JIGS Vol2#4(8)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
13914444D46c0aa91d02e31218
2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus -
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis -
A Dissertation Entitled Evolution, Systematics
A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could -
January 13, 2015 London Aquaria Society Tommy Lam from Shrimp Fever Will Be Coming to Do a Presentation for Us
Volume 59, Issue 1 January 13, 2015 London Aquaria Society www.londonaquariasociety.com Tommy Lam from Shrimp Fever will be coming to do a presentation for us. Golden and Dwarf (Nannostomus beckfordi) and that can fit into it. For my pets, Pencilfish Profile dwarf pencilfish (Nannostomus I usually offer them occasional marginatus). Generally they are feed of brine shrimps and I add www.allabout-aquariumfish.com rather shy and would some- the finely crushed food flakes Guest post contributed by Mark Edgar (California) times become motionless, swim- that are specially made for tiny ming at the same spot. The tank fish. Sometimes I even took the Pencilfish is a tiny and that houses the fish should be a effort to introduce a variety of peaceful community fish charac- well-planted aquarium with at foods to enrich their diet such terized by its thin body which is least 50 percent of overall area as growing live daphnia or col- made up of three different color covered with dense vegetation lect these from ponds coupled stripes. There are quite a num- to provide a good hiding spot. I together with mosquito larva if ber of different species that even took the effort to add I happen to bump across these form the pencilfish family group some small empty clay pots so as well. What I notice is that of fish and each has its own dif- that the fish feels more like at my pencilfish simply love these ferent appearances depending home for them. Pencilfish prefer until I find myself unable to on the location on which they to move in groups and if possi- find constant food supply to were caught. -
Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes. -
Postsettlement Movement Patterns and Homing in a Coral-Associated Fish
Behavioral Ecology doi:10.1093/beheco/arn118 Advance Access publication 24 September 2008 Postsettlement movement patterns and homing in a coral-associated fish Marlene Walla and Ju¨rgen Herlerb aDepartment of Marine Biology and bDepartment of Theoretical Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Downloaded from https://academic.oup.com/beheco/article/20/1/87/213766 by guest on 25 September 2021 Coral-associated gobies are highly specialized reef fishes with high host-coral fidelity. Flexibility in habitat choice, however, is important to compensate for potential habitat alteration or loss, but detailed information about the postsettlement movement behavior of such gobies is lacking. We examined movement patterns in Gobiodon histrio, both under natural conditions and during subsequent field experiments, involving breeding pair or partner removal from 3 of the 4 investigation plots. Additionally, we investigated homing behavior, and 2 aquaria experiments were designed to assess home coral and partner recognition of adult fish taken from breeding pairs. Under natural conditions, the movement rate was high for single adults, whereas breeding pairs showed high home-coral fidelity. Manipulations revealed little change of natural patterns except in single adults, which slightly decreased their movement rate in the breeding pair removal plot. In the homing experiment, 17% of tested fish returned to their home coral even after displacement of 4 m, and homing success was much higher at shorter distances (100% at 0.5 m, 53% at 2.25 m). In the aquarium, G. histrio exhibited higher recognition of its home-coral colony (75%) than of its breeding pair partner (60%). -
An Early Oligocene Fish-Fauna from Japan Reconstructed from Otoliths
3 Zitteliana 90 An Early Oligocene fish-fauna from Japan reconstructed from otoliths Paläontologie GeoBio- 1 2 3 Bayerische Werner Schwarzhans *, Fumio Ohe & Yusuke Ando & Geobiologie Staatssammlung Center LMU München für Paläontologie und Geologie LMU München 1Ahrensburger Weg 103, D-22359 Hamburg, and Natural History Museum of Denmark, Zoological n München, 2017 Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark 2Nara National Research Institute for Cultural Properties, Nara 630-8577, Japan n Manuscript received 3Mizunami Fossil Museum, Mizunami, Gifu Prefecture 509-6132, Japan 27.04.2016; revision accepted 07.09.2016; *Corresponding author; E-mail: [email protected] available online: 30.05.2017 n ISSN 0373-9627 n ISBN 978-3-946705-02-4 Zitteliana 90, 3–26. Abstract The otoliths described in this study from the Late Eocene to Early Oligocene (biozone P18) of the Kishima Formation near Karatsu, Saga Prefecture, represent the earliest record of fossil otoliths from Japan and in fact the entire Northwest Pacific. They were obtained from outcrops along the Shimohirano River. A total of 13 otolith-based teleost taxa are recognized, 11 of which being identifiable to species level and new to science and five new genera. The new otolith-based genera are: Nishiberyx n. gen. (Berycidae), Sagaberyx n. gen. (Berycoidei family indet.), Namicauda n. gen. (Polymixiidae), Ortugobius n. gen. (tentatively placed in Gobiidae) and Cornusolea n. gen. (Soleidae); the new species are: Rhynchoconger placidus n. sp., Rhynchoconger subtilis n. sp., Saurida macilenta n. sp., Nishiberyx nishimotoi n. sp., Sagaberyx kishimaensis n. sp., Namicauda pulvinata n. sp., Liza brevirostris n. sp., Pontinus? karasawai n. sp., Ortugo- bius cascus n. -
Quantitative Species-Level Ecology of Reef Fish Larvae Via Metabarcoding
ARTICLES https://doi.org/10.1038/s41559-017-0413-2 Quantitative species-level ecology of reef fish larvae via metabarcoding Naama Kimmerling1,2, Omer Zuqert3, Gil Amitai3, Tamara Gurevich2, Rachel Armoza-Zvuloni2,8, Irina Kolesnikov2, Igal Berenshtein1,2, Sarah Melamed3, Shlomit Gilad4, Sima Benjamin4, Asaph Rivlin2, Moti Ohavia2, Claire B. Paris 5, Roi Holzman 2,6*, Moshe Kiflawi 2,7* and Rotem Sorek 3* The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distribu- tions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggest- ing a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allow- ing Lessepsian migration into the Mediterranean Sea. -
Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales. -
Age and Growth, Reproduction and Diet of a Sublittoral Population of the Rock Goby Gobius Paganellus (Teleostei, Gobiidae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório da Universidade dos Açores Hydrobiologia 440: 129–135, 2000. 129 M.B. Jones, J.M.N. Azevedo, A.I. Neto, A.C. Costa & A.M. Frias Martins (eds), Island, Ocean and Deep-Sea Biology. © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Age and growth, reproduction and diet of a sublittoral population of the rock goby Gobius paganellus (Teleostei, Gobiidae) Jose´ Manuel N. Azevedo & Ana Maria V. Simas Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 9500 Ponta Delgada, Portugal Tel. + 351 296 653044. E-mail: [email protected] Key words: fish biology, length–weight relationship, length–frequency distributions, modal analysis, growth rate, life span Abstract Basic biological information for a sublittoral population of the rock goby Gobius paganellus Linnaeus, 1758 is presented based on a 2-year study involving 1680 specimens. The length–weight relationship was given by TW = 0.0089 ∗ TL3:163 (where TW= total weight in g; TL= total length in mm). Age at length data were inferred by modal analysis of the monthly length–frequency distributions. The parameters of the fitted Von Bertalanffy growth −1 equation (with seasonal component, birth date on the 1st of January) were L1 = 13.8 cm; K =0.73yr ; to = −0.22 yr; C = 0.95; W = 0.07. This growth rate is much higher than that described for northern Europe populations (where K is about 0.3 yr−1) and is probably associated with a shorter life span. Macroscopic examination of the gonads, and analysis of the monthly values of the gonadosomatic index, indicated that reproduction occurs in winter and early spring, with a maximum in February and March, when water temperatures are lowest. -
RESEARCH ARTICLE Sound Production Mechanism in Gobius Paganellus (Gobiidae)
3189 The Journal of Experimental Biology 216, 3189-3199 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.087205 RESEARCH ARTICLE Sound production mechanism in Gobius paganellus (Gobiidae) Eric Parmentier1,*, Loïc Kéver1, Kelly Boyle1, Yves-Eric Corbisier1, Ludovic Sawelew1 and Stefano Malavasi2 1Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH, Institut de chimie, Bât. B6c, Université de Liège, B-4000 Liège, Belgium and 2CEMAS – Center for Estuarine and coastal Marine Sciences, Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, Castello 2737/B, 30122 Venice, Italy *Author for correspondence ([email protected]) SUMMARY Gobiidae, the largest fish family (>1500 species), has species from at least 10 genera that produce sounds for communication. Studies focused on goby sound production mechanisms have suggested that sounds are produced by the forcible ejection of water through small apertures in the opercles (hydrodynamic mechanism). The present study was a multidisciplinary investigation (morphology, muscle histology, high-speed video, sound analysis and electromyography) of the sound emission mechanism in Gobius paganellus, which produces both pulsed and tonal calls. Two populations were used, from Brittany and Venice. In the French population, sounds were accompanied by a suite of coordinated movements of the buccal, branchial and opercular regions. This was not the case in the Venetian population, and thus the direct role of head movements in sound production was rejected. The hydrodynamic mechanism hypothesis was also rejected in G. paganellus on the basis of sound oscillogram shape and because sounds are still produced after the opercles and hyohyoid muscles are cut. The use of both electromyography and electron microscopy showed that the levator pectoralis muscle, which originates on the skull and inserts on the dorsal tip of the cleithrum, is involved in sound production. -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.