Study of a Possibly New Ecuadorian Trichopoda Berthold Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Squash Bug, Anasa Tristis (Degeer)1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-077 Squash Bug, Anasa tristis (DeGeer)1 John L. Capinera2 Introduction Egg The squash bug, Anasa tristis, attacks cucurbits Eggs are deposited on the lower surface of (squash and relatives) throughout Central America, leaves, though occasionally they occur on the upper the United States, and southern Canada. Several surface or on leaf petioles. The elliptical egg is related species in the same genus coexist with squash somewhat flattened and bronze in color. The average bug over most of its range, feeding on the same plants egg length is about 1.5 mm and the width about 1.1 but causing much less injury. mm. Females deposit about 20 eggs in each egg cluster. Eggs may be tightly clustered (Figure 1) or Life Cycle spread a considerable distance apart, but an equidistant spacing arrangement is commonly The complete life cycle of squash bug commonly observed. Duration of the egg stage is about seven to requires six to eight weeks. Squash bugs have one nine days. generation per year in northern climates and two to three generations per year in warmer regions. In Nymph intermediate latitudes the early-emerging adults from the first generation produce a second generation There are five nymphal instars. The nymphal whereas the late-emerging adults go into diapause. stage requires about 33 days for complete Both sexes overwinter as adults. The preferred development. The nymph is about 2.5 mm in length overwintering site seems to be in cucurbit fields when it hatches, and light green in color. -
A Review of Sampling and Monitoring Methods for Beneficial Arthropods
insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems. -
Twenty-Five Pests You Don't Want in Your Garden
Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves. -
Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976). -
Establishment of Parasites to Control Ne2ara Viridula Variety Smaragdula (Fabricius) in Hawaii (Heteroptera: Pentatomidae)
Vol. XVIII, No. 3, June, 1964 369 The Introduction, Propagation, Liberation, and Establishment of Parasites to Control Ne2ara viridula variety smaragdula (Fabricius) in Hawaii (Heteroptera: Pentatomidae) C. J. Davis STATE DEPARTMENT OF AGRICULTURE HONOLULU, HAWAII {Presidential Address delivered at the meeting of December 9, 1963) INTRODUCTION A serious pest of fruits, nuts, vegetables and ornamentals, the southern green stink bug, Nezara viridula smaragdula (Fabricius),1 was discovered on the University of Hawaii Farm, Honolulu, in October 1961. Despite cooperative eradication efforts by University of Hawaii and State Department of Agriculture entomologists, it became widespread on Oahu and, by August 1963, had appeared on all major neighbor islands. The build-up of large stink bug populations in Hawaii was undoubtedly aided by favorable climatic conditions, lack of natural enemies, and the availability of preferential wild weed hosts such as Asystasia coromandeliana: cheese weed, Malva parviflora; Crotalaria spp.; castor bean, Ricinus communis; black nightshade or popolo, Solanu??i nigrum; Amaranthus spp.; wild spider flower, Gynandropsis gynandra, and garden crops, particularly soybean, Glycine sp. and string bean, Phaseolus sp. All are nearly ubiquitous in the lowland areas and sustain all stages of the stink bug. Since chemical control was limited by the lack of an effective residual insecticide, and since well-known enemies of the stink bug were known to occur in Australia and the West Indies, arrangements were made with these countries to send parasites. Beginning December 1961, 10 shipments of the egg parasites Telenomus basalis Wollaston, Xenoencyrtus nigerRiek, and Telenomus sp. were received from Australia through the courtesy of Dr. Douglas Waterhouse. -
Squash Bug, Anasa Tristis
A Horticulture Information article from the Wisconsin Master Gardener website, posted 4 August 2008 Squash Bug, Anasa tristis The squash bug, Anasa tristis, is common pest found on squash and pumpkins throughout the United States. It will also occasionally feed on other curcurbits as well (cucum- bers, melons, and gourds). This shield-shaped insect sort of resembles a stink bug, but is a bit larger, more elon- gated and gray instead of green. Adult squash bugs are about 5/8” long. They are gray to black with orange and brown The squash bug, Anasa tristis, is a common stripes along the edges of pest of squash. the abdomen. They overwin- ter amid plant debris, under rocks, or in other protected places in the yard. They emerge over an ex- tended period in late spring, and fl y to squash plants when the plants be- Adult squash bug, Anasa tristis. gin to grow. Females lay eggs on the undersides of squash leaves. The elliptical eggs vary in color from tan to orange to brick red. They are laid in small clusters of a dozen or more, often in characteristic triangular or V shapes in the angles formed by leaf veins. The eggs get darker in color just before hatching in a week to 10 days. Reddish squash bug eggs are laid in clusters. The small nymphs have red heads and legs, and greenish bodies. As the nymphs age the red color Young nymphs have red legs and heads, while older nymphs are grey. They generally occur in groups. turns to black, and the older ones look like they are covered with a grainy gray powder. -
Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
__________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N. -
Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United Statespheylan
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2020 Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United StatesPheylan Pheylan A. Anderson University of Minnesota, St. Paul Daniela T. Pezzini University of Minnesota, St. Paul Nádia M. Bueno University of Minnesota, St. Paul Christina D. DiFonzo Michigan State University, East Lansing Deborah L. Deborah University of Missouri-Columbia, Columbia See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Anderson, Pheylan A.; Pezzini, Daniela T.; Bueno, Nádia M.; DiFonzo, Christina D.; Deborah, Deborah L.; Hunt, Thomas E.; Knodel, Janet J.; Krupke, Christian H.; McCornack, Brian P.; Philips, Christopher R.; Varenhorst, Adam J.; Wright, Robert J.; and Koch, Robert L., "Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United StatesPheylan" (2020). Faculty Publications: Department of Entomology. 862. https://digitalcommons.unl.edu/entomologyfacpub/862 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Pheylan A. Anderson, Daniela T. Pezzini, Nádia -
E0020 Common Beneficial Arthropods Found in Field Crops
Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents. -
Egg Viability and Larval Penetration in Trichopoda Pennipes Pilipes Mohammad Shahjahan2 and John W. Beardsley, Jr.3 Trichopoda P
Vol. XXII, No. 1, August, 1975 '33 Egg Viability and Larval Penetration in Trichopoda pennipes pilipes Fabricius (Diptera: Tachinidae)1 Mohammad Shahjahan2 and John W. Beardsley, Jr.3 Trichopoda pennipes pilipes Fabricius was introduced into Hawaii from Trinidad in 1962 to combat the southern green stink bug, Nezara viridula (Fabricius) (Davis and Krauss, 1963; Davis, 1964). In Hawaii, T. p. pilipes has been reared from the scutellerid Coleotichus blackburni White and the pentatomids Thyanta accera (McAtee) and Plautia stali Scott, in addition to N. viridula. During 1965 we began a study on the biology of T. p. pilipes in rela tion to its principal host in Hawaii, N. viridula. Laboratory experiments and observations were conducted to evaluate the effects of superparasiti- zation of N. viridula by the tachinid on both the host and parasite pop ulations. The results of some of this work were reported previously (Shahjahan, 1968). The present paper summarizes data which were ob tained on parasite egg viability and larval penetration of host integument. The methods used in rearing and handling both N. viridula and T. p. pilipes were described in the earlier paper (Shahjahan, 1968). Supernumerary Oviposition and Egg Viability Adults of the southern green stink bug often are heavily superpara- sitized by T. p. pilipes, both in the field and under laboratory conditions. As many as 237 T. p. pilipes eggs were counted on a single field-collected stink bug, and a high of 275 eggs were deposited on one bug in the lab oratory (Shahjahan, 1968). Eggs are placed predominantly on the venter of the thorax, but may be deposited on almost any part of the host, in cluding the appendages, wings, eyes, etc. -
Diptera : Tachinidae) in Western Switzerland
First detection of the southern green stink bug parasitoid Trichopoda pennipes (Fabr.) (Diptera : Tachinidae) in Western Switzerland Autor(en): Pétremand, Gaël / Rochefort, Sophie / Jaccard, Gaëtan Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 88 (2015) Heft 3-4 PDF erstellt am: 23.09.2021 Persistenter Link: http://doi.org/10.5169/seals-583862 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. -
Beneficial Insects of Utah Guide
BENEFICIAL INSECTS OF UTAH beneficial insects & other natural enemies identification guide PUBLICATION COORDINATORS AND EDITORS Cami Cannon (Vegetable IPM Associate and Graphic Design) Marion Murray (IPM Project Leader) AUTHORS Cami Cannon Marion Murray Ron Patterson (insects: ambush bug, collops beetle, red velvet mite) Katie Wagner (insects: Trichogramma wasp) IMAGE CREDITS All images are provided by Utah State University Extension unless otherwise noted within the image caption. CONTACT INFORMATION Utah State University IPM Program Dept. of Biology 5305 Old Main Hill Logan, UT 84322 (435) 797-0776 utahpests.usu.edu/IPM FUNDING FOR THIS PUBLICATION WAS PROVIDED BY: USU Extension Grants Program CONTENTS PREFACE Purpose of this Guide ................................................................6 Importance of Natural Enemies ..................................................6 General Practices to Enhance Natural Enemies ...........................7 Plants that will Enhance Natural Enemy Populations ..................7 PREDATORS Beetles .....................................................................................10 Flies .........................................................................................24 Lacewings/Dustywings .............................................................32 Mites ........................................................................................36 Spiders .....................................................................................42 Thrips ......................................................................................44