Mycobacterium Tuberculosis to Eradicate Persistent Infection
Research Collection Journal Article Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection Author(s): Hasenoehrl, Erik J.; Sajorda, Dannah R.; Berney-Meyer, Linda; Johnson, Samantha; Tufariello, JoAnn M.; Fuhrer, Tobias; Cook, Gregory M.; Jacobs, William R., Jr.; Berney, Michael Publication Date: 2019 Permanent Link: https://doi.org/10.3929/ethz-b-000367423 Originally published in: Nature Communications 10, http://doi.org/10.1038/s41467-019-12224-3 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ARTICLE https://doi.org/10.1038/s41467-019-12224-3 OPEN Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection Erik J. Hasenoehrl1, Dannah Rae Sajorda1, Linda Berney-Meyer1, Samantha Johnson1, JoAnn M. Tufariello1,6, Tobias Fuhrer 2, Gregory M. Cook3,4, William R. Jacobs Jr.1,5 & Michael Berney 1 A major constraint for developing new anti-tuberculosis drugs is the limited number of validated targets that allow eradication of persistent infections. Here, we uncover a vulner- 1234567890():,; able component of Mycobacterium tuberculosis (Mtb) persistence metabolism, the aspartate pathway. Rapid death of threonine and homoserine auxotrophs points to a distinct sus- ceptibility of Mtb to inhibition of this pathway. Combinatorial metabolomic and tran- scriptomic analysis reveals that inability to produce threonine leads to deregulation of aspartate kinase, causing flux imbalance and lysine and DAP accumulation. Mtb’s adaptive response to this metabolic stress involves a relief valve-like mechanism combining lysine export and catabolism via aminoadipate.
[Show full text]