Biodiversity in the Coral Reefs

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity in the Coral Reefs Student Name: Class: Biodiversity in the Coral Reefs Expert Pack: Grades 9-10 Table of Contents Text #1: Coral Reefs (Video) ................................................................................................................... 12 Text #2: Top 25 Coral Reef Facts (Informational Text) ................................................................. 13 Text #3: Coral Polyps—Tiny Builders (Scientific Diagram and Informational Text) ........... 18 Text #4: Corals Dine on Microplastics (Informational Text) ...................................................... 20 Text #5: Coral Reef Biodiversity (Informational Text) .................................................................... 24 Text #6: Coral and Coral Reefs (Scientific Article) .......................................................................... 27 Text #7: Bizzare and Beautiful Coral Reef Animals (Website) .................................................... 39 Text #8: The Great Barrier Reef Food Chain (Diagram) ................................................................ 40 Text #9: Why Are Coral Reefs Important (Informational Article) .............................................. 42 Text #10: Status of and Threat to Coral Reefs (Informational Article) .................................... 46 Text #11: Crabs Play Defense, Save Corals (News Article) .......................................................... 54 Text #12: What You Can Do (Informational Article) ...................................................................... 58 Extended Reading, Text 1: Threatened Coral Get Fishy Rescue (News Article) ................... 64 Extended Reading, Text 2: BBC Great Barrier Reef: Nature’s Miracle (Documentary) ........ 67 Appendices………………………………………………………………………………………………………………….….68 Page 2 TABLE OF CONTENTS The Table of Contents lists of the texts in order of their suggested reading, including text complexity information and a brief synopsis of the text. A note on complexity analysis: The expert packs were created using both quantitative and qualitative considerations. The Reading Maturity Metric was used to calculate the quantitative analysis, including the CCSS grade band ratings. The CCSO rubric for informational texts was used to conduct the qualitative assessments and ratings align to the CCSSO rubric. Reading Maturity Metric: http://www.readingmaturity.com/rmm-web/#/ CCSSO Rubric: included at the end of the Table of Contents Text Complexity Information Brief Synopsis Quantitative: N/A Video A beautiful Text 1: Coral Reefs introduction to Qualitative: some basic facts Author: National about reef Geographic Purpose: Slightly complex. One clear purpose for this text, structure and Explicitly stated. environment. Genre: Informational VIDEO Structure: Very. Information presented very quickly, Cost/Access: $0.00 images occasionally essential in order to make meaning Link: Language: Moderately Complex... Mostly contemporary, http://video.nationalgeogra contains some Tier 3 academic language phic.com/video/coral-reefs Knowledge Demands: Moderately Complex... The video provides ample information and can be approached without domain-specific knowledge. Text 2: Top 25 Coral Reef Quantitative: 25 clear facts Facts RMM 8.7 about the coral CCSS: 6-10 reef: their make- Author: Conserve Every Dale Chall: 10.1 up and their Future Flesch-Kincaid 7.7 impact on humans and their Genre: Informational Article Qualitative: ocean Purpose: Slightly complex. Explicitly stated in the title and environment. Cost/Access: $0.00 the content. Link: Structure: Slightly complex... Short paragraphs make the Page 3 http://www.conserve- text accessible, and labeled facts support ease of energy-future.com/top-25- navigation coral-reef-facts.php Language: Very Complex. Where discipline-specific word are used, they are often not able to be determined in context Knowledge Demands: Moderately Complex... Some discipline-specific knowledge would support comprehension, but not necessarily limit it. Text 3: Coral Polyps – Diagram of a Tiny Builders Quantitative: N/A polyp, RMM: 8.1 accompanied by Author: Coral reef Alliance CCSS: 6-8 a description of Dale Chall: 10.74 the structure and Genre: Scientific Diagram Flesch-Kincaid 10.7 habits of the and Informational polyp, including Description Qualitative: the source of its Purpose: Explicit beautiful colors. Cost/Access: $0.00 Structure: Very Complex... Graphics essential to Link: understanding the content http://coral.org/coral-reefs- 101/coral-reef- Language: Very Complex... Diagram labeled with technical ecology/coral-polyps/ names of polyp structure, though accompanying article directly supports comprehension Knowledge Demands: Moderately Complex... Text provides new knowledge; prior knowledge would support understanding. Text 4: Corals Dine on Quantitative: A new scientific Microplastics RMM 8.2 study show the CCSS 6-8 polyps on the Author: Alison Pearce Dale Chall 10.34 coral reef eating Stevens Flesch-Kincaid 7.6 plastic at the “Corals Dine On Microplastics” same rate as Genre: Informational news other food in the Article Qualitative: water, raising concerns about Cost/Access: $0.00 Purpose: Moderately Complex... While the topic is explicit, the long term the text contains a wide-ranging amount of information, health and Link: indicating multiple purposes, including conservation, growth of the https://student.societyforsci scientific research, and offerings of counter claims. reef. ence.org/article/corals- Page 4 dine-microplastics Structure: Moderately Complex. Subheading support organization and connections between concepts are complex but relatively explicit Language: Very Complex. Language is contemporary, but text contains occasional discipline specific Tier 3 vocabulary Knowledge Demands: Moderately Complex. Practical knowledge is sufficient but some domain-specific knowledge is helpful; implied references to other studies Text 5: Coral Reef Quantitative: An explanation of Biodiversity biodiversity, with RMM: 9.7 examples from Author: Coral Reef Alliance CCSS: 9-12 the reef. Dale Chall: 11.19 Genre: Informational Article Flesch-Kincaid 12.1 Cost/Access: $0.00 Qualitative: Link: Purpose: Moderately Complex... Easily determined with http://coral.org/coral-reefs- careful reading. 101/coral-reef- ecology/coral-reef- Structure: Moderately Complex. Semi-explicit connections biodiversity/ between ideas; no subheadings or graphics to support connections Language: Moderately Complex. Some strong academic language, as well as domain-specific words necessary to comprehension Knowledge Demands: Moderately Complex. Some discipline-specific knowledge would support comprehension. Text 6: Coral and Coral Quantitative: A detailed look at Reefs the make-up, RMM: 9.3 reproduction, Author: The Ocean Portal CCSS 6-10 and threats to Team; reviewed by Nancy Dale Chall: 10.9 coral reefs. Knowlton, Smithsonian Flesch-Kincaid: 10.5 Genre: Scientific Article Qualitative: Page 5 Cost/Access: $0.00 Purpose: Slightly Complex... Explicit purpose of informing about coral reefs. Link: http://ocean.si.edu/corals- Structure: Moderately Complex. Text features and and-coral-reefs graphics support but are not essential to understanding; somewhat complex organization supported by subheadings. Language: Very Complex. Wide range of Tier 2 and domain-specific vocabulary, some of which cannot be inferred from context. Knowledge Demands: Moderately Complex. Some discipline-specific knowledge would support comprehension, but not necessarily limit it. Text 7: Bizarre and Quantitative: Website of Beautiful Coral Reef photographs and Animals RMM: 9.6 descriptions of CCSS: 9-10 the various Author: The Smithsonian Dale Chall: 11.02 animals that live Ocean Initiative Flesch-Kincaid 12 on the reef. Genre: Website with text and Qualitative: Slideshow graphics includes links to Purpose: Slightly Complex... Explicit. other information Cost/Access: $0.00 about coral reefs Structure: Very Complex Feature and graphics essential to – students should Link: understanding the accompanying text. feel free to http://ocean.si.edu/slidesho explore these w/bizarre-and-beautiful- Language: Very Complex. Includes Latin terms and links as well! coral-reef-animals references to specific geographical locations, though sentences structure is clear and accessible. Knowledge Demands: Moderately Complex. Some discipline-specific knowledge would support comprehension, but not necessarily limit it. Page 6 Text 8: The Great Barrier Quantitative: N/A Diagram of the Reef Food Chain food chain of the Qualitative: Great Barrier Reef Author: Purpose: Slightly Complex. Explicit GreatBarrierReef.co,.au Structure: Very Complex. Graphics essential to Genre: Diagram understanding the content Cost/Access: $0.00 Language: Moderately Complex. Animal names should be more familiar after exploring previous website Link: http://www.greatbarrierreef. Knowledge Demands: Very Complex. Knowledge of food com.au/information/great- chains, and biodiversity, important to understanding the barrier-reef-food-web/ food chain. Text 9: Why Are Coral Quantitative: Students learn, Reefs Important? RMM 10.6 briefly, why the CCSS: 9-12 coral reefs are so Author: Jessica Carilli Dale Chall: 12.5 important to Flesch Kincaid: 19.9 humans and to Genre: Informational Article the earth. Qualitative: Cost/Access: 0.00 Sentence length Purpose: Slightly Complex. The purpose is clearly stated and vocabulary http://coralreefsystems.org/c in the title and all information supports the stated may inhibit ontent/value-corals purpose readers, but
Recommended publications
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • The Polyp and the Medusa Life on the Move
    The Polyp and the Medusa Life on the Move Millions of years ago, unlikely pioneers sparked a revolution. Cnidarians set animal life in motion. So much of what we take for granted today began with Cnidarians. FROM SHAPE OF LIFE The Polyp and the Medusa Life on the Move Take a moment to follow these instructions: Raise your right hand in front of your eyes. Make a fist. Make the peace sign with your first and second fingers. Make a fist again. Open your hand. Read the next paragraph. What you just did was exhibit a trait we associate with all animals, a trait called, quite simply, movement. And not only did you just move your hand, but you moved it after passing the idea of movement through your brain and nerve cells to command the muscles in your hand to obey. To do this, your body needs muscles to move and nerves to transmit and coordinate movement, whether voluntary or involuntary. The bit of business involved in making fists and peace signs is pretty complex behavior, but it pales by comparison with the suites of thought and movement associated with throwing a curve ball, walking, swimming, dancing, breathing, landing an airplane, running down prey, or fleeing a predator. But whether by thought or instinct, you and all animals except sponges have the ability to move and to carry out complex sequences of movement called behavior. In fact, movement is such a basic part of being an animal that we tend to define animalness as having the ability to move and behave.
    [Show full text]
  • Angelfish Centropyge Acanthops Flameback Angel Md Centropyge
    Angelfish Centropyge acanthops Flameback angel md Centropyge bicolor Bicolor angel nice md Centropyge eibli Eibli dwarf angel md Centropyge flavipectoralis Yellowfin dwarf angel md Centropyge flavissima Lemonpeel angel md Centropyge loriculus Flame angel ml Centropyge loriculus Flame angel Buy 3 ml Pomocanthus semicirculatus Koran angel juv. md Pomocanthus semicirculatus Koran angel juv. ml Anthias Pseudanthias squamipinnis Lyretail anthias Maldives md Pseudanthias squamipinnis Lyretail anthias Male - Maldives lg Batfish Platax tiera Tiera batfish lg Blenny Ecsenius bicolor Bicolor blenny md Ecsenius midas Gold midas blenny md Ecsenius midas Gold midas blenny lg Salarias fasciatus Sailfin blenny md Salarias fasciatus Sailfin blenny Buy 5 md Butterfly Chaetodon auriga Threadfin butterfly xl Chaetodon lunula Racoon butterfly md Chaetodon melannotus Black-backed butterfly lg Heniochus acuminatus Black and white heniochus md Heniochus singularis Singular heniochus ml Cardinal Pterapogon kauderni Banggai cardinal md Pterapogon kauderni Banggai cardinal Buy 5 md Catfish Plotosus anguillaris Striped catfsih sm Clown - Tank raised Amphiprion clarkii Clarkii clown Tank raised md Amphiprion frenatus Tomato clown Tank raised md Amphiprion ocellaris Ocellaris clown Tank raised sm Amphiprion ocellaris Ocellaris clown Buy 10 sm Amphiprion ocellaris Ocellaris clown true blackTank raised md Amphiprion ocellaris Ocellaris clown true blackBuy 5 md Amphiprion ocellaris Ocellaris clown true blackTank raised lg Amphiprion ocellaris Ocellaris clown black Tankice
    [Show full text]
  • Cassiopea Xamachana (Upside-Down Jellyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • Coral Histopathology II
    INTRODUCTION The prevalence and severity of reef degradation due to coral disease has increased considerably over the last two decades. Emerging coral diseases have been linked to biotic and abiotic stressors and their synergistic interactions. Coral disease research is in its infancy and only beginning to take advantage of technologies and methodologies routinely used in epizootiology, clinical and diagnostic medicine, and pathology. This Coral Histopathology Workshop (and its predecessor) provided forums to begin adapting advances in biomedical and veterinary sciences, pathology, toxicology, and biotechnology to the study of coral disease and health; it also provided a foundation on which to build a framework for coral disease research that can interface with mainstream medical and veterinary research. The goals of this Workshop were to produce standards for (1) morphological descriptors based on accepted medical terminology, (2) consistent and concise descriptions of lesions in the field, as well as (3) clinical morphological diagnoses in the laboratory. Consensus reached during this workshop will be peer reviewed by the coral scientific community, both in public settings where the materials will be presented in workshop/discussion formats, directly soliciting review by others establishing terminology for the field, and through opinion papers in the peer-review literature to adopt specialized terminologies to facilitate communication among histopathologists. Once adopted, the terminology and microscopic descriptions will enable development of instructional materials and distance learning tools for coral histopathology. STUDY SETS OF HISTOLOGY SLIDES PROVIDED BY THE IRCP An important facet of this workshop was the use of study sets of slides with serial sections from the same sample for independent individual micro- E.
    [Show full text]
  • Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis ✉ Aissam Ikmi 1,2 , Petrus J
    ARTICLE https://doi.org/10.1038/s41467-020-18133-0 OPEN Feeding-dependent tentacle development in the sea anemone Nematostella vectensis ✉ Aissam Ikmi 1,2 , Petrus J. Steenbergen1, Marie Anzo 1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2 & Matthew C. Gibson2,4 In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this develop- 1234567890():,; mental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability. 1 Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2 Stowers Institute for Medical Research, Kansas City, MO 64110,
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Postsettlement Movement Patterns and Homing in a Coral-Associated Fish
    Behavioral Ecology doi:10.1093/beheco/arn118 Advance Access publication 24 September 2008 Postsettlement movement patterns and homing in a coral-associated fish Marlene Walla and Ju¨rgen Herlerb aDepartment of Marine Biology and bDepartment of Theoretical Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Downloaded from https://academic.oup.com/beheco/article/20/1/87/213766 by guest on 25 September 2021 Coral-associated gobies are highly specialized reef fishes with high host-coral fidelity. Flexibility in habitat choice, however, is important to compensate for potential habitat alteration or loss, but detailed information about the postsettlement movement behavior of such gobies is lacking. We examined movement patterns in Gobiodon histrio, both under natural conditions and during subsequent field experiments, involving breeding pair or partner removal from 3 of the 4 investigation plots. Additionally, we investigated homing behavior, and 2 aquaria experiments were designed to assess home coral and partner recognition of adult fish taken from breeding pairs. Under natural conditions, the movement rate was high for single adults, whereas breeding pairs showed high home-coral fidelity. Manipulations revealed little change of natural patterns except in single adults, which slightly decreased their movement rate in the breeding pair removal plot. In the homing experiment, 17% of tested fish returned to their home coral even after displacement of 4 m, and homing success was much higher at shorter distances (100% at 0.5 m, 53% at 2.25 m). In the aquarium, G. histrio exhibited higher recognition of its home-coral colony (75%) than of its breeding pair partner (60%).
    [Show full text]
  • Quantitative Species-Level Ecology of Reef Fish Larvae Via Metabarcoding
    ARTICLES https://doi.org/10.1038/s41559-017-0413-2 Quantitative species-level ecology of reef fish larvae via metabarcoding Naama Kimmerling1,2, Omer Zuqert3, Gil Amitai3, Tamara Gurevich2, Rachel Armoza-Zvuloni2,8, Irina Kolesnikov2, Igal Berenshtein1,2, Sarah Melamed3, Shlomit Gilad4, Sima Benjamin4, Asaph Rivlin2, Moti Ohavia2, Claire B. Paris 5, Roi Holzman 2,6*, Moshe Kiflawi 2,7* and Rotem Sorek 3* The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distribu- tions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggest- ing a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allow- ing Lessepsian migration into the Mediterranean Sea.
    [Show full text]
  • Gobiodon Winterbottomi, a New Goby (Actinopterygii: Perciformes: Gobiidae) from Iriomote-Jima Island, the Ryukyu Islands, Japan
    Bull. Natl. Mus. Nat. Sci., Ser. A, Suppl. 6, pp. 59–65, March 30, 2012 Gobiodon winterbottomi, a New Goby (Actinopterygii: Perciformes: Gobiidae) from Iriomote-jima Island, the Ryukyu Islands, Japan Toshiyuki Suzuki1, Korechika Yano2 and Hiroshi Senou3 1 Kawanishi-midoridai Senior High School, 1–8 Kouyoudai, Kawanishi, Hyogo 666–0115, Japan E-mail: [email protected] 2 Dive Service Yano, 537 Uehara, Taketomi-cho, Okinawa 907–1541, Japan 3 Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250–0031, Japan E-mail: [email protected] Abstract The gobiid ¿sh Gobiodon winterbottomi is described as a new species from three spec- imens (19.0–32.9 mm SL) collected from Echinopora lamellose, the plate-shaped coral of the fam- ily Faviidae, in 5 m depth on the reef slope off Iriomote-jima Island, the Ryukyu Islands, Japan. It is characterized by the following in combination: the jaw teeth subequal in shape and size; lack of post-symphysial canine teeth; lack of an interopercle-isthmus groove; a narrow gill opening; lack of elongated dorsal-¿n spines; large second dorsal, anal and pelvic ¿ns; 15 or 16 pectoral-¿n rays; and head, body and ¿ns gray, absence of stripes or other markings when fresh or alive. Key words: Gobiodon winterbottomi, new species, Gobiidae, Ryukyu Islands, Japan. Gobiodon Bleeker, 1856 is an Indo-Paci¿c Sawada and Arai, 1972 (validity questionable), gobiid ¿sh genus, comprising often colorful, Gobiodon axillaris De Viz, 1884, Gobiodon bro- tropical species living in obligate commensal chus (Harold and Winterbottom, 1999), Gobio- association with reef-building corals.
    [Show full text]