life Cycle, Prey Capture Ecology, and Physiological Tolerances of Medusae and Polyps of the ‘Irukandji’ Jellyfish: Carukia barnesi Thesis Submitted by: Robert Courtney BSc (Hons 1A) November 11, 2016 For the Degree of: Doctor of Philosophy College of Public Health, Medical and Veterinary Sciences James Cook University Supervisors: Principle Supervisor: Associate Professor Jamie Seymour, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns [email protected] Co-Supervisor: Emeritus Professor Rhondda Jones, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville [email protected] Co-Supervisor: Dr Nik Sachlikidis, NGSAquatic, [email protected] Thesis Dedication: I would like to dedicate this thesis to The Lions Foundation of Australia, for their continual financial support dedicated to stinger research, and to Dr. Jack Barnes, for his pioneering work in the field of Irukandji research. i Statement of the Contribution of Others: Robert Courtney is the primary author of this Thesis and was extensively involved in all aspects of this work under the supervision of: Associate Professor Jamie Seymour; Emeritus Professor Rhondda Jones; and Dr Nik Sachlikidis. -
Biology, Ecology and Ecophysiology of the Box Jellyfish Carybdea Marsupialis (Cnidaria: Cubozoa)
Biology, ecology and ecophysiology of the box jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellysh Carybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecosiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been nanced by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modication of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its innite growth) are in conict with natural principles (ecology, with the niteness of natural systems) […] Jellysh are just a symptom of this situation, another warning that Nature is giving us!” Ferdinando Boero (FAO Report 2013) Thesis contents -
Rapid and Accurate Species-Specific PCR for the Identification of Lethal
International Journal of Environmental Research and Public Health Article Rapid and Accurate Species-Specific PCR for the Identification of Lethal Chironex Box Jellyfish in Thailand Nuankanya Sathirapongsasuti 1,* , Kasetsin Khonchom 1, Thunyaporn Poonsawat 2,3, Mitila Pransilpa 4, Supaporn Ongsara 5, Usawadee Detsri 5,6, Suwimon Bungbai 7, Sam-ang Lawanangkoon 8, Worawut Pattanaporkrattana 8 and Satariya Trakulsrichai 9,10 1 Section of Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; [email protected] 2 Marine and Coastal Resources Research Center, Central Gulf of Thailand, Chumphon 86000, Thailand; thunya-fl[email protected] 3 Marine and Coastal Resources Research Center, Lower Gulf of Thailand, Songkhla 90100, Thailand 4 Marine and Coastal Resources Research Center, Eastern Gulf of Thailand, Rayong 21170, Thailand; [email protected] 5 Marine and Coastal Resources Research Center, Lower Andaman, Trang 92150, Thailand; [email protected] (S.O.); [email protected] (U.D.) 6 Phuket Marine Biological Center, Phuket 83000, Thailand 7 Koh Kut Hospital, Trat 23170, Thailand; [email protected] 8 Koh Phangan Hospital, Surat Thani 84280, Thailand; [email protected] (S.-a.L.); [email protected] (W.P.) 9 Ramathibodi Poison Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; [email protected] 10 Department of Emergency Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected]; Tel.: +66-(0)2-201-2613; Fax: +66-(0)2-201-0116 Citation: Sathirapongsasuti, N.; Khonchom, K.; Poonsawat, T.; Abstract: Box jellyfish are extremely potent venom-producing marine organisms. While they have Pransilpa, M.; Ongsara, S.; Detsri, U.; been found worldwide, the highest health burden has been anticipated to be the tropical Indo-Pacific Bungbai, S.; Lawanangkoon, S.-a.; of Southeast Asia (SEA). -
Critical Evaluation of Characters for Species Identification in The
Plankton Benthos Res 9(2): 83–98, 2014 Plankton & Benthos Research © The Plankton Society of Japan Critical evaluation of characters for species identification in the cubomedusa genus Malo (Cnidaria, Cubozoa, Carybdeida, Carukiidae) ILKA STRAEHLER-POHL Zoologisches Institut und Zoologisches Museum, Biozentrum Grindel, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany Received 27 November 2013; Accepted 8 January 2014 Abstract: Medusae of an undetermined species of the carukiid genus Malo were sampled for life cycle research at Port Douglas Marina, Port Douglas, Australia, in 2011. Due to confusing character variations within the specimens, identification to species level initially seemed impossible. To resolve their identity, the type material of Malo maxima Gershwin, 2005 and M. kingi Gershwin, 2007 were examined. Comparisons were made of the two, and also with the unknown species. Unexpectedly, no significant differences were found between M. maxima and M. kingi. Moreover, all character variations in them were observed as well in the unknown species. Accordingly, M. maxima from West- ern Australia and M. kingi from Queensland are considered to represent populations of the same species. Characters considered both reliable and unreliable for species determination in the genus are discussed, and an emended diagno- sis of Malo is proposed. The earlier name M. maxima is proposed for both populations and for the specimens from Port Douglas. Key words: Malo kingi, Malo maxima, medusa, morphology, taxonomy kingi Gershwin, 2007, yet some of the specimens showed Introduction characters used to define the species Malo maxima Gersh- Specimens of an unidentified cubozoan species were win, 2005 from Western Australia. Moreover, all speci- collected in April 2011 at a marina in Port Douglas (Aus- mens bore six eyes per rhopalium rather than two, as de- tralia). -
Variability and Plasticity of the Nutrition of Zooxanthellate Jellyfishes : Insights from Experimental and Field Studies Nicolas Djeghri
Variability and plasticity of the nutrition of zooxanthellate jellyfishes : insights from experimental and field studies Nicolas Djeghri To cite this version: Nicolas Djeghri. Variability and plasticity of the nutrition of zooxanthellate jellyfishes : insights from experimental and field studies. Ecosystems. Université de Bretagne occidentale - Brest, 2019. English. NNT : 2019BRES0061. tel-02524884 HAL Id: tel-02524884 https://tel.archives-ouvertes.fr/tel-02524884 Submitted on 30 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE BRETAGNE OCCIDENTALE COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Ecologie Marine Par Nicolas DJEGHRI Variability and Plasticity of the Nutrition of Zooxanthellate Jellyfishes Insights from experimental and field studies. Variabilité et Plasticité de la Nutrition des Méduses à Zooxanthelles Apports expérimentaux et de terrain. Thèse présentée et soutenue à Plouzané, le 2 décembre 2019 Unité de recherche : Lemar Rapporteurs -
Seq Transcriptomics of the Cubozoan Alatina Alata, an Emerging Model Cnidarian
ABSTRACT Title of Dissertation: TAXONOMY, MORPHOLOGY, AND RNA- SEQ TRANSCRIPTOMICS OF THE CUBOZOAN ALATINA ALATA, AN EMERGING MODEL CNIDARIAN Cheryl L Ames, Doctor of Philosophy 2016 Dissertation directed by: Associate Professor Alexandra E. Bely, Biology Department Adjunct Professor Allen G. Collins, Biological Sciences Graduate Program Cnidarians are often considered simple animals, but the more than 13,000 estimated species (e.g., corals, hydroids and jellyfish) of the early diverging phylum exhibit a broad diversity of forms, functions and behaviors, some of which are demonstrably complex. In particular, cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Some cubozoan species possess complex mating behaviors or particularly potent stings, and all possess well- developed light sensation involving image-forming eyes. Like all cnidarians, cubozoans have specialized subcellular structures called nematocysts that are used in prey capture and defense. The objective of this study is to contribute to the development of the box jellyfish Alatina alata as a model cnidarian. This cubozoan species offers numerous advantages for investigating morphological and molecular traits underlying complex processes and coordinated behavior in free-living medusozoans (i.e., jellyfish), and more broadly throughout Metazoa. First, I provide an overview of Cnidaria with an emphasis on the current understanding of genes and proteins implicated in complex biological processes in a few select cnidarians. Second, to further develop resources for A. alata, I provide a formal redescription of this cubozoan and establish a neotype specimen voucher, which serve to stabilize the taxonomy of the species. Third, I generate the first functionally annotated transcriptome of adult and larval A. -
Nathalia Mejía Sánchez
NATHALIA MEJÍA SÁNCHEZ Estudo Filogeográfico de Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) na Costa Brasileira Phylogeographic study of Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) in the Brazilian Coast São Paulo 2011 NATHALIA MEJÍA SÁNCHEZ Estudo Filogeográfico de Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) na Costa Brasileira Phylogeographic study of Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) in the Brazilian Coast Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências, na Área de Zoologia. Orientador: Antonio Carlos Marques São Paulo 2011 Mejía - Sánchez, Nathalia Estudo Filogeográfico de Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) na Costa Brasileira. 64 p. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Chiropsalmus cf. quadrumanus 2. Cubozoa 3. Filogeografia 4. Especiação críptica. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora: ________________________ _______________________ Prof(a). Dr(a). Prof(a). Dr(a). _______________________ Prof. Dr. Antonio Carlos Marques A mi familia, por apoyarme y comprenderme con cariño. A Juli, por su amor incondicional y estar siempre presente. “Los buenos días te dan felicidad, los malos días te dan experiencia y ambos son esenciales para la vida… La felicidad te mantiene dulce, los intentos te mantienen fuerte. Las penas te mantienen humano, las caídas te mantienen humilde. Y el éxito… el éxito te mantiene brillante…” Anónimo (fragmentos de uma mensagem enviada por meus pais, 17 de Setembro de 2010) Agradecimentos Ao professor Antonio Carlos Marques (Tim) pela oportunidade, confiança para realizar meu projeto e pelas inumeráveis revisões e correções sempre adequadas para a produção deste trabalho. -
Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa)
GBE Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa) Anna M. L. Klompen 1,*EhsanKayal 2,3 Allen G. Collins 2,4 andPaulynCartwright 1 1 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA Downloaded from https://academic.oup.com/gbe/article/13/6/evab081/6248095 by guest on 28 September 2021 2Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA 3Sorbonne Universite, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France 4National Systematics Laboratory of NOAA’s Fisheries Service, Silver Spring, Maryland, USA *Corresponding author: E-mail: [email protected] Accepted: 19 April 2021 Abstract Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore- forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs.