Nordic Grid Code 2007 (Nordic collection of rules)

NORDIC GRID CODE (CONTENTS)

CONTENTS TheNordicGridCodecontains:

Preface 11 2

Part 1 Introduction to a Common Nordic Grid Code 11 4

Part 2 Planning Code (with appendices) 113

Part 3 Operational Code (System Operation Agreement) 139

Part 4 Connection Code 154

Part 5 Data Exchange Code (Data Exchange Agreement 178 between the Nordic TSOs) ThepresentdocumentistheEnglishtranslationofNordiskregelsamling2004anditsupdated parts,whichhavebeenwrittenandpublishedintheSwedishlanguage.Incaseofpossible discrepanciesbetweentheEnglishandtheSwedishversion,theSwedishversionshallprevail.

15January2007 3 NORDIC GRID CODE (INTRODUCTION)

INTRODUCTION TO A COMMON NORDIC GRID CODE ...... 5

1 INTRODUCTION ...... 5 2 BACKGROUND ...... 6 2.1 Nordic cooperation ...... 6 2.2 The Nordic system ...... 8 2.3 The electrical characteristics of the Nordic ...... 9 2.4 Transmission system operators (TSOs)...... 10 2.5 The Nordic ...... 11 2.5.1 Elspot...... 11 2.5.2 Elbas...... 11 2.5.3 Theregulatingpowermarket ...... 11 3 GENERALPROVISIONS ...... 11 3.1 Bilateral agreements ...... 11 3.2 Confidentiality...... 11 3.3 Deviations from the regulations...... 12 3.4 Dealing with unclear provisions in the regulations...... 12 3.5 The development of the regulations ...... 12

15January2007 4 NORDIC GRID CODE (INTRODUCTION)

INTRODUCTION TO A COMMON NORDIC GRID CODE

1 Introduction TheformulationofthiscommoncodefortheNordicgrid(theNordicGridCode)isastep towardstheharmonisationoftherulesthatgovernthevariousnationalgridcompanies.The purposeoftheNordicGridCodeistoachievecoherentandcoordinatedNordicoperationand planningbetweenthecompaniesresponsibleforoperatingthetransmissionsystems,inorderto establishthebestpossibleconditionsfordevelopmentofafunctioningandeffectively integratedNordicpowermarket.Afurtherobjectiveistodevelopasharedbasisfor satisfactoryoperationalreliabilityandqualityofdeliveryinthecoherentNordicelectricpower system. TheNordicGridCodeconcernsthetransmissionsystemoperators(TSO’s)theoperationand planningoftheelectricpowersystemandthemarketactors’accesstothegrid.TheCodelays downfundamentalcommonrequirementsandproceduresthatgoverntheoperationand developmentoftheelectricpowersystem. TheNordicGridCodeismadeupof: Generalprovisionsforcooperation PlanningCode OperationalCode(SystemOperationAgreement) ConnectionCode DataExchangeCode(DataExchangeAgreementbetweentheNordictransmission systemoperators(TSOs) TheOperationalCodeandtheDataExchangeCodearebindingagreementswithspecific disputesolutions.ThePlanningCodeandtheConnectionCodearerulesthatshouldbe observed.TheycorrespondtoNordel’srecommendationsintheseareas. TheNordicGridCodegovernstechnicalcooperationbetweenthetransmissionsystem operatorsintheinterconnectedNordelcountries:Norway,Sweden,FinlandandDenmark. Ideally,theplanning,expansionandoperationofallthesubsystemswouldbegovernedby identicalrules.However,thisisnotyetthecase,partlyforhistoricalreasonsandpartlybecause thedifferentsubsystemsaresubjecttodifferentlegislationandtosupervisionbydifferent officialbodies.However,anobjectiveisthattheNordicGridCodeshouldbeastartingpoint fortheharmonisationofnationalrules,withminimumrequirementsfortechnicalproperties thatinfluencetheoperationoftheinterconnectedNordicelectricpowersystem.TheNordic GridCodemust,however,besubordinatetothenationalrulesinthevariousNordiccountries, suchastheprovisionsoflegislation,decreesandtheconditionsimposedbyofficialbodies. ThefirsteditionoftheNordicGridCodewasbasedonNordel’sformerrules(recom mendations),thesystemoperationagreement,theDataExchangeAgreementandnational codes.ThereforethecontentoftheCodestillshowstracesofbeingtakenfromnumerous sources.

15January2007 5 NORDIC GRID CODE (INTRODUCTION) ThenewversionsoftheSystemOperationAgreementandtheDataExchangeAgreementare reproducedinthiseditionintheirentirety.AsanewNordelrecommendationthisdocument includestheNordelConnectionCodeforWindTurbines.Itisincludedasanownchapterin theConnectionCode.OtherpartsoftheConnectionCodehavebeenupdatedaccordingtothe latestdevelopmentinthenationalrequirementsandrules.CoordinationbetweenthePlanning CodeandtheOperationalCodehasbeenimprovedbydevelopingtheformulationofthe criteriaschemeinplanningtobettercorrespondwiththeoperationalstates. ThedevelopmentoftheNordicGridCodeisaprojectthatoughttocontinuealsointheyears ahead.TheworkonfurtherdevelopmentofNordiccooperationtotheNordicelectricpower marketthuscontinues.

2 Background

2.1 Nordic cooperation TheexpansionofelectricpowersupplyintheNordiccountriesbeganattheendofthe19th centuryandatthebeginningofthe20th.Tobeginwith,smalllocalelectricalcompanieswere setup.Graduallythesecompaniesmergedinordertobecomelargerregionalunits.Eventually, thesystemsdevelopedtothepointwherethepowergridsintheindividualNordiccountries werelinkedviahighvoltageinterconnections. Fromtheoutset,thesupplyofelectricpowerintheNordiccountrieswasbasedondifferent sourcesofenergy.InNorwayandSweden,hydroelectricpowerwasthemainenergysource. Finlandusedamixofhydroandthermalpower,whilstDenmark’senergysupplywasbased almostentirelyonthermalpower.CompaniesandofficialbodiesintheNordiccountriessoon realisedthatthereweresignificantbenefitstobegainedfromcollaboratingandutilising whicheverenergysourcewasthemostadvantageousatthetimeinthevariouscountries. Furthermorecooperationresultedinimprovedsecurityofsupply. Alreadyin1912thefirstinterNordicinterconnectionoperationagreementwassigned. SydkraftinMalmöandNESAinCopenhagenagreedthatSydkraftwouldsupplysurplus powerfromitspowerplantstoZealandinDenmark.On15November1915a25,000voltAC cablebetweenSkåneandZealandwasreadytogointoservice.Cooperationonelectricpower betweenSwedenandNorwaybeganmuchfurthernorthwiththeopeningoftherailway betweenKirunaandNarvikintheearly1940s. In1929a60kVACinterconnectionwasbuiltbetweenJutlandandNorthernGermany.Over theyearsfrom1930to1960,furtheropportunitiesforcooperationwereinvestigated,however, withoutresultuntil1959,whenanACinterconnectionbetweenSwedenandFinlandwentinto service.In1960,newinterconnectionsbetweenSwedenandNorwaywerecompletedanda jointpowerplantprojectwasimplementedontheLinnvassriver(Linnvassälven).Fiveyears later,in1965,anHVDCcablewaslaidbetweenJutlandandthewestcoastofSweden. Electricalinterconnectionstotheeastwereextendedin1961withanACtransmissionline acrosstheeasternborderofFinlandtotheSovietUnion.In1976anHVDClinkwasinstalled betweenNorwayandJutland;itscapacitywasincreasedin1993.TheFennoSkanHVDClink betweenSwedenandFinlandwasbuiltin1989. Theplanningandconstructionofthejointinterconnectionsledtogreatercontactbetweenthe electricitycompaniesintheNordiccountries,andin1963,Nordel,aNordiccooperation programinthefieldofelectricpowersupply,wasestablished.

15January2007 6 NORDIC GRID CODE (INTRODUCTION) Duringthe1960s,electricpowerconsumptionincreasedconsiderablyinalltheNordic countries.Theopportunitiesforcooperation,forlinkingtogetherdifferentkindsofproduction resourcesandforcreatingsharedproductionreservesalsoattractedgreaterattention.The membersofNordelwereseekingbenefitsfromcoordinatingtheexpansionandoperationofthe grids. Astherapidlygrowingelectricpowersystemwouldbeconnectedtorelativelyweak transmissionlinks,Nordelhadtosolveproblemsofcontrolandstability.Thelongterm solutionwastomakethetransmissionlinksstronger.Nordel’srecommendationsformedthe basisofthetechnicalregulationsforproductionandgridoperationsintheNordiccountries. Admittedly,therecommendationswerenotformallybinding,however,sincetheywere acceptedjointlyandunanimously,theruleswerecompliedwithbyallpartiesandcameto providethefoundationforanyformalregulationsrequiredintheindividualcountries. AfeatureofcooperationwithinNordelhasbeenacommonwilltofindsolutionswhichcreate goodpreconditionsforutilisingthetechnical,environmentalandeconomicadvantagesthat resultfromaneffectivecommonsystem.Fromtheoutset,thesectorandelectricityusersover theentireNordelareahasbenefitedfromthisbasicidea. Inordertoincreaseefficiencyintheelectricalsector,theNordiccountrieschose,startingin 1991inNorway,toexposeelectricityproductionandtradingtocompetitionandtoseparate thesefunctionsfromthestillregulatednaturalgridmonopoly.Sincethe1980s,therehasbeen atrendtowardsfreecompetitionbothintheEUandelsewhereintheworld,butthetrendhas developedmostrapidlyintheNordiccountries.Amongotherthings,theworld’sfirst internationalelectricpowerexchange,NordPool,waslaunchedherein1996.Factorsthat contributedtotherapiddevelopmentoftheopencommonNordicelectricpowermarketwerea wellfunctioningelectricpowersystemandagoodtraditionofcooperation,partlywithin Nordel. ThechangesintheelectricitymarketalsochangedthepreconditionsforNordiccooperation. Nordeltookitsfirststeptowardsadaptationtothechangesin1993,when,amongotherthings, theorganisationchangeditsstatutestocorrespondbettertothestructurethatemergedwhenthe gridoperationsofthecompanieswereseparatedfromtherestoftheiroperations.Thechanges supposedthatboththegridsectorandtheproductionsectorstillshouldberepresentedin Nordel.Theimportanceofcontinuedcooperationbetweenthesectorsontechnicalsystem issues,forexample,wasemphasised. Thestartingpointforafurtherchangetothestatutesin1998wasthatNordelwouldbea cooperationorganisationforthetransmissionsystemoperatorsintheNordiccountriesand shouldprovideaplatformforcooperation.Atthesametime,marketactorswithtechnical installationsofsignificancefortheelectricpowersystemwouldcontinuetocollaboratewithin theorganisation.YetanotherchangetothestatutesinJune2000transformedNordelintoan organisationforthetransmissionsystemoperatorsintheNordiccountries,withthestated objectiveofcreatingtheconditionsforanefficientandharmonisedNordicelectricitymarket, andofdevelopingthatmarketfurther.Onceabodyforcooperationbetweenintegratedpower companies,Nordelwasnowabodyforcooperationbetweentransmissionsystemoperators. ThenumberofphysicalinterconnectionsbetweentheNordelregionandneighbouring countriesisincreasing.In1982,anHVDClinkwasinstalledbetweenFinlandandtheSoviet

15January2007 7 NORDIC GRID CODE (INTRODUCTION) Union.TherearenowHVDClinkstoGermanyfrombothSwedenandDenmarkandsince 2000anHVDCcablebetweenPolandandSweden.TheACinterconnectionsbetweenWestern DenmarkandGermanyhavebeenexpandedcontinuously.Since2000,a450MWRussian powerplantinSt.PetersburghasbeenconnecteddirectlytotheFinnishsubsystem.The increasingnumberofinterconnectionsbringsgrowingneedforcoordination.Initscapacityof cooperationorganisationfortransmissionsystemoperators,Nordelisanaturalforumfor contactsbetweentheNordicelectricpowersystemasawholeandsystemoperatorselsewhere. Inaddition,asaforumfortechnicalcooperation,Nordeloffersauniqueopportunityfor utilisingtheexpertisethatisalsoneededininternationalwork. Nordeloperatesnonbureaucratically.ThepostsintheorganisationrotatebetweentheNordic gridoperatingcompanies.Thecompanyrepresentedbythechairpersonisresponsibleforthe secretariatandbearstheassociatedcosts;thismakesitpossibleforNordeltohavenobudgetof itsown.Nordelusesnointerpreters.Themembercompaniesprovidehumanresources;akey factorinNordel’sworkisthecorespecialistexpertisethatthecompaniesmakeavailable.

2.2 The Nordic electric power system IntheNordiccountries,productionsystemsdiffergreatlyfromonecountrytoanother. Denmarkusesconventionalthermalpowerandanincreasingproportionofwindpower. Norwayhashydropower,whilstFinlandandSwedenhaveamixofdifferentsystems,mostly hydroandnuclearpower. Today,theNordicgridcomprisesthenationalelectricpowersystemsofDenmark,Sweden, NorwayandFinland,aswellasseveralinterconnectionsbetweenthecountrieswhichtiethe nationalgridstogetherintoacoherentsystem.Thissystemconstitutesasingleareawitha commonfrequency,withtheexceptionofWesternDenmark,whichisinterconnectedwiththe gridthatfallswithintheareaofthecontinentalcooperationorganisationUCTE. ThesubsystemsinFinland,Norway,SwedenandeasternDenmarkareinterconnected synchronouslyandformwhatisknownasthe“synchronisedsystem”.Thesubsystemin WesternDenmarkisconnectedtoNorwayandSwedenviaHVDClinks.Together,the synchronoussystemandtheWesternDenmarksubsystemformtheinterconnectedNordic electricpowersystem. Theinterconnectionoftheindividualsubsystemsintoacommonsystemmeansincreased securityandlowercosts.Thedeliverycapacityofthesystemasawholeishigherthanthesum oftheindividualdeliverycapacitiesofthesubsystems.Asaresultoftheexpansionof transmissioncapacitybetweenthesubsystems,theinterconnectedNordicelectricpower systemoperatesincreasinglyasasingleentity. Thecommonsystemreducestheneedforreservesandimprovesthepotentialforobtaining helpintheeventofseriousdisturbancesorinotherextremesituationssuchasyearsof exceptionaldroughtorshortageoffuel. ANordicgridthatworkswellisthetechnicalprerequisiteforasecureNordicsupplyofhigh qualityelectricpower,andhasbeenthefoundationofafinanciallyandenvironmentally efficientpowersupply.

15January2007 8 NORDIC GRID CODE (INTRODUCTION) 2.3 The electrical characteristics of the Nordic electric power system ThefollowingACvoltagelevelsareusedintheNordicgrid(therearealsointerconnectionsat lowervoltagesacrossnationalborders): • Denmark: 132/150/220/400kV • Finland: 110/220/400kV • Norway: 300/420kV(and132kVinthenorthofNorway) • Sweden: 220/400kV BetweensubsystemstherearealsoHVDClinksat285400kV. Thesetransmissionlinesinterconnectanumberofgenerators: • HydropowerproductionisconcentratedinNorwayandthenorthofSwedenand Finland. • ThermalpowerproductionisconcentratedinDenmarkandthesouthernpartsof SwedenandFinland. • WindpowerproductionanddecentralisedproductionareconcentratedinDenmark. ParticularlyintheWestofDenmarkin,windpoweraccountsforalargepartoftotal production. ThereactanceoftheACtransmissionlinesdetermineshowstronglythesystemiscoupled. Longtransmissiondistancesandrelativelyweakcouplingbetweendistantgeneratorsare typicalfeaturesoftheNordelsystem. Weakcouplingbetweengeneratorsmeansthatonsomeinterconnectinglinksitisnotpossible toutilisethefullthermalcapacity.AccordingtothePlanningCode,itmustbepossibleto maintainstableoperationafterthemostcommontypesoffault.Thisappliestotransient, dynamicandstaticstabilityforbothfrequencyandvoltageconditions,andnoconsequential trippingshalltakeplaceduetooverloadingofcomponents. Becauseoflongtransmissiondistancesandhighreactances,itisusuallyinsufficientvoltage supportand/orinsufficientdampingthatsetslimitsontransmissionbetweensubsystems.With excessivepowertransmission,eithervoltagecollapsewouldoccur(voltagestability)or generatorswouldlosesynchronism(anglestability)becauseofasinglefaultcondition.This mayoccurwithsignificantlylowertransmittedpowerthanthegridcomponentsthemselves couldtolerate(thermalcapacity). Anotherfeatureoflongtransmissiondistancesandseparategeneratorsisthattheabilityof certaininterconnectionstotransmitpowerdependsonthedirectionofthepowerflow,and variesovertheyear,depending,forinstance,onwhichgeneratorsareconnectedtothegridand howmuchpowerisbeingtransmittedonotherpartsofthegrid.Thetechnicaltransmission limitisdeterminedbygridsimulationsindifferentoperatingmodes.Naturallytheremustbea systemsafetymarginintermsofcalculationaccuracy.Inaddition,someofthetechnical transmissioncapacityisreservedforcontrolmarginusedforsystemservices,forinstance.The remainingpartofthecapacityisputatthedisposaloftheelectricitymarketandisknownas thecommercialcapacity. ThemaincrosssectionswhereexperiencehasshownthatphysicallimitationsontheNordic electricitymarketmayariseare(seethePlanningCode): • Denmark:InWesternDenmarkthereareinterconnectionstoNorway,Swedenand Germanyandtwointernalcrosssections(AandB),whichmaylimitimportfrom

15January2007 9 NORDIC GRID CODE (INTRODUCTION) Norway,andSweden.InEasternDenmarkthelinkbetweenZealandandSwedenmay imposealimit.TransmissionlinesinSweden’sinternalcrosssections(crosssection4 andthewestcoastcrosssection)alsohaveamajorimpactoncapacitythere. • Finland:Thereisoneinternalcrosssection,P1,andtwocrosssectionstoSweden, RACandRDC.Dependingontheoperatingsituation,itisvoltagestability,insufficient dampingorthermallimitsthatlimittransmissioninthesecrosssections. • Norway:TherearefiveinternalcrosssectionsandtheHaslecrosssectiontoSweden. Inparticularthelattercrosssectionhasprovedinpracticetobeimportantfor conditionsontheNordicelectricitymarket.Inthiscrosssection,transmissionislimited byvoltageand/oranglestability. • Sweden:Therearethreeimportantmaincrosssections(1,2and4)andthewestcoast crosssection.Thecapacityofthemaincrosssectionsislimitedbyvoltageand/orangle stability,whilstthewestcoastcrosssectionislimitedbythermalcapacity. Wherethelimitisimposedbythestabilityconditions,itmaybepossibletoboostthe transmissioncapacitywithoutbuildingnewtransmissionlines.Toimprovevoltagestability, fastresponsereactivepowercanbeinstalled,forexampleseriescapacitorsorcontrollable shuntcapacitors.Controllablegridcomponents,suchascontrolledseriesandshuntcapacitors andHVDClinks,maybeusedtoimprovedamping.Anotheroptionistoinstallasystem protectionwhichdisconnectssomeproductionunitsorloadsaftercertaintypesoffault,thus reducingthepowertransmittedoncriticalinterconnections. SincestabilityissuesarehighlyimportantfortheNordelnetwork,itisessentialforproduction unitstobeabletotoleratedifferenttypesoffaultonthatnetwork.Uncontrolledtrippingof generatorsintheeventofgridfaultsmightmaketheinstabilityevenworse.Stabilityonthe Nordelnetworkcanbeimprovedanditstransmissioncapacitycanbeincreasedbyoptimising thevoltageregulatorsandpowersystemstabilisersofthegenerators.Forthesereasonsitis importantforNordeltohaveacommonConnectionCodethatlaysdownminimum requirementsforthetechnicalcharacteristicsofproductionunits.

2.4 Transmission system operators (TSOs) InDenmark,Finland,NorwayandSweden,transmissionsystemoperators(TSOs)havebeen appointed,withoverallresponsibilityforensuringthateverysubsystemworksproperly.These TSOsareEnerginet.dkfortheDanishsubsystem,FingridOyjfortheFinnishsubsystem, StatnettSFfortheNorwegiansubsystemandAffärsverketSvenskaKraftnätfortheSwedish subsystem. TheTSOsintheNordiccountriesarerequiredtooperatewithintheframeworkoftheruleslaid downinnationalandEUlaw.Someofthehigherlevelframesarethesameforallcountries, howeverthesemaybeinterpreteddifferently.Theframesalsochangewithpolitical developments. ThefirstsystemoperationagreementbetweentwoNordicTSOswasmadein1996between StatnettandSvenskaKraftnät.Thisagreementwasfollowedbybilateralsystemoperation agreementsbetweenallTSOs.ThefirstNordicsystemoperationagreementbetweenallNordic TSOs,withtheexceptionoftheTSOonIceland,wasmadeinOctober1999.

15January2007 10 NORDIC GRID CODE (INTRODUCTION) 2.5 The Nordic electricity market 1 TheNordicmarketisaninternationalmarket.Theelectricpowersystemandfunctionsofthe marketinfluenceeachother.ThemarketstructureinNordel’sneighbouringcountriesdiffers fromthestructureintheNordiccountries;this,togetherwiththedevelopmentoftheir productionandconsumption,isalsosignificantfortheNordicelectricpowersystem. Thereisaphysicalmarketandaswellafinancialmarket.Forthegrid,thephysicalmarketis ofinterestandisoutlinedbelow.

2.5.1 Elspot TheElspotmarketdealswithpowercontractsforphysicaldeliverydailywithin24hours. Elspot’spricemechanismisusedtoregulatetheflowofpowerwheretherearecapacity limitationsintheNorwegiangridandbetweentheindividualcountries.ThereforeElspotmay beregardedasacombinedenergyandcapacitymarket. Thepricecalculationisbasedonpurchasebidsandsalebidsfromallmarketactors.

2.5.2 Elbas ElbasisanorganisedbalancemarketforSweden,Finland,EasternDenmarkandGermany.The Elbasmarketcomprisescontinuouspowertradinginhourlycontractsuptotwohoursbefore physicaldelivery.TheElbasmarketcomplementsElspotandbalancemanagementbythe TSOs.

2.5.3 The regulating power market TheTSOsineachareamanagetheunforeseenbalancebetweenproductionandconsumption. Theactiveactorswhocancreatebalanceareconsumersandproducers,whocanreactquickly insituationswithunexpectedpowerdeviationbyrapidlyadjustingtheirpowertakeofforby feedinginlargeamountsofpower.

3 General provisions

3.1 Bilateral agreements Wherebilateralagreementsorsimilararrangementsareagreed,therulesandprinciplesinthe codemustbefollowedtothegreatestpossibleextent.

3.2 Confidentiality Iftheinformationexchangedbetweenpartieshasnotbeenpublishedinthecountrytowhich theinformationrelates,thepartiesundertaketokeeptheinformationconfidentialasfarasthe legislationallowsintherespectivecountry.

1 ForadetaileddescriptionofthewaysinwhichtheNordicelectricpowermarketworks,see NordPool’swebsite:www.nordpool.com

15January2007 11 NORDIC GRID CODE (INTRODUCTION)

3.3 Deviations from the regulations IfaTSOchoosesnottofollowtherecommendationsofthePlanningCodeandtheConnection Code,theotherTSOsmust,ifthisisconsideredpossibleandnecessary,beinformedbeforethe deviationtakesplace.TheSystemOperationAgreementandtheDataExchangeAgreementare bindingagreementsbetweentheparties,withspecificdisputesolutions.

3.4 Dealing with unclear provisions in the regulations Ifthereisdisagreementaboutthevalidity,applicationorinterpretationoftherulesinthiscode, theissueshallbedealtwithprimarilyintherespectiveNordelcommittee.Ifagreementcannot bereached,theissuecanbereferredtoNordel’sboardforaruling.Nordel’slegaladvisor groupmustalwaysbeconsultedbeforeanissueisreferredinthisway.

3.5 The development of the regulations Nordel’sPlanningCommitteeisresponsible,inconsultationwithNordel’sOperations Committee,forthecontinuedworkonandfurtherdevelopmentoftheNordicGridCode.The OperationsCommitteeisresponsiblefortheOperationalCodeinparticular. TheNordicGridCodemustbeupdatedregularly.Updatingmusttakeplacewhennecessary, howevertheCodemustbereviewedatleastonceayear.Nordel’slegaladvisorgroupmust alwaysbeconsultedbeforeanydecisionistakenthatinvolvessignificantchangestothe NordicGridCode.

15January2007 12 NORDIC GRID CODE (PLANNING CODE) The following documents have been included in this chapter: Document Status The Nordel Grid Master Plan 2002 (parts of) For information Prioritized cross sections For information Nordel’s planning rules 1992 Recommendations (desirable requirements) Planning Code 2004 Recommendations Follow up on the Moberg report Approved in May 2006 by the Planning Committee and the Operations Committee Transmission capacities in the Nordel system – the Approved in 1998 by the 2005 stage, 1999 Planning Committee and the Operations Committee Final report of Nordel’s HVDC working group, 1998 For information and drafted recommendation

The following national documents deal with the planning code: Document Status

15January2007 13 NORDIC GRID CODE (PLANNING CODE)

PLANNING CODE...... 16

1 PURPOSEANDTARGETGROUPS ...... 16 2 THEWORKOFPLANNING ...... 17 3 TRANSMISSIONCAPACITY ...... 18 3.1 Nominal transmission capacity for direct current ...... 18 3.2 Nominal transmission capacity for alternating current...... 18 3.3 Overloading of components ...... 19 4 GRIDPLANNINGFORINTERCONNECTIONSBETWEENTHE NORDELAREAANDOTHER AREAS ...... 19 4.1 Planning new interconnections ...... 19 5 PLANNINGCODEFORPLANNINGTHE NORDICTRANSMISSIONSYSTEM ...... 20 5.1 Principles of the planning code...... 21 5.2 Planning criteria ...... 22 5.2.1 Structure ...... 22 5.2.2 Prefaultoperatingconditionsbeforethefault...... 22 5.2.3 Columnsinthecriteriascheme–Prefaultconditions...... 23 5.2.4 Faultgroups...... 23 5.2.5 Permissibleconsequences ...... 23 5.2.6 Systemprotectionscheme...... 24 5.3 Other important aspects of system planning and design...... 24 5.3.1 Operationalaspects ...... 24 5.3.2 Operationalcharacteristicsofgenerationplants ...... 25 5.3.3 Instructions...... 25 5.4 Post fault performance table (Criteria Scheme) ...... 26 5.5 Fault groups ...... 27 APPENDIX 1: METHOD, MODELS AND TOOLS FOR SYSTEM ENGINEERING STUDIES...... 28

1 METHODOLOGYFORSYSTEMENGINEERINGSTUDIES ...... 28 1.1 Planning information and preconditions ...... 28 1.2 System reliability...... 28 1.3 System engineering analyses...... 30 1.4 Technical/economic evaluation and comparison...... 30 2 ELECTRICALENGINEERINGELECTRICPOWERSYSTEMMODELS ...... 31 2.1 Electrical engineering system analyses and tools...... 31 2.2 Security of supply for energy and power...... 33 APPENDIX 2: FINAL REPORT OF NORDEL’S HVDC WORKING GROUP FROM YEAR 1998...... 34

1 BACKGROUND ...... 34 2 OBJECTIVE ...... 34 3 RESULTSANDCONCLUSION...... 35

15January2007 14 NORDIC GRID CODE (PLANNING CODE) 3.1 Network disturbances...... 35 3.2 System disturbances ...... 36 4 CONCLUSION ...... 38

15January2007 15 NORDIC GRID CODE (PLANNING CODE)

PLANNING CODE

Allpartsofthepowersystemshallbedesignedsothattheelectricpowerconsumptionwillbe metatthelowestcost.Thismeansthatthepowersystemshallbeplanned,builtandoperated sothatsufficienttransmissioncapacitywillbeavailableforutilisingthegenerationcapacity andmeetingtheneedsoftheconsumersinawaywhichiseconomicallybest.Thisalso presupposessuitablybalancedreliability. Thelongtermeconomicdesignofthegridmeanstobalancebetweeninvestmentsandthecost ofmaintenance,operationandsupplyinterruptions,takingintoaccounttheenvironmental demandsandotherlimitations.Flexiblesolutionswhichtakeintoaccountfutureuncertainties, e.g.generationlimitations,uncertainloaddevelopment,technicaldevelopment,etc.,shouldbe selected.Inthisevaluationsocioeconomicsaswellasmarketfunctioningshallbeincluded. TheNordicmaingridshouldallowforwellperformingjointoperation.Thisdemandsco ordination,bothintheplanningofthepowersystemandattheoperatingstage.

1 Purpose and target groups NordicplanningworkshallcontributetocoherentandcoordinatedNordicplanningbetween theTSOs.Itmustsecuretheinfrastructurethatgivesthebestpossiblepreconditionsforan integratedNordicmarketthatworkswellandefficiently,bothinspotmarkettermsand regulatingpowermarketterms.Thismustbedonewithdueregardtothereliabilityofsupply andtheenvironmentaltargetsoftheindividualcountries. ThePlanningCodedescribeshigherlevelandcommonNordicrequirements,frames,processes andcriteriaforjointplanning.Italsospecifiestheinformationnecessaryforplanning, informationwhichgridownersandproducersmustbeobligedtoprovidetotheTSOs. Thepurposeistoprovideabasistosecurethefollowingbyplanning: cohesionintheNordicelectricpowersystem reliabilityintheNordicelectricpowersystem,includingsystemsecurityandsystem adequacy afunctioningNordicmarket environmentalconsiderations Thetargetgroupis: TSOsintheNordiccountries Marketactors Gridowners Theauthorities

15January2007 16 NORDIC GRID CODE (PLANNING CODE)

2 The work of planning Theworkofplanningisgenerallyconstructedaround: preconditions imposedpreconditions theexistingelectricpowersystem generationsystemchanges concreteexpansions(investmentdecisionshavebeentaken) forecastexpansion consumptionchange concreteexpansions(investmentdecisionshavebeentaken) forecastexpansion eventsanalysedunderthegivenpreconditions acceptableconsequencesforthegivenevents TheworkofNordicplanningincludesboththeneedtoextendthegridandtheneedforsystem services.Planningtakesplaceonahigherlevelandthereforedoesnotincludethedistribution networks.Itisconcernedonlywiththepartofthetransmissionnetworksthatareimportantfor theinterconnectedNordicelectricpowersystem.Themethodusedtoanalysepresentand necessarygridstrengtheningmeasuresincludes: clarificationofpreconditions,includingrelevantdevelopmentscenarios systemengineeringanalyses,includingpower/energybalanceanalysesandnetwork analyses technical/economiccomparisonandevaluation.Theeconomicevaluationisbasedon socioeconomictheories. ThisprocessisillustratedinFigure1below.Thesystemengineeringanalyses(networkand power/energybalanceanalyses)aredoneasaninteractiveprocessinwhichtheresultsofthe power/energybalancesconstitutethe“input”tothenetworkanalysesandviceversa. System engineering analyses

Power/energy balance analyses

Technical/economical Preconditions comparison (Planning information) (System development plan)

Network analyses

Figure 1 Sketch of the method for evaluation of the need for measures to reinforce the grid Possibleinvestmentsareevaluatedonthebasisofcostsandbenefitvalues.Socioeconomic principlesareusedinthebenefitevaluation.Importantcriteriaforplanningare:

15January2007 17 NORDIC GRID CODE (PLANNING CODE) 1. Productionoptimisationandenergyturnover 2. Lessriskofenergyrationing 3. Lessriskofpowershortage 4. Changesinactiveandreactivelosses 5. Tradinginregulatingpowerandsystemservices 6. Thevalueofabetterfunctioningelectricpowermarket 7. Sufficientcapacity Examplesofmethods,modelsandtoolsaredescribedinmoredetailinAppendix1:Method, modelsandtoolsforsystemengineeringstudies.

3 Transmission capacity

3.1 Nominal transmission capacity for direct current • Thenominaltransmissioncapacityisthemaximumcontinuouspowerthatcanbeallowed atanambienttemperaturethatisnotexceededformorethan4weeksperyearandwithout affectingthenominalavailability. • ThenominaltransmissioncapacityismeasuredontheACsideoftherectifier.

3.2 Nominal transmission capacity for alternating current • Thetransmissioncapacityisthetechnicallimitforactivepowerthatcanbecontinuously transmittedoveragridsectionwithastartingpointinanintactnetwork.Thetrading capacityisagreedbetweentheTSOsandislower,typicallyby510%. • Forthecalculations,dimensioningtransmissions,loadsituationsandgenerationsituations forthegridshallbeselected;accordingtoNordel’sgridplanningrules. • Thetransmissioncapacityisdeterminedonthebasisthatthegridmustwithstandthe dimensioningfault(n1)bothontheinterconnectionandintheconnectedgrids;see Nordel’sgridplanningrules.Thisappliesregardlessoflimitationsduetothermal conditions,voltagestability,dynamicstabilityorconditionsintheunderlyinggrid. • Thetransmissioncapacityisstatedasthehighestvalueachievedduringtheyear.The numberofhoursforwhichthetransmissioncapacityisavailableshallbestatedforeach section. • Thelimitingfactormustalwaysbestatedforthetechnicallimit. • Thetransmissioncapacityismeasuredonthereceivingend.

15January2007 18 NORDIC GRID CODE (PLANNING CODE)

3.3 Overloading of components COMPONENT LOADING ABOVE NOMINAL Component Denmark Finland Norway Sweden Overhead "onehour’s" Uses 120%for15 Conductor line currentwitha temperature min temperature windof1.6 dependingon +20 oCat30 oC m/sec 1) area airandwindof /cables /150%with 1m/sec cables.Inthe futurethiswill beassessed individually. 130% 150%briefly 130%with 120%forone 0oCair hour. Endpoint Doesnot Nominalvalue 100>120% 0 components normallylimit forupto15 theline min 1) Operationalpossibilitythatisnotbroughtintothecalculationintheplanningphase. SeriescapacitorsaredimensionedaccordingtotheIECstandard.

4 Grid planning for interconnections between the Nordel area and other areas WiththeexceptionofWestDenmark,theNordelsystemisoperatedasynchronouslywithother electricpowersystems.Decisionsontheestablishmentofnewinterconnectionstoandfrom theNordelareahavebeenformalisedintheformofbilateralagreements.Such interconnectionswillneverthelessaffecttheentireNordicelectricpowersystem,notjustthe TSOsthatestablishthenewinterconnection.Itisthereforeimportantthattheplanningofsuch interconnectionsiscoordinatedwiththeNordicgridmasterplan.ItisdesirablethatNordel shouldtakepartintheplanningworkinawaythatensuresthatsuchexpansioncanbemade cleartoallofNordel.

4.1 Planning new interconnections 2 Appendix 2: Final report of Nordel’s HVDC working group containsanapprovedoverview reportaboutnewHVDCinterconnectionsbetweenNordelandUCTE.AdraftNordel recommendationhasbeenwrittenonthebasisofthisreport. • ThecontrolsystemsfornewHVDCinterconnectionsshouldbeadaptedsothattheriskof multiplecommutationfailuresintheeventofdimensioningfault,isminimised.Itis assumedthatthegridwillbedesignedinaccordancewiththeplanspresented.There shouldbeverificationbymeansofsimulatortests.

2WritteninthelightofdraftNordelrecommendation.

15January2007 19 NORDIC GRID CODE (PLANNING CODE) • Maximumfrequencycontrolledemergencypoweractivationinthedirectionawayfrom theNordelsystemshouldcorrespondtothedimensioningoutageintheNordelsystem.In directiontowardstheNordelsystemagreateractivationcanbeaccepted.Frequency controlledsteporrampvariationofthepowerispermittedwhenthefrequencyisbelow 49.5Hz.Thebasicruleisthattheinstantaneousdisturbancereserveisdividedupequally betweentheHVDCinterconnections.However,transfercanoccursubjecttoprior agreementbetweentheownersoftheHVDCinterconnections. • Emergencypowercontrol(EPC)withtheHVDCinterconnectionsshouldnotbe concentratedelectrically,duetotheriskoftrippingseveralHVDCinterconnections simultaneously.

5 Planning code for planning the Nordic transmission system Thecriteriaarestilldeterministic,althoughprobabilisticconsiderationshavebeentakeninto account.Inthecriteria,demandsaremadeondisturbanceconsequencesthatareacceptablefor variouscombinationsofoperatingconditionsandfaulttypes.Inprinciple,moreserious consequencesareacceptableforlesscommoncombinationsoffaultsandoperatingconditions. Thisprincipleisillustratedwiththefollowingfigure. Probability Stress Operation condition before fault Probability

Con

sequences

of faults Severity

Fault Figure 2. Illustration of the correlation between operation condition (including probability / stress of the condition), faults (including probability / severity of the faults) and acceptable consequences of faults.

15January2007 20 NORDIC GRID CODE (PLANNING CODE)

Themainstructurecanbesummarisedinaccordancewiththetablebelow. Pre-fault operational conditions

Grid Spontaneously Maintenance intact weakened (n-1)

Common Only local consequences fault types

Relatively common Only regional consequences Fault type Fault extreme faults

Other extreme faults Major breakdown acceptable TherulesareintendedforuseintheplanningoftheNordicmaingrid.Theyshouldalsobe abletoserveassupportintheoperationofthegrid.

5.1 Principles of the planning code Therulesshallbeusedforthejoint,synchronisedNordictransmissiongrid.Thisconcerns principallythemaingrid,mainly220400 3kV,andtheinterconnectinglinksbetweenthe variouscountries.Therulesshouldbeusedintheplanningofthepowersystem.Theaimis thattheoperationandplanningworkshouldbebasedonthesamereliabilityphilosophy,and thattherulesshouldalsobeabletoserveasaguideattheoperatingstage.Therulesdonot coverlocalsupplyreliabilityandotherlocalconditionsinthegrid. InordertosafeguardacertainminimumreliabilitylevelfortheinterconnectedNordicpower system,certainminimumdemandsonreliabilityfortherequiredtransmissioncapacityhave beendefinedthroughtheplanningrules.Thedemandshavebeengivenconcreteformbya numberofcriteria,whichmustbemetingriddesign.Thecriteriaarebasedonabalance betweentheprobabilityoffaultsandtheirconsequences,i.e.moreseriousconsequencesmay beacceptableforfaultswithlowerprobability. Thegridstrengthdefinedthroughtherulesissuchthatitwillbepossibletomaintainthe requiredtransmissionlevelifthegridisintactundervaryinggenerationandloadsituations.If transmissionlinesareoutofoperation,lowercapacitywillnormallybeaccepted. Therequiredtransmissioncapacitycanbeachievedbyanumberofmeasuresaffectingthe constructionofprimaryequipment,systemprotectionsandauxiliarysystems,aswellas disturbancereservesandotheroperationalmeasures.Inthecaseofmoreseveredisturbances thanthosedirectlytakenintoaccountinthecriteria,itisassumedthatoperationalfacilitiesare availableinthepowersystemforrestoringoperation.

3InNorwaynominalvoltageis420kV

15January2007 21 NORDIC GRID CODE (PLANNING CODE) Therulesarebasedonassessments,basedonexperience,offaultprobabilitiesandavailability ofindividualitemsofequipment.Futurechangesinthereliabilityofindividualitemsof equipmentortheintroductionofnewequipmentmayplacespecialdemandsongriddesign.

5.2 Planning criteria

5.2.1 Structure Deterministiccriteriaareusedintheplanningofthegrid.Thismeansthatanumberoffaults groupshavebeenspecified,againstwhichthegridwillbetested.Thefollowingaredefinedfor everyfaultgroup prefaultconditions,and acceptablepostfaultconsequences Thecriteriaaresummarisedintheschemein Figure 3,andinalistoffaultgroups,etc.in accordancewithChapter5.5.Theoperatingconditionsbeforethefault,thefaulttypesand consequencesofvariousfaultsaredescribedbelow.

5.2.2 Prefault operating conditions before the fault Thegridstrengthshallbestudiedforthefollowinggridoperatingconditions. Gridintact Allgridcomponentsthatareofimportanceforthefaultbeingstudiedareinoperation. Forthegridstudies,thedimensioningtransmissions,loadsituationsandgenerationsituations forthegridshallbeselected.Asanexample,forthesurroundinggriditshallbepossibleto assumethetransmissionlevelsthatcorrespondtotheagreedcapacities(normallyin accordancewiththePlanningCode).Economicallyreasonablegenerationsituationsshallbe assumed. Gridnotintact,scheduledwork Ashuntorseriescomponentthatisofimportanceforthestudiedfaultshallbeassumedtobe outofoperationformaintenance. Thepointintimeshallbeselectedonthebasisofasuitableoperatingsituation,e.g.withlow transmission.Theobjectiveistotakeintoaccountintheplanningthefutureneedfor maintenance,andtocreatesufficientflexibilityforthispurpose. AshuntcomponentisacomponentthatbelongstofaultgroupFG1,i.e.agenerationunitor reactiveshuntcomponent(capacitor,etc.).Aseriescomponentisacomponentthatbelongsto faultgroupFG2,i.e.transmissionline,seriescapacitor,,etc. Gridnotintact,unscheduledoutage Ashuntorseriescomponentthatisofimportanceforthestudiedfaultshallbeassumedtobe outofoperationduetoaspontaneousfaultevent. Thepointintimeisassumedtobe15minutesafterthecomponentfailure.Generationand transmissionhavethusbeenadaptedasfaraspossiblewiththedisturbancereservesavailable. Forthestudiedsectionofthegrid,itisacceptablethatthetransmissionhasbeenreduced, providedthattheneedsoftheconsumersandotherspecialtransmissionrequirementscan simultaneouslybemet.

15January2007 22 NORDIC GRID CODE (PLANNING CODE) 5.2.3 Columns in the criteria scheme – Prefault conditions Inthecriteriascheme(Chapter5.4),fivecolumnswithdifferentoperatingconditionshave beendefinedasfollows. PC0 Gridintact PC1 Gridnotintact,scheduledmaintenance PC2 Gridnotintact,spontaneouslossofashuntcomponent PC3 Gridnotintact,spontaneouslossofaserieselement andthreecolumnsforevenmoreseriousconditions,withseveralcomponentsoutofoperation. Alternatively,theoperatingsituationisnotadapted,i.e.thetimeislessthan15minutesafter theinitialfault.

5.2.4 Fault groups Thefaulttypesforwhichthegridistobetestedareclassifiedintofivefaultgroups.Thefault groupshavebeenselectedtoensurethatthegridwillhaveacertainstrength.Thiswill hopefullyalsocoverotherrelativelycommonfaulttypesthathavenotbeenspecified.The individualfaulttypesaredescribedinmoredetailinSection5.5.Fundamentalcommentsare givenbelow. Primaryrelayprotectionisassumedtoperformintheintendedmanner,unlessadifferent functionhasbeendefinedinthestudiedfaulttype. Thefaultshavebeengroupedwithregardtotheirprobability.FaultsinFG1andFG2arethe mostfrequent.FaultgroupFG3compriseslessprobablesinglefaultsandspecialmore commondoublefaults.FaultgroupsFG4andFG5containrarefaults. ThreephasebusbarfaultsinFG3shallprincipallybetakenintoaccountforstations,whichare ofsignificancetojointoperationbetweencountries. Thefollowingshallapplytothefaultcombinationofalinefaultwithlossofathermalpower unitinFG4.Aneconomicassessmentshallbemadeofwhetheritisjustifiedtoimplement suchmeasuresintheunitandgridthatthefaultconditionwillbeequivalenttothoseinfault groupFG3.

5.2.5 Permissible consequences Threelevelsofconsequencesaredefined.Theprincipaldemandsmadearethosethatareof significancefortheinterconnectedNordicpowersystem. A. Stableoperation,localconsequences Onlylocalconsequencesareacceptable.Apartfromtheloadsheddingortrippingofgeneration thatisnecessaryforeliminatingthefault,limitedamountsofloadsandgenerationmaybe switchedoutbymeansofthesystemprotections.Afterthefault,operationaladaptationofthe transmissionsisacceptable. Itshallbepossibletomaintainstableoperationasregardstransient,dynamicandstatic stabilityforbothfrequencyandvoltageconditions,andnoconsequentialtrippingshalltake placeduetooverloadingofcomponents.Inaddition,itisassumedthatthevoltagesand frequencyafterthefaultwillbesatisfactoryfortheconsumersandpowerplants.Effortsshall bemadetomaintainjointoperationalsoafterthefault,andplannedsectionalisationofthegrid shallnotnormallybeemployedasamethodforensuringstability.

15January2007 23 NORDIC GRID CODE (PLANNING CODE) B. Controlledoperation,regionalconsequences Theconsequencesshallbelimitedandfurthercontrolledoperationshallbemaintainedfor mostofthesystem. Controlledforcedtrippingofgenerationandloadsheddingmaybecarriedout.Loadshedding orforcedgeneratortrippingshallnormallybeconfinedtotheregioninwhichthefaulthas occurred.Minorgridbreakdownsandgridsectionalisationarealsoacceptableprovidedthat theyarerestrictedtotheregioninwhichthefaulthasoccurred.Theterm’region’denotesparts ofthenationalgrid,whichareconfinedbythemaincrosssectionsinthenationalgridorby theinterconnectinglinks(internationaltielines).Inexceptionalcases,majornational disturbancesmaybepermissibleprovidedthattheydonotspreadbeyondtheinterconnecting links.However,subjecttoagreement,loadsheddingmaybeextendedtootherpartsofthe Nordicpowersystem.Thisappliesinparticulartotheuseofsystemwidesystemprotections. C. Instabilityandbreakdown Instabilityisacceptable.Gridsectionalisationandextensivebreakdownscantakeplaceinthe Nordicsystem.However,theobjectiveistocreateadefinedinitialsituationfromwhich restorationcantakeplace. Itisassumedthatoperationalpossibilitieswillbeavailableforrestoringoperationtonormal levels.Itisalsoadvisabletoinvestigateattheplanningstagewhethersimplemeasurescanbe appliedtorestricttheconsequencesintheeventofveryrareanddifficultfaults.

5.2.6 System protection scheme Thetermsystemprotectionschemedenotesautomaticcontrolequipmentthatdisconnectsor otherwisecontrolsgeneration,loadornetworkcomponentsotherthanthefaultycomponent. Disconnectionmayconcernbothindividualcomponentsandalargenumberofcomponents. ThedefinitionofsystemprotectionschemeisgivenintheSystemOperationAgreement appendix1andrequirementsforsystemprotectionintheSystemOperationAgreement appendix2.

5.3 Other important aspects of system planning and design

5.3.1 Operational aspects Futureoperationalaspectsshallbetakenintoaccountintheplanningofthegrid.Fundamental principlesandcriteriaforplanningandfutureoperationmustthereforebefoundedonthesame basicideas.Thedesignincludesbothsystemdesignandtheperformanceofindividualobjects. Theeconomicdimensioningofthegridmeansthatconsiderationmustbegiventocostsand needforflexibilityattheoperatingstage. Itshallbepossibletohandleshutdownsofoneorseveralsystemcomponentsinamanner, whichisacceptabletooperation. Attheoperatingstage,itshallbepossibletodistributethedisturbancereservesinan economicalmanner.Thegridshouldthereforebedesignedsothattransmissionmarginsare availableorthatfaultconditionswillnotleadtolossofnecessaryreserves.

15January2007 24 NORDIC GRID CODE (PLANNING CODE) Operatingpossibilitiesshallbeavailableforhandlingmajordisturbances.Thisincludes operatingroutines,equipmentandtrainingtoenablebothabnormaloperationandrestorationto normaloperationtobehandled.

5.3.2 Operational characteristics of generation plants Theunitsareassumedtohavecertainoperationalcharacteristics.Thesedemandsarei.e. regulatedbytheConnectionCode. Theunitsshallhavesuchtolerancetovariationsinvoltageandfrequencythatitwillbe possibletohandlethemostcommontypesofgridfaultwithouttheunitsbeingtrippedor damaged.Theunitsshallalsohavesuchcontrolcapabilitythattheywillbeabletocontribute towardsthedisturbancetoleranceofthegridasactiveandreactivedisturbancereserves.

5.3.3 Instructions Asasupplementtotheplanningcriteria,instructionscontainingspecialnationaldemandsand ’userinstructions’fortheplannersshallbedrawnup.Theinstructionsshallbepreparedfor eachcountry,andshallthenbecoordinatedbetweenthecountries. Theobjectiveoftheplanningcriteriaistoachieveacceptablestrengthoftheinterconnected Nordicpowersystem.Onlyafewdemandsaremadeonthesupplysecurityandlocal conditions.Itisthereforenaturaltosupplementthecriteriawithnationalplanning requirements. Thestructureofthecriteriagivesalargenumberofcombinationsofoperatingsituationsand faultsthatmustbetested.Inpractice,onlyafewofthemaredimensioningtothedesignof eachindividualsectionofthegrid.Specialcommentsshouldbemadeonthesecombinations, andinstructionsshouldbegivenonhowcalculationsshouldbecarriedout. Sinceseveralconsequencelevelshavebeenintroducedinthecriteria,strictdemandsaremade onknowledgeofthenatureofthepowersystemanditsbehaviourintheeventofdisturbances. Experienceandcalculationmethodsmustthereforebegatheredandcommentsmustbemade onthem.

15January2007 25 NORDIC GRID CODE (PLANNING CODE)

5.4 Post fault performance table (Criteria Scheme)

Acceptable consequences Pre-Fault Conditions A Stable operation, local consequences and limited Alert-state Disturbed Emergency Normal operation intervention of system protection operation operation operation B Controlled operation, regional consequences Planned Spontaneous loss and Exceeded Exceeded Exceeded Grid intact C Instability and breakdown maintenance adapted operation 1 transfer limits / transfer limits transfer limits insufficient and / or and / or A/B Consequences in accordance reserves. insufficient insufficient with B for faults in previously No critical Shunt or Shunt Series Adapt reserves reserves weakened area, otherwise A. components series component component operation by out of component out of out of Aim should be to limit the adjusting new Load B/C operation out of operation operation transfer limits shedding consequences according to B but operation for all faults this cannot be fulfilled and / or effected activating 1 The operating situation has been adapted reserves within during 15 minutes after the fault by using the means available (disturbance reserves, etc.). PC0 PC1 PC2 PC3 max. 15 min.

Single fault that does not affect series components A B/C FG1 N-1faults B/C Single fault that affects al groupsFault series components A A AA/B B/C FG2 Uncommon single faults and special combinations B of two faults FG3 C eiu faultsSerious Other combinatios of two faults caused by the BBBC same event FG4 CC Other multiple faults CCC FG5 Figure 3 Criteria Scheme to be used for grid planning

15January2007 26 NORDIC GRID CODE (PLANNING CODE) 5.5 Fault groups Thefaultsforwhichthegridistobetestedareclassifiedintofivefaultgroups. FG1 Commonsinglefaultsthatdonotaffect(transmissionlinesorother)seriescomponents Definitelossof 1.1 Generationunit 1.2 Loadblockwithassociated 1.3 Shuntcomponent(capacitor,reactor) 1.4 DCpole(connectedtoadjacentsystem(e.g.BalticCable)) FG2 Commonsinglefaultsthataffect(transmissionlinesorother)seriescomponents Definiteloss,withorwithoutinitialsinglephasepermanentfault 2.1 Transmissionline,onecircuit 2.2 Systemtransformer 2.3 Busbar 2.4 Otherseriescomponent(seriescapacitor,etc.) 2.5 DCpole(InternalNordicconnection) FG3 Lesscommonsinglefaultsandspecial,morefrequentcombinationsoftwo simultaneousfaults Definitelosswithinitial2phaseor3phasefault 3.1 Transmissionline,onecircuit(withoutfastautoreclose) 3.2 Busbar 4 3.3 Combinationthatincludesequipmentwithunknownreliability. FG4 Othercombinationsoftwosimultaneousfaultswithacommoncause Definitelosswithinitial3phasefault 4.1 Combinationoflinefaultandlossofthermalpowerunit 5 4.2 Doublecircuittransmissionline 4.3 Stuckbreakerpoleorrelayfaultintheeventoffaultclearance 4.4 Twopowerstationunits 4.5 Stationwithsectionalisingcircuitbreakers 4.6 DCbipolelink 4.7 Twotransmissionlinesalongthesameclearedpath FG5 Othermultiplefaults(twoindependentsimultaneousfaults,andthreeormore simultaneousfaults) 5.1 Twoindependentsimultaneousfaults 5.2 Threeormoresimultaneousfaults

4Consideredprincipallyforstationsthatareofimportancetojointoperationbetweencountries

5Measuresinthegridandonunitsassessedeconomicallyagainstgridconsequences

15January2007 27 NORDIC GRID CODE (PLANNING CODE) APPENDIX 1

APPENDIX 1: METHOD, MODELS AND TOOLS FOR SYSTEM ENGINEERING STUDIES

1 Methodology for system engineering studies

Studiestoevaluatetheneedtoreinforcethegrid Thebenefitvaluesofalternativereinforcingmeasures Determininganddescribingpreconditions Analysisofthetechnicalpropertieswithalternativesolutions Atechnical/economicevaluationandprioritisationofthesealternativesolutions Choiceofreinforcingmeasures Amethodforthisisshownin Figure 4.Themethodisdescribedinmoredetailbelow.

1.1 Planning information and preconditions Thevariouspreconditionsthatarefundamentalformakinganalysesoftheelectricpower systemaredescribedin Figure 4.Scenariosandbasicassumptionsareofparticularimportance (alternativedevelopmentsthatareimportantforthereinforcingneedthatistobestudied).This includespreconditionswithregardtogeneralloaddevelopment,specialloadincreases, productionexpansion,etc.Whenestablishingmodelsforcarryingoutthetechnicalanalysesit isimportanttoconsideroperationalsituationsthatareofsignificancefortheevaluationof limitations,capacityandreinforcingneeds.

1.2 System reliability Thelongtermplanningoftheelectricpowersystemmustensurethereliabilityofthesystem (securityofsupply).Theinternationalconceptsforsystemreliabilitycover: systemsecurity,whichcoversnecessarysystemservicesandgridcapacityforthe transportoftheseservices. systemadequacy,whichcoverssufficientproductionandgridcapacitytomeetdemand. Thefollowingconceptsagreewiththeinternationaldefinitionofsystemsufficiency.Theterm “energysecurity”referstotheabilityoftheelectricpowersystemtodelivertoconsumersthe desiredamountofenergywithagivenquality.Theterm“powersecurity”referstotheability oftheelectricpowersystemtodelivertoconsumersthedesiredamountofpowerwithagiven quality.Acommonexpressionforthesetwoconceptsisdeliverysecurity(orsystem sufficiency). Internationally,securityofsupplyisexpressedwiththeconceptofsystemreliability,where deliverysecurity/systemsufficiencyisonepartandsystemsecurityistheother.System securityistheabilityoftheelectricpowersystemtowithstandsuddendisturbancessuchas electricalshortcircuitsortheunexpecteddisconnectionofpartsofthesystem.Theconcept includesdynamicconditions.

15January2007 28 NORDIC GRID CODE (PLANNING CODE) APPENDIX 1 Technical/economicevaluationandcomparison (socioeconomicprofitabilityevaluation) • Qualitative/strategicdescription/evaluationofthepropertiesandlimitationsof alternativegridsolutions • Cost/benefitevaluationsofdifferentreinforcementsolutions(socioeconomic profitabilityevaluation) • Calculated,forexample,ascostsofusingalternativereinforcementsolutionsin relationtoareferencesolution,e.g.thezeroalternative/zerosolution • Quantitative/qualitativeevaluationofconsequencesofchangedpreconditions (adaptabilityevaluations) Systemengineeringanalyses

Gridanalyses Powerbalanceanalyses (LoadFlow/dynamic) (Multiareapowermarket simulator) Systemengineeringproperties  Powerbalanceproperties (Flowinput • Transmissionlimitations/ togrid • Durationcurves dimensioningfault analyses • Bottleneckcosts • Transmissioncapacity • Transmissionlossesand (thermal,voltage, costsoflosses dynamic) • Transmissionloss (Transmission capacity) Planninginformation/assumptions • Scenariosandbasicassumptions(load,production,export/import) • Reinforcementmeasures/solutions,operationalsituations,crosssections • Analysisperiodandanalysisstages • Planningcriteria • Technicalassumptions • Economicassumptions • Method Figure 4 Procedure for carrying out a socio-economic profitability evaluation

15January2007 29 NORDIC GRID CODE (PLANNING CODE) APPENDIX 1 1.3 System engineering analyses Systemengineeringanalysesincludegridanalysesandpowerbalanceanalyses: Gridanalysesincludetheanalysisoftransmissionlimitationsandtransmissioncapacity (thermal,voltageanddynamic)forexistinggridsandalternativereinforcement solutionsforrelevantoperationalsituationsandscenarios.Informationaboutenergy flowsinthegrid,e.g.durationcurvesfrompowerbalanceanalyseswillbeimportant backgroundregardingtheneedfortransmissioncapacityinimportantcrosssections. Thecalculationsaredonewiththeloadflowanddynamicsimulationsoftwareanda relevantgridmodel. Powerbalanceanalysesincludeanalysisofenergyflowsundertherelevantscenarios. Amongotherthings,durationcurvesarecalculatedfortransmissionbetweenthe individualjointloadareasandbottleneckcostswithlimitationsbetweentheseareas. Thecalculationsaredonewiththemultiareapowermarketsimulatorandarelevant gridmodel. Durationcurvesarecalculatedwithoutlimitationbetweentherelevantnetworkareas,possibly withoutlimitationsbetweenseveral/allareas. Bottleneckcostsarecalculatedwithonefixedorseveralrelevantcapacitylevelsinthecross sectionconcerned,andwithoutorwithrelevantcapacitiesbetweentheotherareas.Relevant transmissioncapacitiesareobtainedasaresultofthegridanalyses.

1.4 Technical/economic evaluation and comparison Technical/economiccomparisonwillincludeasummarisingevaluationofthegridrelatedand powerbalancerelatedpropertiesofdifferentgridreinforcementsolutionsindifferent scenarios. Benefitvalueandcostevaluations(socioeconomicprofitabilityevaluations)willbeimportant forevaluatingalternativereinforcementmeasures,butmorequalitativeandstrategic evaluationsofalternativereinforcementsolutionswillhavetobeundertakenbeforeafinal decisiontoimplementrelevantreinforcementmeasuresismade. Asocioeconomicprofitabilityevaluationcanbedonewithvariousprofitabilityevaluation methods.Amethodforcalculatingthenetpresentvaluebenefitofareinforcementmeasureis describedhere. Thenetpresentvalueiscalculatedasacapitalisedanddiscountedvalueofallcostsduringthe analysisperiod,statedasthebenefitinrelationtothereferencesolution(e.g.thezero solution 6).Forameasuretobesocioeconomicallyprofitable,thefollowingrequirementmust bemet: Netpresentvaluebenefit(NNN)>0

6 The“zerosolution”meanstheexistinggrid,i.e.withnomeasurestakentoreinforcethegrid(concrete reinforcementmeasures),ortoutilisethegridmore(e.g.systemprotectionmeasures)inrelationtoexisting gridsandoperationalpractice.

15January2007 30 NORDIC GRID CODE (PLANNING CODE) APPENDIX 1 Thenetpresentvaluebenefitiscalculatedonthebasisoftechnicalcostsandsystemcostsas follows: NNN= IDM+ F+ TAS ( meanscosts,cost/benefiteffectofthemeasurecomparedwithareferencesolution,e.g.the zerosolution.) Costcomponentsincludedare: Technicalcosts I: Investmentcosts,possiblyinvestment/reinvestmentcosts,etc.inrelationtothe correspondingcostsofthereferencesolution. D: Operatingandmaintenancecosts,i.e.o/mcostsduetonewmeasuresorinrelationto thecorrespondingcostsofthereferencesolution. M: Environmentalcostscomparedwiththecorrespondingcostsofthereferencesolution. Environmentalcostsareoftendifficulttoquantify,andtheenvironmentalconsequences arethereforeoftenonlyevaluatedqualitatively. Systemcosts F: Bottleneckcosts,expressedasreduction(benefit)withrespecttothebottleneckcostsof thereferencesolution. T: Losscosts,expressedasthebenefitcomparedwiththecostsoftransmissionlossesfor thereferencesolution. A: Outagecostscomparedwiththecorrespondingcostsofthereferencesolution. S: Systemcostscomparedwiththecorrespondingcostsofthereferencesolution. Power/energybalanceanalysesandnetworkanalysesarecarriedout.Theareasubdivision usedintheanalysesisdescribed.

2 Electrical engineering electric power system models Tocarryouttheanalyses,amodeloftheNordicelectricpowersystemisusedwhichcontains thetransmissioninstallationsincludedinthesystem,e.g.transmissionlines,transformersand generatingplant.Underlyingnetworkswithcorrespondingcomponentsandconnected consumptionarealsomodelled.Analysesaredoneforrelevantoperationalsituations,i.e.with arelevantswitchingconfigurationinthegridandwithcorrectproductionandconsumption levels,sothattransmissionsandvoltagelevelsarecorrect. Forthispurposethefollowingloadcasesarecreated: Highloadscenariowithafiveyearhorizon. Highloadscenariowithatenyearhorizon.

2.1 Electrical engineering system analyses and tools Thepracticalanalysesfordetermining,forexample,thetransmissioncapacityofthegrid,are carriedoutbydeterminingdimensioningoperationalsituationsandtypesoffault,limiting components(thermal)orlimitingsystemproperties(voltagecollapse,dynamicinstability),as wellasloadingofthegriduntilthelimitingcomponentsarefullyloadedorthelimitingsystem propertiesareexceeded(voltagecollapse,dynamicstability).

15January2007 31 NORDIC GRID CODE (PLANNING CODE) APPENDIX 1

Utsjoki

Tromsø Alta 7

Ivalo

Narvik

Ofoten Tornehamn Vajukoski 8 12 Salten RAC Petäjäskoski Pirttikoski 6 SWEDEN Letsi Keminmaa Røssåga Krivoporolsk Ajaure Pikkarala (6) Pyhänselkä Cross-section Grundfors P1 Tunnsjødal no. 1 Vuolijoki Linn- 9 vasselv

Ventusneva FINLAND Stornorrfors Trondheim Storfinnf. Alapitkä Alajärvi (220) Järpströmmen Tuovila 5 Nea Petäjävesi Seinäjoki Huutokoski NORWAY (220) Sundsvall (5) 13 Toivila

Ulvila Yllikkälä (132) Kangasala Koria Vyborg Cross-section Olkiluoto Hikiä 1 no. 2 Kymi Rauma Nurmijärvi (4) Hyvinkää 4 DC Lieto Loviisa Bergen RDC HELSINKI Kingisepp Rjukan Inkoo Narva OSLO 10 Enköping

(3) Hasle Borgvik Stavanger STOCKHOLM 2 Important transmissionESTONIA cross-sections (2) Tartu Norrköping Finland P1 3 (1) Kristiansand Sweden Cross-section no. 1 Skogsäter Velikor West Coast cross-section Cross-section no. 2 DC Göteborg DC Cross-section no. 4 Nässjö Riga LATVIA A 15 DC Oskarshamn West Coast cross-section Ringhals Cross-section Norway 1) Hasle cross-section no. 4 2) Flesaker cross-section Helsingborg Tjele 3) Sørlands cross-section B 11 4) Hallingdal/Numedal cross-s. DENMARK Karlshamn 5) Trøndelags cross-section Ignalina 16 Barsebäck LITHUANIA6) Nordlands cross-section 14 Kruseberg DC KØBEN- Kassø HAVN Denmark A 17 Kaunas Vilnius Zarnowiec B

DC DC Flensburg Kiel KaliningradGreat Belt Gdansk Audorf Ustka Inter-Nordic cross-sections Lida DC Lubmin Brunsbüttel Dunowo Rostock RAC Elk Emden Brokdorf (110) Zydowo Bergum Güstrow RDC Ross Bialystok Hamb.IS Pasewalk Norway-Sweden cross-section

(220) GERMANY Perleberg POLAND (220) Öresund HOLLAND Figure 5 Important transmission cross-sections in the Nordel area shown in relation to the area division (areas 1 – 17) for which power and energy analyses are made.

15January2007 32 NORDIC GRID CODE (PLANNING CODE) APPENDIX 1

2.2 Security of supply for energy and power Aswellasanalysingthecapacityfortransportonthemarket,itisimportanttodetermine whethertherearesufficientresourcesinthegeneratingplanttomaintainsecurityofsupplyin theNordelarea.Thisisdonebyanalysingtheprobabilityofenergyorpowershortage.Where theenergysupplyisconcerned,thefocusisondryyearsandextremedryyearsforthe hydropowersystem.Wherepowerisconcerned,thefocusisonnormalwinterloadand extremewinterloadthatoccursonceeverytenyears. Theremaybeaneedtodevelopanumberofsecurityofsupplycriteria,whichdeterminethe Nordelarea’spossibledegreeofselfsupplyintermsofpowerandenergy.

15January2007 33 NORDIC GRID CODE (PLANNING CODE) APPENDIX 2

APPENDIX 2: FINAL REPORT OF NORDEL’S HVDC WORKING GROUP FROM YEAR 1998

1 Background ThenearfuturewillseearapidincreaseinthenumberofHVDCconnectionsfortransmission ofpowerbetweentheNordelandUCTEsystems.Atpresent,totaltransmissioncapacityis almost3000MW,whilecurrentplansareforittoincreasetoabout5500MWwithinthenext fewyears. ThedesireforsuchincreaseintheHVDCcapacityspringsprimarilyfromcommercial interests,poweredbytheideawithintheEUofcreatingasingleenergymarket,aswellasthe scopeforjointoperationofhydroelectricpowergenerationinNordelwiththermalelectricity productionontheContinent.Theprospectofanexpansionoftheexistingmainnetworkis hamperedbyconsiderablepublicoppositiontooverheadlines. TheHVDCconnections,havingindependentownersandrepresentinguncoordinatedinterests, areincertaincasesexpectedtodrawsomuchfromtheNordelsystemastodisruptthestability ofoperations.Withuncoordinatedoperationoftheconnections,thereisariskthata disturbanceintheUCTEsystemcouldaffectthedimensioningoftheNordelsystem. ThefastpowercontrolpropertiesoftheHVDCconnectionscancontributetoimprovingthe overallfrequencyqualityofthesystem.Anyproductionoutagewillaffectsystemfrequency. Dependingontheextentoffrequencydeviations,variousformsofemergencypowerwillbe activated.CurrentpracticeasregardsemergencypowerintheNordelsystemisdescribedin Nordel’srecommendation“Rekommandasjonforfrekvens,tidsavvik,regulerstyrkeog reserve”,August1996.TheHVDCconnectionsareincludedinbothmomentaryoperating disturbancereserveandinnetworkprotectioncontrol. InconsiderationoftheNordelrecommendationthepowercontrolpropertiesoftheHVDC connectionsmaybeusedtoimprovethefrequencyqualityinNordelfollowingdisturbancesof operation. Nordel’sHVDCworkinggrouphaspreparedtwosubreports:“Subreport1preparedby Nordel’sHVDCworkinggroup:Networkdisturbances”and“Subreport2preparedby Nordel’sHVDCworkinggroup:Systemdisturbances”.Thisfinalreportsummarisestheresults fromthetwosubreports.

2 Objective Theobjectiveoftheworkoftheworkinggrouphasbeentoillustrate: theimpactofseriousnetworkdisturbancesonasystemwithseveralHVDC connections,whichinelectricaltermsareclosetogether. theimportanceofrapidpowercontrolresponsefromtheHVDCconnectionsto frequencyvariationgeneratedbydisturbancesduringoperation.

15January2007 34 NORDIC GRID CODE (PLANNING CODE) APPENDIX 2

Thestudieshavebeenundertakenforafuturescenario,about2002,assumingHVDC connectionsfromNorwaytoboththeNetherlandsandGermany,aswellasfromSwedento Poland.However,theplanisnotfortwooftheNorwegianconnectionstobeestablisheduntil 2005.

3 Results and conclusion Theworkofthegrouphasresultedinrecommendations,partlyconcerningtheneedforco ordinationofrestartofHVDCconnectionsfollowinganetworkdisturbanceandpartly concerningHVDCpowercontrolforfrequencyreserve. Theworkhasresultedintwosubreports,whichhavebeenconsideredbyNordel’sSystem Committee;“Subreport1preparedbyNordel’sHVDCworkinggroup:Network disturbances”,Trapla199710,04.03.98and“Subreport2preparedbyNordel’sHVDC workinggroup:Systemdisturbances”,Trapla199742,04.03.98.

3.1 Network disturbances Asfarasnetworkdisturbancesareconcerned,thestudyfocusesonpowerflowinthedirection fromUCTEtoNordel,sincethisisa“worstcase”scenario,correspondingtoinverteroperation andlowshortcircuitpowerinNordel.Onlydimensioningnetworkdisturbances,forexample busbarfaultsasdescribedinNordel’snetworkdimensioningrules(1992edition),are examined. Commutationfailure Practicalexperiencehasshownthatcommutationfailurescausedbyanetworkdisturbance onlyoccurconcurrentlyonHVDCconnectionsthatinelectricaltermsareclosetogether.For example,concurrentcommutationfailureshavebeenseenonKontekandBalticCablecaused byanunsymmetricalnetworkdisturbanceonZealand,whileotherplantsinSwedenand Norwaycontinuedoperationsasusual. Thisstudyconcentratesontheriskofrepeatedcommutationfailures,i.e.commutationfailures duringtherestartofHVDCconnectionsafteranetworkdisturbance.OnlyHVDCconnections thatareclosetogetherinelectricaltermsfailatthesametime,e.g.Kontek,BalticCableand SwePol.ThismeansthatevenwithmaximumpowertransmissiontoNordelbyallHVDC connections,thepowerthatislostimmediatelycannotexceedthesumoftheconnections affected. Therearenodimensioningfaultsthatcancausecommutationfailureonallconnectionsatthe sametime. Possibleaction TheHVDCpowerthatcanbetransmittedtoanetworkareaishighlydependentonthelocal shortcircuitpowerSk,e.g.: approx.3000MWatashortcircuitpowerofapprox.6GVA,fallingto approx.2000MWatashortcircuitpowerofapprox.4.5GVA.

15January2007 35 NORDIC GRID CODE (PLANNING CODE) APPENDIX 2

Increasingtheshortcircuitpowerbyintroducingvariousmoreorlessexpensivenetwork measurescouldimprovethesituation,e.g.: increasednetworkcapacity, moreproductionunitsinoperation(rotatingreserve)or synchronouscondensers. Sofar,workhasshownthat,asanalternative,itishighlyadvantageoustoleavethecontrol systemsoftheconverterstationstohandlethesituation,e.g.through: gradualrampingupfromminimumpowertotheorderedlevelforasingleconnection intheaffectedarea,or automaticshiftoverfrompowercontroltocurrentcontrolonasingleHVDC connectionimmediatelyafteranetworkdisturbanceandinthecaseofcommutation failureuponrestart.ThisfunctionisalreadyavailableforsomeHVDCconnections. TheexpansionofthecontrolsystemsonfutureHVDCconnectionstoincludesuch”softstart” functionalitypresentsahighlyattractivesolution,bothtechnicallyandfinancially. Witharefinedcontrolsystemdesign,itwillbecomefeasibletoincreasethenumberofHVDC connectionstoanextentcorrespondingtothenumberofconnectionsexaminedinthepresent study,triggingsubstantialreinforcementsinthenetwork. Damping Substantialimprovementscanbeachievedinthedampingofpoweroscillationsinthenetwork aroundknown“bottlenecks”,e.g.theHaslecrosssectionthroughSouthernNorwayand CentralSwedenexploitingthedampingfunctionoftheHVDCconnectionsintherightway. However,generalguidelinesforthesettingoftheHVDCconnections’dampingcontrol functionhavenotbeendetermined.

3.2 System disturbances Dimensioningoutagesandinafewcasesoutageslargerthanthedimensioningoutagehave beenconsidered.AsdefinedinNordel’snetworkdimensioningrules(1996edition),the dimensioningoutageis1200MW. Focusisprimarilyonthefirstfewsecondsfollowingthedisturbance,atimewhenthe conventionalandslowerpowercontrolofthegeneratorsisnotparticularlyeffective,butwhen theHVDCconnectionshavetheirstrength.Figure6showsthetypicaldevelopmentin frequencyfollowingaproductionoutageandillustratestheterms”minimumtemporary frequency”and“stationaryfrequency”.

15January2007 36 NORDIC GRID CODE (PLANNING CODE) APPENDIX 2

50,1

50,0

49,9 Stationary frequency

49,8

49,7

49,6 FREQUENCY(Hz)

49,5

49,4 Minimum temporary frequency

49,3 0 10 20 30 40 50 60 70 80 90 TIME (s) Figure 6 Development in frequency in Nordel following production outage

Thepowersystems’frequencyresponsewithinthefirstfewsecondsofthedisturbanceis improvedmarkedlywithHVDCemergencypowercontrol,reducingtheminimumtemporary frequencydrop.ThefastpowercontrolsystemsoftheHVDCconnectionsensureefficient HVDCpowercontrolbeforeregulationbythepowercontrolsystemsoftheturbines. Theworkinggrouphasidentifiedtherequirementsthatmustbemadetothepowercontrolof theHVDCconnectionswithaccountbeingtakenofNordel’srecommendations. Thefollowingtypesoffrequencydependentemergencypowercontrolsystemsare recommended: HVDCdroopcontrolofupto,e.g.,of1000MW/Hzintotalasamomentaryoperating disturbancereserve(frequencycontrol). HVDCemergencypowerinstepsorrampsofupto1200MWintotalasnetwork protectioncontrol(EPC,EmergencyPowerControl). Momentaryoperatingdisturbancereserve HVDCfrequencycontrol(droopcontrol)isactivatedinthefrequencyrangebetween49.9and 49.5Hz. Networkprotectioncontrol EPC,thatisHVDCemergencypowerinstepsorramps,isactivatedwhenfrequencydrops below49.5Hz.ItisrecommendedthatacombinationoffrequencycontrolandEPCshouldbe usedwhentheHVDCconnectionsareusedfornetworkcontrol,thatisintherangebelow49.5 Hz.DuringEPC,thefrequencycontrolshouldthusremainactive.Inthisway,theabilityofthe EPCtoquicklyrestorefrequencytothedesiredlevelisused,whilethefrequencycontrol ensuresfaststabilisationoffrequency. BoththepowerresponseofthefrequencycontrolandthestepsoftheEPCshouldbe determinedonthebasisofthecurrentoperatingsituationoftheelectricitysystemandwith accountbeingtakenoftheHVDCconnectionsactuallyinoperation.

15January2007 37 NORDIC GRID CODE (PLANNING CODE) APPENDIX 2

Thefrequencyresponse/droopoftheHVDCconnectionswithineachlocalareacanbesetin relationtothecurrentlyphasedinMVA(S)andtheloadtoensurecompliancewiththe minimumrequirementsforfrequencycontrolinthearea. TheextentofEPCforeachareacanbesetinrelationtothecurrentrotatingreserve. InsituationswheretheNordelHVDCconnectionsaretosupplyemergencypowertothe UCTEsystem,thecontrolparametersoftheHVDCconnectionsmustbecoordinatedto ensurethatthesuppliedemergencypowerdoesnotexceedthedimensioningproductionoutage of1200MWforNordel. InsituationswheretheNordelHVDCconnectionsaretoreceiveemergencypowerfromthe UCTEsystem,thecontrolparametersoftheHVDCconnectionsdonotneedtobeco ordinated,iftherecommendedcombinationofstaticcontrolandsteppinguporrampingupof emergencypowerisused.Thiscontrolprincipleensureseffectivefrequencycontrolwhile preventingovercontrol.

4 Conclusion Theworkinggroupconsidersitstasktobecompleted.

15January2007 38 NORDIC GRID CODE (OPERATIONAL CODE)

The following documents have been included in this chapter: Document Status The System Operation Agreement 2006 Binding agreement

The following national documents deal with the Operational Code: Document Status

TheTSOsinScandinaviaandFinlandhaveenteredintoaSystemOperationAgreement.The SystemOperationAgreementcontainsrulesfortheoperationoftheinterconnectedNordic electricpowersystem,andissetoutinthissection.Thisistranslation,theoriginaloneisin Swedishlanguage.

15January2007 39 NORDIC GRID CODE (OPERATIONAL CODE)

AGREEMENT (TRANSLATION) REGARDING OPERATION OF THE INTERCONNECTED NORDIC POWER SYSTEM (SYSTEM OPERATION AGREEMENT) ...... 49

§1 THE PARTIESETC ...... 49 §2 BACKGROUND ...... 49 §3 OBJECTIVE ...... 49 §4 APPENDICES ...... 50 §5 DECISIONSETCCONCERNINGOWNSUBSYSTEMS ...... 50 §6 OPERATIONALSECURITYSTANDARDS ...... 51 §7 OPERATIONALTERMSANDCONDITIONSFORTHELINKSBETWEENTHESUBSYSTEMS .. 51 §8 OPERATIONALPLANNING ...... 53 §9 SYSTEMSERVICES ...... 53 §10 MANAGINGTRANSMISSIONLIMITATIONSBETWEENTHESUBSYSTEMS ...... 53 §11 MANAGINGOPERATIONALDISTURBANCES ...... 53 §12 BALANCEREGULATION ...... 54 §13 POWEREXCHANGES ...... 54 §14 SETTLEMENT ...... 55 §15 POWERSHORTAGES ...... 55 §16 EXCHANGINGINFORMATION ...... 56 §17 LIABILITY ...... 56 §18 DISPUTES ...... 56 §19 ALTERATIONSANDSUPPLEMENTS ...... 56 §20 TRANSFER ...... 57 §21 VALIDITYETC ...... 57 DEFINITIONS ...... 59

OPERATIONAL SECURITY STANDARDS...... 67

1 SYSTEMSECURITYCRITERIA ...... 67 2 SYSTEMPROTECTION ...... 67 3 HVDC LINKS ...... 68 4 OPERATIONALRESERVES ...... 69 4.1 Automatic active reserve ...... 69 4.1.1 Frequencycontrollednormaloperationreserve...... 69 4.1.2 Frequencycontrolleddisturbancereserve...... 69 4.2 Fast active disturbance reserve...... 71 4.3 Slow active disturbance reserve...... 71 4.4 Reactive reserve ...... 71 5 SPECIALCONDITIONSFOR ENERGINET .DKASAMEMBEROF UCTE ...... 72 6 PRINCIPLESFORDETERMININGTHETRANSMISSIONCAPACITY ...... 72 6.1 Introduction...... 72

15January2007 40 NORDIC GRID CODE (OPERATIONAL CODE)

6.2 Thermal limitation...... 72 6.3 Voltage collapse ...... 72 6.4 System dynamics...... 73 BALANCE REGULATION STANDARDS ...... 74

1 BALANCEREGULATIONWITHINTHESYNCHRONOUSSYSTEM ...... 74 1.1 Quality standards ...... 74 1.2 Momentary area control error ...... 75 2 BALANCEREGULATIONINWESTERN DENMARK ...... 75 3 REGULATIONMEASURESANDPRINCIPLESOFPRICING ...... 75 3.1 Regulation of frequency and balance...... 75 3.2 Regulation for network reasons ...... 76 4 PRICINGOFBALANCEPOWER ...... 77 4.1 Balance power between the subsystems within the synchronous system ...... 77 4.2 Balance power between Western Denmark and Sweden ...... 77 4.3 Balance power between Western Denmark and Norway...... 77 5 PRICINGOFSUPPORTIVEPOWER ...... 77 5.1 Pricing within the synchronous system ...... 77 5.2 Pricing between Western Denmark and Norway, and Western Denmark and Sweden...... 77 5.3 Pricing during operational disturbances on cross-border links...... 77 6 OPERATIONAL /TRADINGRULESBETWEENTHESYNCHRONOUSSYSTEMAND WESTERN DENMARK ...... 78 EXCHANGING INFORMATION ...... 79

1 OUTAGEPLANNING ...... 79 2 PRIORTOTHEHOUROFOPERATION ...... 79 3 DURINGTHEHOUROFOPERATION ...... 80 4 FOLLOWINGTHEHOUROFOPERATION ...... 81 SYSTEM PROTECTION ...... 82

1 GENERAL ...... 82 2 SYSTEMPROTECTIONACTIVATEDBYFREQUENCYDEVIATIONS ...... 84 2.1 Frequency controlled regulation of DC installations, Emergency power ...... 84 2.2 Frequency controlled start-up of production...... 85 2.3 Frequency controlled load shedding...... 85 2.4 Frequency controlled disconnection of lines ...... 85 3 SYSTEMPROTECTIONACTIVATEDBYVOLTAGEDEVIATIONS ...... 86 3.1 System protection in Sweden cross-section 2...... 86 3.2 System protection in Sweden cross-section 4...... 86 3.3 System protection in southern Norway...... 86 3.4 System protection in Finland...... 86

15January2007 41 NORDIC GRID CODE (OPERATIONAL CODE)

4 SYSTEMPROTECTIONACTIVATEDBYONEORMORERELAYSIGNALSFROMTHE FACILITIES ’PROTECTIVEEQUIPMENT ...... 87 4.1 Eastern Denmark: System protection for stability in Eastern Denmark...... 90 4.2 Sweden: System protection with production shedding for limiting overloads on lines in Sweden...... 90 4.3 Sweden: System protection in the West Coast cross-section (Kilanda-Horred + Stenkullen-Strömma) ...... 90 4.4 Sweden: System protection Forsmark...... 91 4.5 Sweden: System protection Långbjörn...... 91 4.6 Norway: System protection in the Hasle and Flesaker cross-section...... 91 4.7 Norway: System protection in the Nordland cross-section...... 91 4.8 Norway: Local system protection at Kvilldal...... 92 4.9 Norway: Network division in southern Norway...... 92 4.10 Norway: System protection for load shedding ...... 92 4.11 Norway: System protection at Sørlandsnittet (PFK and HVDC control) ...... 92 4.12 Western Denmark: Konti-Skan pole 2...... 92 4.13 Western Denmark: Konti-Skan pole 1 & 2...... 93 4.14 Western Denmark: Skagerrak pole 3 ...... 93 4.15 Western Denmark: the German link ...... 93 4.16 Finland: Frequency regulation (during island operation) with automated systems on the HVDC Fenno-Skan link...... 94 4.17 Finland: Power modulation for Fenno-Skan (Power modulation control) ...... 94 4.18 Finland: Network division in northern Finland to protect the 110 kV network from overloads ...... 94 4.19 Finland: System protection for avoiding system oscillations...... 94 SYSTEM SERVICES ...... 95

1 SURVEYOFSYSTEMSERVICES ...... 95 1.1 System services defined in Appendix 2 of the System Operation Agreement...... 95 1.1.1 Frequencycontrollednormaloperationreserve...... 95 1.1.2 Frequencycontrolleddisturbancereserve...... 96 1.1.3 Voltagecontrolleddisturbancereserve...... 96 1.1.4 Fastactivedisturbancereserve...... 97 1.1.5 Slowactivedisturbancereserve ...... 97 1.1.6 Reactivereserve ...... 98 1.2 System services not defined in Appendix 2 of the System Operation Agreement... 99 1.2.1 Loadfollowing ...... 99 1.2.2 Systemprotection...... 99 1.2.3 Ramping ...... 100 1.2.4 Blackstarts ...... 100 1.2.5 Automaticloadshedding...... 100 1.2.6 Manualloadshedding ...... 101 1.2.7 Fastactiveforecastreserve ...... 101 1.2.8 Fastactivecountertradingreserve...... 102 1.2.9 Peakloadresource...... 102

15January2007 42 NORDIC GRID CODE (OPERATIONAL CODE)

2 DESCRIPTIONOFROUTINESFORTRADINGINSYSTEMSERVICES ...... 103 2.1 General...... 103 2.2 Trading in frequency controlled normal operation reserve and frequency controlled disturbance reserve...... 103 2.3 Exchanges using other types of reserves...... 103 JOINT OPERATION BETWEEN THE NORWEGIAN AND SWEDISH SUBSYSTEMS ON THE AC LINKS ...... 104

1 BACKGROUND ...... 104 2 TRANSMISSIONFACILITIESLINKINGTHESUBSYSTEMSOF SWEDEN NORWAY ...... 104 2.1 Transmission facilities which are owned/held by system operators at both ends 104 2.2 Other transmission facilities ...... 104 2.3 Other transmission facilities than those under 2.2 ...... 104 3 ELECTRICALSAFETYFORFACILITIESUNDER 2.1 ...... 105 3.1 General...... 105 3.2 Responsibility for electrical operation/Operational management...... 105 3.3 Switching responsible operator...... 105 3.4 Operations monitoring and control in respect of electrical safety ...... 105 3.5 Switching schedule ...... 105 3.6 Disturbance management...... 105 3.6.1 Crossborderlinktrips–management ...... 106 3.6.2 Switchingschedule...... 106 3.6.3 Faultfinding ...... 106 3.6.4 Faultclearance,remainingfaults ...... 106 4 SYSTEMOPERATIONFORFACILITIESUNDER 2.1 AND 2.2...... 106 4.1 Transmission capacity (TTC)...... 106 4.2 Routines for determining the transmission capacity...... 107 4.3 Trading capacity (NTC) ...... 107 4.4 Operation monitoring and control in respect of system operation ...... 107 4.5 Voltage regulation...... 108 4.5.1 VoltageregulationontheNorwegianside...... 108 4.5.2 VoltageregulationontheSwedishside ...... 108 4.5.3 Coordinationofvoltageregulation ...... 109 4.6 Outage planning...... 109 4.7 Disturbance situation ...... 109 JOINT OPERATION BETWEEN THE FINNISH AND SWEDISH SUBSYSTEMS ON THE AC LINKS AND FENNO-SKAN ...... 110

1 BACKGROUND ...... 110 2 TRANSMISSIONFACILITIESLINKINGTHESUBSYSTEMS SWEDEN –FINLAND ...... 110 2.1 Transmission facilities which are owned/held by system operators ...... 110 3 ELECTRICALSAFETYFORFACILITIESUNDER 2.1 ...... 110 3.1 General...... 110 3.2 Responsibility for electrical operation/Operational management...... 110

15January2007 43 NORDIC GRID CODE (OPERATIONAL CODE)

3.3 Switching responsible operator...... 111 3.4 Operations monitoring and control in respect of electrical safety ...... 111 3.5 Switching schedule ...... 111 3.6 Disturbance management...... 111 4 SYSTEMOPERATIONFORFACILITIESUNDER 2.1 ...... 111 4.1 Transmission capacity (TTC)...... 111 4.1.1 400kVAClinks...... 112 4.1.2 FennoSkan...... 112 4.2 Routines for determining the transmission capacity...... 112 4.3 Trading capacity (NTC) ...... 112 4.4 Operations monitoring and control in respect of system operation ...... 113 4.5 Voltage regulation...... 113 4.5.1 VoltageregulationontheSwedishside ...... 113 4.5.2 VoltageregulationontheFinnishside...... 113 4.5.3 Coordinationofvoltageregulation ...... 114 4.6 Outage planning...... 114 4.7 Disturbance management...... 114 5 DISTRIBUTIONOFCAPACITYUTILIZATIONBETWEEN FINLANDAND SWEDEN ...... 115 5.1 Basic distribution ...... 115 5.2 Loss minimization (Fenno-Skan optimization)...... 115 5.3 Loss minimization model...... 115 5.4 Distribution of benefit ...... 116 5.5 Utilizing the other party’s idle capacity...... 116 5.5.1 BottlenecksinFingrid’snetwork ...... 116 5.5.2 BottlenecksinSvK’snetwork...... 116 5.5.3 Bottlenecksinbothparties’networks ...... 117 5.6 Settlement of loss minimization...... 117 JOINT OPERATION BETWEEN THE NORWEGIAN, FINNISH AND SWEDISH SUBSYSTEMS IN ARCTIC SCANDINAVIA...... 118

1 BACKGROUND ...... 118 2 TRANSMISSIONFACILITIESLINKINGTHESUBSYSTEMSOF NORWAY FINLAND ...... 118 3 ELECTRICALSAFETYFORFACILITIESUNDER 2 ...... 118 3.1 General...... 118 3.2 Responsibility for electrical operation/Operation management...... 118 3.3 Switching responsible operator...... 118 3.4 Operations monitoring and control in respect of electrical safety ...... 118 3.5 Switching schedule ...... 119 3.6 Disturbance management...... 119 3.6.1 Crossborderlinktrips–management ...... 119 3.6.2 Switchingschedule...... 119 3.6.3 Faultfinding ...... 119 3.6.4 Faultclearance,remainingfaults ...... 119 4 SYSTEMOPERATIONFORFACILITIESUNDER 2 ...... 119

15January2007 44 NORDIC GRID CODE (OPERATIONAL CODE)

4.1 Transmission capacity (TTC)...... 119 4.1.1 FromNorwaytoFinland...... 119 4.1.2 FromFinlandtoNorway...... 119 4.2 Routines for determining the transmission capacity...... 120 4.3 Trading capacity (NTC) ...... 120 4.4 Operations monitoring and control in respect of system operation ...... 120 4.5 Voltage regulation...... 120 4.5.1 VoltageregulationontheNorwegianside...... 120 4.5.2 VoltageregulationontheFinnishside...... 120 4.5.3 Coordinationofvoltageregulation ...... 120 4.6 Outage planning...... 120 4.7 Disturbance management...... 121 5 MISCELLANEOUS ...... 121 5.1 Settlement ...... 121 5.2 Information exchange...... 121 JOINT OPERATION BETWEEN THE NORWEGIAN AND WESTERN DANISH SUBSYSTEMS ON THE DC LINKS SKAGERRAK POLES 1, 2 AND 3 ...... 122

1 BACKGROUND ...... 122 2 TRANSMISSIONFACILITIESLINKINGTHESUBSYSTEMSOF NORWAY WESTERN DENMARK 122 3 ELECTRICALSAFETYFORFACILITIESUNDER 2 ...... 122 3.1 General...... 122 3.2 Responsibility for electrical operation/Operational management...... 122 3.3 Switching responsible operator...... 123 3.3.1 Switchings ...... 123 3.3.2 Switchingresponsibleoperator ...... 123 3.4 Operation monitoring and control in respect of electrical safety...... 123 3.5 Switching schedule ...... 123 3.6 Disturbance management...... 123 4 SYSTEMOPERATIONFORFACILITIESUNDER 2 ...... 124 4.1 Transmission capacity (TTC)...... 124 4.2 Routines for determining the transmission capacity...... 124 4.3 Trading capacity (NTC) ...... 124 4.4 Operation monitoring and control in respect of system operation ...... 124 4.4.1 Thepowerflowanddistributionbetweenthepoles ...... 125 4.4.2 Regulatingthelink ...... 125 4.5 Outage planning...... 125 4.6 Disturbance management...... 125 4.6.1 General ...... 125 4.6.2 Emergencypower...... 126 4.6.3 Systemprotection...... 126 5 MISCELLANEOUS ...... 126 5.1 System services...... 126

15January2007 45 NORDIC GRID CODE (OPERATIONAL CODE)

5.2 Settlement ...... 126 JOINT OPERATION BETWEEN THE WESTERN DANISH AND SWEDISH SUBSYSTEMS ON THE KONTI-SKAN 1 AND 2 DC LINKS ...... 127

1 BACKGROUND ...... 127 2 TRANSMISSIONFACILITIESLINKINGTHESUBSYSTEMSOF SWEDEN WESTERN DENMARK 127 3 ELECTRICALSAFETYFORFACILITIESUNDER 2 ...... 127 3.1 General...... 127 3.2 Responsibility for electrical operation/Operational management...... 127 3.3 Switching responsible operator...... 128 3.4 Operation monitoring and control in respect of electrical safety...... 128 3.5 Switching schedule ...... 128 3.6 Disturbance management...... 128 3.6.1 Crossborderlinktrips–management ...... 128 3.6.2 Switchingschedule...... 128 3.6.3 Faultfinding ...... 128 3.6.4 Faultclearance,remainingfaults ...... 128 4 SYSTEMOPERATIONFORFACILITIESUNDER 2 ...... 129 4.1 Transmission capacity (TTC)...... 129 4.2 Routines for determining the transmission capacity...... 129 4.3 Trading capacity (NTC) ...... 129 4.4 Operation monitoring and control in respect of system operation ...... 130 4.4.1 Thepowerflowanddistributionbetweenthepoles ...... 130 4.4.2 Regulatingthelink ...... 130 4.5 Outage planning...... 130 4.6 System protection - emergency power...... 130 4.6.1 General ...... 130 4.6.2 Emergencypower...... 131 4.6.3 Systemprotection...... 131 5 MISCELLANEOUS ...... 131 5.1 System services...... 131 5.1.1 Transmissionscopeforoperationreserves ...... 131 JOINT OPERATION BETWEEN THE EASTERN DANISH AND SWEDISH SUBSYSTEMS ON THE AC LINKS ACROSS ÖRESUND AND TO BORNHOLM ... 132

1 BACKGROUND ...... 132 2 TRANSMISSIONFACILITIESLINKINGTHESUBSYSTEMSOF EASTERN DENMARKAND SWEDEN ...... 132 2.1 Transmission facilities owned/held by system operators at both ends...... 132 2.2 Other transmission facilities ...... 133 3 ELECTRICALSAFETYFORFACILITIESUNDER 2.1 ...... 133 3.1 General...... 133 3.2 Responsibility for electrical operation/Operational management...... 133

15January2007 46 NORDIC GRID CODE (OPERATIONAL CODE)

3.3 Switching responsible operator/Switching leader ...... 133 3.4 Operation monitoring and control in respect of electrical safety...... 134 3.5 Operational orders/Switching schedule...... 134 3.6 Disturbance management...... 134 3.6.1 Crossborderlinktrips–management ...... 134 3.6.2 Switchingschedule/Operationalorders...... 135 3.6.3 Faultfinding ...... 135 3.6.4 Faultclearance,remainingfaults ...... 135 4 SYSTEMOPERATIONFORFACILITIESUNDER 2.1 AND 2.2...... 135 4.1 Transmission capacity (TTC)...... 135 4.1.1 TransmissioncapacityinMWpercablebundle ...... 135 4.1.2 TransmissioncapacityinMWperlink ...... 135 4.2 Routines for determining the transmission capacity...... 136 4.3 Trading capacity (NTC) ...... 136 4.4 Operation monitoring and control in respect of system operation ...... 136 4.5 Voltage regulation...... 136 4.5.1 VoltageregulationontheSwedishside ...... 136 4.5.2 VoltageregulationontheDanishside ...... 137 4.5.3 Coordinationofvoltageregulation ...... 137 4.6 Outage planning...... 137 4.7 Disturbance management...... 138 5 MISCELLANEOUS ...... 138 5.1 Parallel operation 130 kV...... 138 5.2 Transmissions to Bornholm...... 138 5.3 Co-ordination of fast active disturbance reserve south of cross-section 4...... 138 5.4 Counter trading...... 139 JOINT TRIANGULAR OPERATION BETWEEN THE NORWEGIAN, SWEDISH AND WESTERN DANISH SUBSYSTEMS ...... 140

1 TRANSMISSIONFACILITIESTRIANGULARLYLINKINGTHESUBSYSTEMS SWEDEN WESTERN DENMARK NORWAY ...... 140 2 PRINCIPLESFORTHEDISTRIBUTIONOFEXCHANGEPLANSONTHELINKS ...... 140 MANAGING TRANSMISSION LIMITATIONS BETWEEN SUBSYSTEMS...... 142

1 BACKGROUND ...... 142 2 TRANSMISSIONLIMITATIONSDURINGTHEPLANNINGPHASE ,PRIORTOCOMPLETED TRADINGON ELSPOT ...... 142 3 TRANSMISSIONLIMITATIONSDURINGTHEOPERATIONALPHASE ,FOLLOWINGCOMPLETED TRADINGON ELSPOT ...... 142 4 STEPBYSTEPOFTHETRADINGCAPACITY ...... 143 RULES FOR MANAGING POWER SHORTAGES DURING HIGH CONSUMPTION, BOTTLENECKS OR DISTURBANCES ...... 144

1 GENERALPOWERSHORTAGESWITHOUTBOTTLENECKSINTHENETWORK ...... 145

15January2007 47 NORDIC GRID CODE (OPERATIONAL CODE)

1.1 Maintenance of manual active reserve (15 min)...... 145 1.2 Risk of power shortages ...... 146 1.3 Power shortages...... 146 1.4 Critical power shortages...... 146 2 REGIONALPOWERSHORTAGESCAUSEDBYBOTTLENECKSORNETWORKDISTURBANCES 147 3 CONNECTIONOFCONSUMPTIONFOLLOWINGLOADSHEDDING ...... 148 4 PRICING ...... 148 THE INTERCONNECTED NORDIC POWER SYSTEM’S JOINT OPERATION WITH OTHER SYSTEMS...... 149

1 WESTERN DENMARK ’SJOINTOPERATIONWITHTHE UCTE SYSTEM ...... 149 1.1 Western Denmark’s joint operation with Germany ...... 149 1.1.1 SystemoperationcollaborationwithE.ONNetz...... 149 1.1.2 Commercialconditions ...... 150 1.2 Western Denmark’s joint operation with Flensborg...... 150 1.2.1 SystemoperationcollaborationwithSWG...... 150 1.2.2 Commercialconditions ...... 151 2 THESYNCHRONOUSSYSTEM’SJOINTOPERATIONWITHTHE UCTE SYSTEM ...... 151 2.1 The synchronous system’s joint operation with Germany via the Baltic Cable... 151 2.1.1 SystemoperationcollaborationwithE.ONNetz...... 151 2.1.2 Commercialconditions ...... 151 2.2 The synchronous system’s joint operation with Germany via Kontek ...... 151 2.2.1 SystemoperationcollaborationwithVattenfallEuropeTransmission...... 152 2.2.2 Commercialconditions ...... 152 2.3 The synchronous system’s joint operation with Poland...... 152 2.3.1 SystemoperationcollaborationwithPSE...... 152 2.3.2 Commercialconditions ...... 153 3 THESYNCHRONOUSSYSTEM’SJOINTOPERATIONWITH RUSSIA ...... 153 3.1 System operation collaboration with RAO UES of Russia...... 153 3.2 Commercial conditions ...... 153

15January2007 48 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

AGREEMENT (TRANSLATION) REGARDING OPERATION OF THE INTERCONNECTED NORDIC POWER SYSTEM (SYSTEM OPERATION AGREEMENT)

§ 1 The Parties etc • Energinet.dk(Energinet.dk)corporateregistrationno.28980671 • FingridOyj(Fingrid)BusinessIdentityCode10728943 • StatnettSF(Statnett)corporateregistrationno.962986633 • Affärsverketsvenskakraftnät(SvenskaKraftnät) corporateregistrationno.2021004284

ThetermsandconceptsoccurringinthisSystemOperationAgreement(theAgreement)andits appendicesaredefinedinAppendix1.

§ 2 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected,formingthesocalled synchronous system .The subsystem ofWesternDenmark isconnectedtoNorwayandSwedenusingDC.The synchronous system and the subsystem ofWesternDenmarkjointlyconstitutethe interconnected Nordic power system .

ThesupervisoryauthoritiesofDenmark,Finland,NorwayandSwedenhaveappointedspecial system operators whoarecomprehensivelyresponsibleforthesatisfactoryoperationofeach subsystem .These system operators areEnerginet.dkfortheDanish subsystem ,including Bornholm,FingridfortheFinnish subsystem ,StatnettfortheNorwegian subsystem and SvenskaKraftnätfortheSwedish subsystem .ÅlandisnotcoveredbythisAgreement.

ThebackgroundtoenteringintothisAgreementisthatoperationofthe interconnected Nordic power system entailsoperationalcollaborationandcoordinationtakingplacebetweenthe system operators .Effectivecollaborationbetweenthesewillprovidethetechnicalprerequisites fortradinginpoweronanopenelectricitymarket. TheAgreementanditsAppendicesregulatetheoperationalcollaborationbetweenthe Parties . SeveraloftheAgreement’sprovisionsarebaseduponrecommendationsissuedbyNordel.

§ 3 Objective TheobjectiveoftheAgreementistomakeuseoftheadvantagesarisingfromthe interconnectedoperationoftheNordicpowersystem.The Parties shallthusjointlyupholdthe interconnectedoperationoftheNordicpowersystemonasatisfactorylevelofreliabilityand quality.

The Parties shalljointlyupholdasupplyqualitythatisappropriatetojointsystemoperation, e.g.frequency, time deviation ,systemoscillationsetc.

The Parties shalljointlyoperatethe interconnected Nordic power system inamannerwhich promotestheefficientutilizationofexistingresourcesandpowertradingontheNordic electricitymarket,aswellasonanadditionalpotentialinternationalmarket.TheAgreement

15January2007 49 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) specifiesindetailthecommitmentsthatthe Parties undertaketohonourduringtheir operationalcollaboration. The Parties areagreedthatagreementsregardingtheoperationofthe interconnected Nordic power system shallonlybeenteredintobetweenthe system operators concerned. Itisthe Parties’ intentionthat,aslongas transmission facilities betweenthe subsystems arein operation,thereshallexistanagreementbetweenthe Parties regulatingtheiroperational collaboration,rightsandcommitmentsvisàvissystemoperationissues

§ 4 Appendices

ThefollowingAppendicesareattachedtothisAgreement. Appendix Content 1 Definitions 2 Operationalsecuritystandards 3 Balanceregulationstandards 4 Exchanginginformation 5 Systemprotection 6 Systemservices 7.1 JointoperationbetweenNorwaySweden 7.2 JointoperationbetweenSwedenFinland 7.3 JointoperationbetweenNorwayFinlandSweden(Arctic Scandinavia) 7.4 JointoperationbetweenNorwayWesternDenmark 7.5 JointoperationbetweenSwedenWesternDenmark 7.6 JointoperationbetweenSwedenEasternDenmark 7.7 JointtriangularoperationbetweentheNorwegian,Swedish andWesternDanishsubsystems. 8 Managementoftransmissionlimitationsbetween subsystems. 9 Powershortages 10 TheNordelsystem’sjointoperationwithothersystems TheAppendicesconstituteanintegralpartoftheAgreement. IntheeventofanyvariancebetweenthecontentsoftheAppendicesandwhatissetforthin this,themainpartoftheAgreement,whatissetforthinthemainpartshalltakeprecedence.

§ 5 Decisions etc concerning own subsystems

The Parties willmaketheirowndecisionsregardingtheprinciplesapplicabletothesystem security oftheirown subsystems .

15January2007 50 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

The Parties agree,however,whentakingsuchdecisions,tocomplywiththeintentionsand principlesoftheAgreementasfarasispossibleandappropriate. The Parties areindividuallyresponsibleforformulatingtheirownagreementsconcerning systemoperationcollaborationbetweentheirown subsystems and subsystems outsideofthe interconnected Nordic power system ,withwhichtherearephysicaltransmissionlinks,insuch awaythatthesedonotcontravenetheintentionsof,orpreventcompliancewith,the Agreement. Itistheintentionofthe Parties ,asfarasispossiblewithinthelegalframeworkprovided (termsandconditionsofconcessionsetc)tocoordinatethetermsandconditionsofsuch agreementswiththeprovisionsofthisAgreement. Eachrespective Party shallenterintosuchagreementswithcompanieswithinitsown subsystem asarenecessarytocomplywiththeAgreement. Unlessotherwiseagreed,the Parties shallberesponsibleforensuringthatmeasurestaken withintheirown subsystems, whichimpactupontheoperationofthesystem,shallnotburden theother subsystems .

§ 6 Operational security standards

The Parties shall,inthedaytodayoperationofthesystemandintheiroperational collaborationwithother Parties ,complywiththestandardssetforthinAppendices2and3.

§ 7 Operational terms and conditions for the links between the subsystems

7.1 Transmission facilities

The transmission facilities linkingthe subsystems areaccountedforinthefollowing Appendices. Appendix7.1NorwaySweden Appendix7.2SwedenFinland Appendix7.3NorwayFinlandSweden(ArcticScandinavia) Appendix7.4NorwayWesternDenmark Appendix7.5SwedenWesternDenmark Appendix7.6SwedenEasternDenmark Appendix7.7NorwaySwedenWesternDenmark (subsystemsintriangularoperation) The Parties areresponsible,asandwhenrequired,fordetailed operating instructions being drawnupforthelinkslistedinthementionedAppendiceswithintheirown subsystems .In partswheresuch operating instructions haveabearinguponthejointsystemoperation,they aretobecoordinatedwiththecompaniesand Parties concerned.

15January2007 51 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

7.2 Transmission capacity The transmission capacity ofthelinksbetweenthe subsystems shallbebilaterallydetermined onaroutinebasisbythe Parties concerned.Decisionsshallnormallybebasedonthe operational security standards setoutinAppendix2andonsuchcurrenttechnicaland operativefactorsasareofsignificancetothe transmission capacity .The Parties are individuallyresponsibleforassessingthesecircumstanceswithintheirown subsystems and willdecideonthenecessarymeasures. The Parties agreetoreservea regulating margin betweenthe transmission and trading capacities ofthelinks.The regulating margin shallnormallyhavethevaluesspecifiedin Appendices7.17.7.

7.3 Special operational terms and conditions Incertaincases,specialrulesareappliedasregardsusingthe transmission capacity ofthe links.Detailedtermsandconditions,togetherwiththecompaniesconcerned,arespecifiedin therespectiveAppendices7.17.7.

7.4 Transmission losses Issuesconcerningtransmissionlossesaregovernedbyseparateagreements–settlement agreements. A Party shallnotberesponsiblefortransmissionlossesarisingwithinanother Party’s subsystem inanyoperationalsituation,unlessotherwiseagreed. The settlement points arespecifiedinAppendices7.17.6.

7.5 Voltage regulation Voltageregulationinthe subsystems shallbeconductedinsuchawaythatthe operational security standards specifiedin6§areupheldandinsuchawaythatthereactiveflowofpower betweenthe subsystems doesnotentailoperationalproblems.The Parties’ rightsandliabilities regardingreactivepowerflowsontheACinterconnectorsarelimitedtowhatcorresponds, calculationwise,tozeroexchangeatthenationalborder,basedonvaluesmeasuredatthe terminalsofthelinks.

7.6 System protection System protection canbeusedtoincreasethe transmission capacity and/or system security betweenandwithinthe subsystems .Thesettingsandoperationalstatusof system protection shallbedecideduponandmonitoredbytherespective Party .Incaseswhen system protection hasabearingontwoormore subsystems ,coordinationandcommunicationoftheoperating statusshalltakeplacebetweenthe Parties concerned.Therequirementsrelatingto system protection aresetoutinAppendix2.Theformsof system protection usedaresetoutin Appendix5.

7.7 Relay protection and fault analysis The Parties shallcoordinatesupportivedataandplansforsettingfunctionalvaluesforthe relayprotectionofsuch transmission facilities .Following operational disturbances , informationfromregistrationequipmentshallbeexchangedbetweenthe Parties concernedto theextentnecessarytoenableinvestigationofthecourseofevents.

15January2007 52 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

§ 8 Operational planning The Parties shall,asfarasispossible,bilaterallycoordinateoperationaloutagesandother measureswhicheachandeveryoneofthemhascontroloverandwhichimpactuponthejoint systemoperation.Intheeventthat operational disturbances andothermeasuresoccurduring the operational phase andwhichhavetobecarriedoutatshortnotice,withnotimeforco ordination,the Parties concernedshallbeinformedasquicklyaspossible.

Appendices7.17.6containcertainrulesregardingthecoordinationofoperationaloutageson therespectivelinksbetweenthe subsystems .

§ 9 System services The Parties shallcomplywiththe operational security standards specifiedin§6byensuring theavailabilityof system services withintheirown subsystems .Whenthisispossible,the Parties cancoordinateandexchange system services witheachother.Duringtheexchangeof such system services ,thepricingshallbebasedonthecostsincurredbytherespectiveParty whenobtainingaccesstoandutilizingthe system services withinitsown subsystem . The Parties shallworktowardsharmonisationofthetermsandconditionsinordertogain accessto system services fromcompanieswithintherespective subsystem . System services aredescribedinAppendix6.

§ 10 Managing transmission limitations between the subsystems The Parties shallbebilaterallyresponsiblefortransmissionsontherespectivelinksbetween the subsystems notexceedingtheset transmission capacity .Ifalimitisexceeded,thisshallbe rectifiedwithin15minutes. The Parties shallbilaterallycoordinatetermsandconditionsandmanagementroutinesin ordertobeable,asandwhenrequired,torestrictthecommercialplayers’utilizationofthe linksincaseswhen transmission capacities needtobereduced.Theseparatetermsand conditionsthatapply,asandwhenappropriate,toeachrespectivelinkaresetoutin Appendices7.17.7.The Parties shallupholdthecommercialplayers’plannedtrading,by meansof counter trading, totheextentsetoutinAppendix8. Itisincumbentuponthe Parties tomanage,withintheirown subsystems ,suchtransmission problemsthatcannotbesolvedbyrestrictingthecommercialplayers’utilizationofthelinks. The Parties arefurtherresponsibleforimplementingthenecessaryregulationontheirown sidesofthelinks,andforthecoststhusarising,unlessotherwiseagreedbetweenthe Parties concerned.

§ 11 Managing operational disturbances Inthecaseofall operational disturbances , normal state shallberesumedwithoutunduedelay. The Parties shallassistoneanotherinminimisingtheconsequencesofany disturbances that arise. Inthecaseofdisturbancesarisingwithinitsown subsystem ,theaffected Party willbe responsible,atitsownexpense,forremedialmeasures.Wheneveritisappropriatetocarryout

15January2007 53 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) remedialmeasuresinanother subsystem ,theaffected Party shallberesponsibleforthecostsof theagreedmeasures.Fordisturbancesonalinkbetweenthe subsystems ,the Parties concerned shall,attheirownexpense,beresponsibleforthenecessarymeasuresontheirownsideofthe link,unlessotherwiseagreed. Inthecaseofactivationofthejoint frequency controlled disturbance reserve ,compensation shallnormallyberenderedviathesettlementof balance power . The Parties shallpromptlyinformoneanotherof system security risksordisturbancesarising.

§ 12 Balance regulation Each subsystem isresponsibleforplanningitselfintobalancehourbyhour,aswellasfor upholdingitsownbalanceduringthehourofoperation. The Parties shallcollaboratetowardsminimisingthecostof balance regulation byutilizing,to thegreatestextentpossible,oneanother’sregulationresourceswhenthisistechnicallyand financiallyappropriate.

The balance regulation oftheNordicsystemisdividedupintotwo balance areas .Oneof these balance areas isthe synchronous system whiletheother balance area isWestern Denmark. Energinet.dkmanagesthe balance regulation oftheWesternDanisharea,withinitssphereof responsibilityforthe UCTE system,andinaccordancewithanagreementwithEONNetz. Consequently,Energinet.dkhasagreementswithtwo balance areas ;the UCTE systemandthe synchronous system . The balance regulation ofeach subsystem withinthe interconnected Nordic synchronous power system shallbecarriedoutinaccordancewiththeprinciplessetoutinAppendix3. Thebasisofthe interconnected Nordic synchronous power system’s balance regulation isthat regulationiscarriedoutinrespectoffrequency.Regulationworkisapportionedinaccordance withtherequirementfor frequency response andajointNordicmeritorder regulation list .The entireNordicpowersystemshallconstituteasinglemarketfor regulation power .Intheevent of bottlenecks ,the regulation market canbesplitup. The Parties shallpayattentiontoregulationproblemswithinthehourofoperationand especiallyathourchanges.Majorchangesto exchange plans shouldbemanagedvia agreementsconcerningtransitions.

§ 13 Power exchanges

13.1 Hourly exchange plans Parties withadjacent subsystems shalljointlysetroutinesfornotifyinghourly exchange plans and trading plans amongthe subsystems .Whenevertransmissioncapacityismadeavailable forotherpurposesthanpowertrading,therelevantplansshallbebilaterallyreportedtoeach player individually.Tradingmustbereportableasanettradebetweeneach subsystem .

15January2007 54 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

13.2 Supportive power Exchangesof supportive power between Parties withadjacent subsystems maybecarriedout inordertoachieveefficientoperationofthesystem.Suchexchangescancomeaboutasand whenrequiredduring normal state ,during counter trading orduring operational disturbances . Supportive power canbeagreeduponinadvance,aswellascommencedandterminatedduring thecurrenthourofoperation. Theprinciplesforpricing supportive power aresetoutinAppendix3.

13.3 Balance power Balance power betweenthe subsystems iscalculatedduringsettlementasthedifference betweenthemeasuredexchangeofpowerandthesumofallformsofagreedexchange, includingsuchexchangesashavebeenagreedbetweenthe Parties . Moredetailedrulesformanagingandpricing balance power aresetoutinAppendix3.

§ 14 Settlement Settlementshallbebasedontheprinciplessetoutin§1213for balance regulation and exchangesofpower. Allsettlementofexchangesofpowerbetweenthe subsystems shalltakeplaceatthe settlement points specifiedinAppendices7.17.6. Thesettlementprocedureisregulatedbilaterallyinseparateagreements,settlement agreements,betweenthe Parties concerned.

§ 15 Power shortages Whenthereisariskof power shortages ,thepowertradewithinthepowerexchangeareashall begiventheopportunity,throughpriceformation,todistributerisksandcostsbetweenthe electricitymarket players .The Parties shall,asfarasispossibleandreasonable,worktowards upholdingsuchpowertradingandallocationsofproductioncapacity,whichtheydonot contractuallyhavetherighttodiscontinue. Intheeventofanticipated power shortages inoneormore subsystems ,the Parties shall collaborateinsuchawaythattheresourcesavailablewithinthe interconnected Nordic power system areutilizedinordertominimisetheextentofcompulsory load shedding . Acutesituationssuchasgeneral power shortages or power shortages resultingfrom operational disturbances onnetworks,or bottleneck situations whencompulsory load shedding hastobecarriedout,aretobemanagedinaccordancewithAppendix9. System security shallbemaintainedonthelevelspecifiedinAppendices2and3sothat dimensioning faults donotleadtoextensivefollowondisturbancesinthe interconnected Nordic power system .

15January2007 55 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

§ 16 Exchanging information Appendix4specifiestheinformationthatshallbeexchangedbetweenthe Parties forsystem operationrequirements. Iftheinformationthatthe Parties aremutuallyexchanginghasnotbeenmadepublicinthe countrytheinformationrelatesto,the Parties pledgetokeepthisinformationconfidential,as faraspossible,inaccordancewiththelegislationinforceintherespectivecountry.

§ 17 Liability The Parties willonlybeliabletooneanotherfordamageresultingfromgrossnegligenceor maliceaforethought. Noneofthe Parties willbeabletoholdanyoftheother Parties liableforlostrevenues, consequentiallossesorotherindirectlosses,unlesssuchdamagehasbeencausedbygross negligenceormaliceaforethought.

§ 18 Disputes ShouldadisputeariseinconnectionwiththisAgreement,the Parties shallinitiallyattemptto resolvetheirconflictthroughnegotiation.Ifthisdoesnotsucceed,thedisputeshall,under Swedishlaw,conclusivelybesettledbyarbitrationinaccordancewiththeRulesofthe ArbitrationInstituteoftheStockholmChamberofCommerce.Thearbitrationprocedureshall takeplaceinStockholm.

§ 19 Alterations and supplements AlterationsandsupplementstothisAgreementshall,inordertobelegallyvalid,bedrawnup inwritingandsignedbyallthe Parties . AppendicestothisAgreementcanbeaddedtoonarollingbasis.Indoingso,Appendices whichrelatetoallthe Parties shallbeupdatedjointlyandapprovedbyallthe Parties . Appendiceswhichdealwithindividuallinksshallbeupdatedbythe Parties thatareaffected bytheAppendixinquestion.AnyandallchangestoAppendicesshallbedocumentedin writingandcommunicatedtothe Parties . IntheeventofalterationstoAppendices,theAppendicesinquestionshall,byatthelatestone monthafterthealterationhasbeenmade,berevisedandsentouttoallthe Parties .Anannual reviewoftheAgreementshallbecarriedoutinordertodealwithanycontractualrevisions.

15January2007 56 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

§ 20 Transfer ThisAgreementmaybetransferredtoanothercompanywhichhasbeenappointedasthe system operator ofa subsystem bytheauthoritiesofacountry.Othertransfersmaynot,wholly orinpart,takeplacewithoutthewrittenconsentoftheother Parties . Intheeventofthetransferofthe system responsibility toanothercompany,the Parties willbe responsiblefortransferringtheircontractualcommitmentsunderthisAgreementtothenew system operator .

§ 21 Validity etc ThisAgreementwillcomeintoforceonceithasbeensignedbyallthe Parties andwillremain inforceuntilfurthernotice.TheAgreement,whichwillapplyfromxxxx2006,isconditional uponeachrespective Party receivingthenecessaryBoard/Authorityapprovals. Ifa Party deemsthetermsandconditionsofthisAgreementtoentailunreasonableor inappropriateconsequences,thenthis Party willbeabletorequest,inwriting,fromtheother Parties thatnegotiationsbeenteredintoassoonaspossiblewiththeaimofbringingabout appropriatechangestotheAgreement.Equivalentnegotiationscanalsobeenteredintoifthe preconditionsfortheAgreementchangesignificantlyduetoalteredlegislationoradecision madebyanauthority,orduetophysicalchangesbeingmadetothe interconnected Nordic power system . Ifa Party requestsrenegotiation,theother Parties willbeobligatedtoactivelytakepartin suchnegotiationswithinonemonthofreceivingsucharequest. Ifrenegotiationsdonot,withinsixmonthsoftherequestforrenegotiationbeingmade,leadto agreementbeingreachedasregardssuchchangestotheAgreementthatthe Party deems satisfactory,the Party shallhavetherighttoterminatetheAgreement.Termination,which mustbeinwriting,shalloccurbyatthelatesttwoweeksfromtheexpirationofthe renegotiationdeadline.Ifsuchterminationoccurs,theAgreementshallbedeemedtohave ceasedtobevalidinrespectoftheterminating Party ,onceaperiodofsixmonthshaselapsed fromthetimewhenthenoticeofterminationwascommunicatedtoalltheother Parties .

15January2007 57 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT)

ThisAgreementreplacesthepreviousagreementdated1April2004. ThisAgreementhasbeendrawnupandsignedinfour(4)identicalcopies,ofwhichthe Parties havereceivedonecopyeach. Fredericia2006 Helsinki2006 Energinet.dk FingridOyj PederØ.Andreasen TimoToivonen Oslo2006 Stockholm2006 StatnettSF AffärsverketSvenskaKraftnät OddHåkonHoelsæter JanMagnusson

15January2007 58 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

DEFINITIONS TermsdefinedinthisAppendixarewritteninitalicsintheAgreementanditsAppendices. MostofthetermsareNordicandarenotusedinContinentalEurope.Individualgeneralterms correspondtotermsusedwithinUCTE.Termsconcerningthecapacityofthelinksbetween thesubsystemsarecomparabletothecorrespondingtermswithinETSO. The active reserve isdividedinto automatic active reserve and manual active reserve .

Adjustment state isatransitionfromalertstatetonormalstate,characterisedinthat consumption,productionandtransmissionsinthenetworkareadjustedsothatthenetworkcan managea(new)dimensioningfault.Theadjustmenttakesplacein15minutesfromafault whichhasinvolvedthedisconnectionofcomponents.Seealso operational states .

Alert state isanoperationalstatewhichentailsthatallconsumptionisbeingmetandthatthe frequency,voltageortransmissionsarewithinacceptablelimits.Thereserverequirementsare notfulfilledandfaultsinnetworkcomponentsorinproductioncomponentswillleadto disturbed state or emergency state .Alsosee operational states . Annual consumption isthesumofelectricityproductionandnetimportsina subsystem . Electricityproductionisthenetproductioninapowerplant,i.e.exclusiveofthepowerplant’s ownconsumptionofelectricityforelectricityproduction. An area isapartofthepowersystemwithina subsystem ;anareacanpotentiallycomprisean entire subsystem .Anareaisborderedby transmission cross-sectionsinthenationalsubsystems orby cross-border links . Area prices are Elspot prices withinan Elspot area . The automatic active reserve istheactivereservewhichisautomaticallyactivatedduringthe momentaryoperatingsituation.Itisdividedinto frequency controlled normal operation reserve , frequency controlled disturbance reserve and voltage controlled disturbance reserve .

Balance areas areareasofthepowersystemwherethereiscontinuousregulationinorderto maintainthefrequencyandaphysicalbalanceinrelationtoadjacentareas.IntheNordicarea, the synchronous system andWesternDenmarkareseparate balance areas .

Balance power isthedifferencebetweentheplannedandmeasuredtransmissionsbetweenthe subsystems . Balance regulation isregulationinordertomaintainthefrequencyand time deviation in accordancewiththesetqualityrequirements.Regulationisalsocarriedoutfornetwork reasons.

15January2007 59 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

A bottleneck isacapacitylimitationonthe transmission network .OntheElspotmarket, attentionispaidto bottlenecks betweenthe Elspot areas .Duringoperational planning and monitoring and control, attentionispaidtoallphysical bottlenecks . Counter trading isthepurchasingofupwardregulationandthesaleofdownwardregulation, oneachsideofa bottleneck, whichthe system operators carryoutinordertomaintainor increasethe trading capacity of Elspot trading betweentwo Elspot areas, orinorderto eliminatea bottleneck duringthe day of operation . Critical power shortage occursduringthehourofoperationwhenconsumptionhastobe reduced/disconnectedwithoutcommercialagreementsaboutthis.

A cross-border link isalinkbetweentwo subsystems includingconnectinglinefeederson bothsidesofthelink.ForHVDClinks,onlytheDCfacilityatstationsonbothsidesofthelink isincludedinthecrossborderlink. The day of operation isthecalendardayaroundthemomentaryoperationalsituation. A deficit area isa subsystem whose balanceisnegative,i.e.thatpowerisphysicallyflowing intothe subsystem physicallymeasuredonthe cross-border links betweenthe Parties . Dimensioning faults arefaultswhichentailthelossofindividualmajorcomponents (productionunits,lines,transformers,busbars,consumptionetc.)andentailthegreatestimpact uponthepowersystemfromallfaulteventsthathavebeentakenintoaccount. Disturbed state isanoperationalstatewhichentailsthatallconsumptionisbeingmet,butthat thefrequency,voltageortransmissionsarenotwithinacceptablelimitsandthat normal state cannotbeachievedin15minutes.Alsosee operational states . Elbas trading is powertradinginElbasatNordPoolSpot. Elbas trading canoccurin Sweden,FinlandandEasternDenmarkpriortoandduringthe day of operation after Elspot trading hasfinished.

Elspot areas aretheareasoftheElspotmarketwhichthe interconnected Nordic power system isdividedintoinordertodealwithpotentialcapacitylimitations( bottlenecks )onthe transmission network . Potential bottlenecks giverisetodifferent Elspot prices in Elspot areas . InFinland,Sweden,WesternDenmarkandEasternDenmark,the Elspot areas correspondto thesubsystems . InNorway,thereareseveral Elspot areas withinthe subsystem .

Elspot pricesarepricesin Elspot trading withinan Elspot area . Elspot trading is powertradingonthespotmarketofNordPoolSpot. Elspot trading can occurpriortothe day of operation inall subsystems . Emergency power ispowerregulationonHVDClinksactivatedbyautomaticsystemsonboth sidesoftherespectiveHVDClink.

15January2007 60 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

Emergency state isanoperationalstateentailingthatcompulsoryloadsheddinghasbeen appliedandthatproductionsheddingandnetworkdivisionsmayoccur.Alsosee operational states.

ETSO (EuropeanTransmissionSystemOperators)isanorganisationfor system operators in Europe. An exchange plan isaplanforthetotalagreedactivepowertobeexchangedhourbyhour betweentwo subsystems .Thiscanbeaplanforawholecalendardayoranumberofhours (energyplan)and,whenever supportive power occursduringapartofthehour,alsoa momentaryplanduringthehour(powerplan). The fast active counter trading reserve isthe manual active reserve forcarryingout counter trading .

The fast active disturbance reserve isthemanualreserveavailablewithin15minutesinthe eventofthelossofanindividualprincipalcomponent(productionunit,line,transformer,bus baretc.).Restoresthe frequency controlled disturbance reserve . The fast active forecast reserve isthe manual active reserve forregulationofforecasting errorsforconsumptionandproduction. Faults areeventswhichoccurinthepowersystemandleadtoareducedcapacityorlossofa line,busbar,transformer,productionunitsorconsumption.Afaultcausesan operational disturbance inthepowersystem. The frequency controlled disturbance reserve isthemomentarilyavailableactivepower availableforfrequencyregulationintherangeof49.9–49.5Hzandwhichisactivated automaticallybythesystemfrequency.Previouslycalledthemomentarydisturbancereserve. The frequency controlled normal operation reserve isthemomentarilyavailableactive poweravailableforfrequencyregulationintherangeof49.9–50.1Hzandwhichisactivated automaticallybythesystemfrequency.Previouslycalledthefrequencyregulationreserve.

The frequency response isthechangeabilityinproductiondependentonthefrequencyofthe network(MW/Hz). The interconnected Nordic power system istheinterconnected subsystems ofFinland, Norway,Sweden,WesternDenmarkandEasternDenmarkforwhichtheNordic system operators havejoint system responsibility . Load following entails players withmajorproductionchangesreportingtheirproductionplans withatimeresolutionoflessthan1hour. Load shedding istheautomaticormanualdisconnectionofconsumption. The manual active reserve istheactivereservewhichisactivatedmanuallyduringthe momentaryoperationalsituation.Thisisdividedintothe fast active forecast reserve, the fast active disturbance reserve, the fast active counter trading reserve andthe slow active disturbance reserve .

15January2007 61 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

Manual emergency power ispowerregulationontheHVDClinkswhichisactivated manually. A momentary area control error isthedisparity(inMW)betweenthesumofthemeasured powerandthesumoftheagreed exchange plan onthelinksbetweenthe subsystems plus frequencycorrection,whichisthe subsystem’s momentary frequency response multipliedby thedeviationinthefrequencyawayfrom50Hz.Alsocalledthemomentaryimbalance. N-1 criteria areawayofexpressingalevelof system security entailingthatapowersystem canwithstandthelossofanindividualprincipalcomponent(productionunit,line,transformer, busbar,consumptionetc.).Correspondingly,n2entailstwoindividualprincipalcomponents beinglost. Network collapse isanoperationalstatethatentailsthatallloadsinoneormoreareasareshed andthatproductionsheddingandnetworkdivisionscanoccur.Alsosee operational states . Normal state isanoperationalstateentailingthatallconsumptionrequirementsarebeingmet, thatfrequency,voltageandtransmissionliewithintheirlimitsandthatreserverequirements arebeingmet.Thepowersystemispreparedtodealwith dimensioning faults .Alsosee operational states .

An operational disturbance isadisturbancetothepowersystem.Thiscanbethelossofa line,abusbar,atransformer,aproductionunitorconsumption. An operational instruction isaninstructiongiventothecontrolroomsofthe system operators concerninghowtheyaretobehaveinanoperationalsituation. Operational monitoring and control isthemonitoringandcontroloftheoperationofthe powersystemcarriedoutbythecontrolrooms. The operational phase isthetimefromthemomentaryoperationalsituationandtherestofthe day of operation whentradeontheElspotmarkethasalreadybeendetermined. Operational planning isthe system operators’ planningoftheoperationofthepowersystem. The operational reserve isthereservethatthe system operators haveaccesstoduringthe day of operation .Itisdividedintothe active reserve andthe reactive reserve .

Operational security standards arecriteriawhichthe system operators usewhenconducting operational planning inordertoupholdthereliableoperationofthepowersystem. The operational states are normal state, alert state, disturbed state, emergency state and network collapse .Seealso adjustment state and restoration .Thesewereearlierreferredtoas thepowersystem’soperationalstates.SeeFigure1. Outage planning istheplanningdonebyeachindividual system operator, aswellasbetween the system operators, ofthenecessaryoutagesaffecting transmission capacities betweenthe subsystems .

15January2007 62 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

A Party isoneofthe system operators enteringintothisAgreementregardingoperationofthe interconnected Nordic power system .The Parties areEnerginet.dk,Fingrid,Statnettand SvenskaKraftnät. The peak load resource isan active reserve whichnormallyhasalongreadinesstime.Inthe eventofanticipatedpeakloads,thereadinesstimeisreducedsothatthe peak load resource canbeusedpriortothe day of operation ontheElspotmarketorduringthe day of operation onthe regulation market . The planning phase isthetimeuntilwhichbidssubmittedforthenextcalendarday’s Elspot trading onthepowerexchangecannolongerbechanged. A Player isaphysicalorlegalpersonaactiveonthephysicalelectricitymarketintheformof bilateraltradingwithother players , Elspot trading , Elbas trading ortradingonotherexisting marketplaces. The power operation manager isthepersonwhohasobtained,fromtheholder,thetaskof beingresponsibleformanagingtheelectricalfacility. The power operation responsibility boundary istheboundaryofawelldefinedareainthe transmission facilities betweentwo power operation managers . Power shortage occursduringthehourofoperationwhena subsystem isnolongercapableof maintainingthedemandfora manual active reserve whichcanbeactivatedwithin15minutes. A price area isan Elspot area which,dueto bottlenecks towardsanother Elspot area, hasbeen givenan Elspot price ofitsown. Production shedding meanstheautomaticormanualdisconnectionofaproductionfacility. Ramping meansrestrictingchangesin Elspot trading ononeormorecrossborderlinks individuallyandtogetherfromonehourtothenext.

Ramp regulation meansregulationofpowerbaseduponaspecifiedrampinordertoevenout thetransitionbetweentwopowerlevels,normallyonHVDCcablesatthechangesofthehour. The reactive reserve isthereactivepowerwhichisactivatedeitherautomaticallyormanually duringthemomentaryoperationalsituation. Redundancy ismorethanoneindependentopportunityforapieceofequipmenttocarryouta desiredfunction. Regulating bids arebidsforupwardordownwardregulationataspecifiedoutputpowerata specifiedprice. Regulating power isactivated regulating bids ,upwardanddownwardregulationsatpower plantsaswellastheupwardanddownwardregulationofconsumptionwhichproducersor consumersofferinexchangeforcompensation.The system operators activatethesebids duringthemomentaryoperationalsituationtomaintainthebalance/frequencywithinthe balance areas andtodealwith bottlenecks onthe transmission network .

15January2007 63 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

Regulation areas aretheareaswhichthe regulation market forthe interconnected Nordic power system isdividedintoinordertomanagepossiblecapacitylimitations( bottlenecks )on the transmission network . Potential bottlenecks willentaildifferent regulation prices inthe regulation areas .InSweden,Finland,WesternDenmarkandEasternDenmark, regulation areas normallycorrespondtothe subsystems .InNorway,thereareseveral regulation areas withinthe subsystem . The regulation list isthelistof regulation bids inascendinganddescendingordersortedby thepriceforonehour. The regulation margin ,alsocalled TRM (TransmissionReliabilityMargin),isthegap betweenthe transmission capacity andthe trading capacity .Itconstitutesthescopeforthe momentaryregulationvariationsasaresultoffrequencyregulationaroundtheplannedhourly valuefortransmission. The regulation market isthemarketfor regulating power . The regulation price isthepriceresultingfromimplementedregulationsduringthehourof operationfora regulation area .AlsocalledtheRKprice. Regulation steps arestepsinthe regulation list . Restoration isatransitionbetweendifferentoperationalstatescharacterizedbythenetwork beingrestored,productionbeingregulatedupwards,andfrequency,voltageandtransmission beingbroughtwithinacceptablelimits.Consumptionisconnectedatapacewhichthenetwork andproductionresourcescantake.Alsosee operational states. A risk of power shortage occurswhenforecastsshowthata subsystem isnolongercapableof maintainingthedemandfora manual active reserve whichcanbeactivatedwithin15minutes, fortheplanningperiod. Scaling meansrestrictingchangesinthe trading capacity (NTC)betweentwo Elspot areas fromonehourtothenext.

Serious operational disturbances are operational disturbances entailinggreater consequencesthanactivationofthe frequency controlled disturbance reserve .

Settlement points arereferencepointsforfinancialsettlementbetweenthe subsystems based ondirectmeasurement. The slow active disturbance reserve istheactivepoweravailableafter15minutes. Special regulation istheactivationof regulating power inordertodealwith bottlenecks on the transmission network . A subsystem isthepowersystemforwhicha system operator isresponsible.A system operator canberesponsibleforseveral subsystems .

15January2007 64 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1

Subsystem balance iscalculatedasthesumofthemeasuredphysicaltransmissionsonthe cross-border links betweenthe subsystems .Thus,thereisadeficitifthissumshowsthatpower isflowingintoa subsystem andasurplusifpowerisflowingoutofa subsystem .(Exchanges on cross-border links likeFinlandRussia,theSwePolLink,theBalticCable,Kontekand WesternDenmarkGermanyarenottobeincludedinthecalculation.) Supportive power ispowerthatadjacent system operators canexchangereciprocallyasan elementoftheregulationofbalanceintherespective subsystems .Exchangesaremade specifyingthepower,price,linkandtimetotheexactminuteofthestartandfinishofthe exchange. Supportive power issettledasthehourlyaveragevalue. A surplus area isa subsystem whose balance ispositive,i.e.thatpowerisphysicallyflowing outofthe subsystem measuredphysicallyonthe cross-border links betweenthe subsystems . The synchronous system isthesynchronouslyinterconnectedpowersystemconsistingofthe subsystems ofNorway,Sweden,FinlandandEasternDenmark.WesternDenmarkis synchronouslyinterconnectedwiththe UCTE system. The system operator hasthe system responsibility foradefined subsystem . The system price isanestimatedpricefortheentireElspotmarket.Thes ystem price is estimatedasiftherearenocapacitylimitationsonthe transmission network betweenthe Elspot areas . System protection iscomposedofautomaticsystemprotectionequipmentforthepower system. System protection can,forinstance,beusedtolimittheimpactoffaultsbyshedding productioninordertocompensateforthedefectivecomponentandsothatoverloadsdonot arise. System protection canalsobeusedtoincreasethecapacityofthe transmission network withoutsimultaneouslyincreasingtheriskofdiminishingthe system security . System protection requiresalevelofreliabilityinlinewithprimaryprotection.Previouslycalled networkprotection. The system responsibility istheresponsibilityforcoordinatingtheutilizationofelectrical facilitiesinthejointlyoperatedpowersystem,orapartofthis,inorderthatthedesired system security andnetworkqualitymaybeattainedduringoperationalservice.

System security isthepowersystem’sabilitytowithstandincidentssuchasthelossoflines, busbars,transformers,productionunitsorconsumption. System services isagenerictermforservicesthat system operators needforthetechnical operationofthepowersystem.Theavailabilityof system services isagreeduponbythe system operator andtheothercompanieswithintherespectivecountry. System services canbe arrangedintodifferentformsof system protection and operational reserves foractiveand reactivepower. Time deviation isthedifferencebetweenasynchronousclockdrivenbythefrequencyofa powersystemandplanetarytime.

The trading capacity ,alsocalled NTC (NetTransferCapacity),iscapacitymadeavailableto Elspot trading betweenthe Elspot areas andthehighestpermittedsumofthe players’ planned

15January2007 65 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 1 tradingonanhourlybasis.The trading capacity iscalculatedasthe transmission capacity less theregulating margin . The trading plan isthesumofthe players’ electricitytradingbetweenthe Elspot areas (Elspot,Elbas,hourlytrading). The transmission capacity ,alsocalled TTC (TotalTransferCapacity),isthemaximum transmissionofactivepowerinaccordancewiththesystemsecuritycriteriawhichispermitted in transmission cross-sectionsbetweenthe subsystems/areas orindividualinstallations. A transmission cross-section isacrosssectiononthe transmission network betweenthe subsystems orbetween areas withina subsystem .Alsoreferredtosolelyascrosssections.

Transmission facilities areindividualinstallations(lines,busbars,transformers,cables, breakers,isolatorsetc)whichformthe transmission network .Thisincludesprotective, monitoringandcontrolequipment. A transmission network istheinterconnectednetworkcontainingthe transmission facilities . UCTE (UnionfortheCoordinationofTransmissionofElectricity)isanassociationof system operators incontinentalEurope. The voltage controlled disturbance reserve isthemomentarilyavailableactivepowerused for operational disturbances andwhichisactivatedautomaticallybythenetworkvoltage. Oftenestablishedas system protection .

Normal operation

Dimensioning fault (n-1) (New) Reserves activated / transmission limits maintained / adjusted in 15 min

Alert operation Max. 15 minutes Restoration Insufficient reserves after 15 min Load shedding Transmission limits exceeded has taken place

15 min Serious disturbance fault) (>>dim.

Additional fault Disturbed Emergency operation operation Restoration Figure 1 Operational states (network collapse is not specified in the figure).

15January2007 66 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2

OPERATIONAL SECURITY STANDARDS

1 System security criteria Thefollowingcriteriafor system security aretobeappliedinthoserespectsthatareof significanceasregardsenablingoperationofthepowersystemtobeupheldwiththe subsystems interconnectedwitheachother. Thecriteriafor system security shallbebasedonthe n-1 criterion .Thisisanexpressionofa levelof system security entailingthatapowersystemisassumedtobeintactapartfromthe lossofindividualprincipalcomponents(productionunits,lines,transformers,busbars, consumptionetc.).Forfaultshavingthelargestimpactonthepowersystem,theterm dimensioning faults isused. Itisnotnormallythesametypeoffaultthatisdimensioningduringfrequencydisturbancesas duringdisturbancestothetransmissionsystem.Thelossofthepowersystem’slargest productionunitisnormallydimensioningasregardsdeterminingthe frequency controlled disturbance reserve . Thedefinitionof serious operational disturbances is operational disturbances havingagreater impactthanactivationofthe frequency controlled disturbance reserve . Thedefinitionof normal state isanoperationalstateentailingthatallconsumptionisbeing met,thatthefrequency,voltageandtransmissionliewithinnormallimitsandthatthereserve requirementshavebeenmet.Thepowersystemhasbeenpreparedinordertodealwith dimensioning faults . FortheinterconnectedNordicpowersystem,theaboveentailsthat: • adimensioningfaultonasubsystemmustnotbringaboutseriousoperational disturbancesinothersubsystems.Thisplacesdemandsonthefrequencycontrolled disturbancereserveandthetransmissioncapacitywithinandbetweenthesubsystems • ifthepowersystemisnotinnormalstatefollowinganoperationaldisturbance,the powersystemmusthavebeenrestored,within15minutes,tonormalstate.Thisplaces demandsontheavailablefastactivedisturbancereserve.Ifthereareexceptionsfrom thetimerequirement,orifthereisadeparturefromtheabovedefinitionof dimensioningfaults,thentheremustbeconsultationbetweenthesystemoperators concerned.

2 System protection System protection isusedtolimittheconsequencesoffaultsoverandabovethedisconnection ofdefectivecomponents. System protection canhaveasitspurposetoincreasethe system security ,the transmission capacity, oracombinationofthese.For system protection thatis usedtoincreasethe transmission capacity, thefollowingrequirementshavebeenset: • Ananalysismustbeimplementedwhichshowstheconsequencesforthepowersystemin theeventofacorrect,unwantedandmissingfunctionherebytakingtheinteractionwith othersystemprotectionschemesintoaccount.

15January2007 67 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2

• Intheeventofacorrectorunwantedfunction, serious operational disturbances willnotbe acceptedinother subsystems. • Iftheaboveconsequenceanalysisshowsthatamissingfunctioncanentail serious operational disturbances forother subsystems, thefollowingtechnicalrequirementsshall applytothe system protection function:

Redundant telecommunications shall exist in cases where system protection is dependent on telecommunications Redundant telecommunicationsmeansthatcommunicationsbetweenthe stationsconcernedshallbeentirelyduplicated.Iftheauxiliarypowerfeedfor oneofthecommunicationssystemsfails,thentheothermustnotbeaffected. Inpractice,thismeansthatbatteries,telecomterminals,convertersand communicationpathsmustbeduplicated.Communicationpathsmaynot,on anysection,shareconnections,leads,optocablesorsimilar.Theymusttake geographicallyseparatedroutes. Multiplexedlinkscanbeusedbutcommunicationsshalluseseparated multiplexesthatarenotfedbythesamebattery.Havingseparatefusesonthe samebatterydoesnotconstitutefullredundancy.

There must be real time monitoring of telecommunications

There must be a redundant and independent ”triggering function” A redundant triggeringfunction,ifthisrelatestobreakers,meansthatthe breakerhastwotripmagnets.Breakerfaultprotectionshallbeusedto safeguardbreakeroperationiftheordinarybreakersarenotfunctioning correctly The control facility and telecommunications standard shall be on the same acceptable reliability level as the one applicable to primary relay protection • Ifaconsequenceanalysisshowsthatamissingfunctionwillnotentail serious operational disturbances forother subsystems ,therelevant subsystem’s system operator willdecide whichrequirementsapplytothe system protection function. • Ifaconsequenceanalysisshowsthatacorrect,unwantedormissingfunctioncanleadto moreextensiveconsequencesthandimensioningfaults,systemprotectionmustbeaccepted separatelybetweentheparties.

3 HVDC links HVDClinksshallberegardedasproductionfacilities. The system operators fortheindividualHVDClinksareonlyresponsibleforrestoringthe operationto normal state intheirown subsystems afterthelossoftheHVDClinkorafter emergency power regulationhasbeenactivated.

15January2007 68 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2

4 Operational reserves

4.1 Automatic active reserve The automatic active reserve isdividedupintothe frequency controlled normal operation reserve ,the frequency controlled disturbance reserve andthe voltage controlled disturbance reserve .

4.1.1 Frequency controlled normal operation reserve The frequency controlled normal operation reserve shallbeatleast600MWat50.0Hzforthe synchronoussystem.Itshallbecompletelyactivatedatf=49.9/50.1Hz( f=+0.1Hz). Intheeventofarapidchangeoffrequencyto49.9/50.1Hz,thereserveshallberegulated upwards/downwardswithin23minutes.The frequency controlled normal operation reserve is distributedbetweenthe subsystems ofthe synchronous system inaccordancewiththe annual consumption (totalconsumptionexclusiveofpowerplant’sownconsumption)duringthe previousyear. Thefactualdistributionofthe frequency-controlled normal operation reserve betweenthe subsystems shallberevisedeachyearbefore1Marchonthebasisof annual consumption in thepreviousyearandroundedtotheclosestten. Annual consumption shallbegiveninTWh withanaccuracyofonedecimal. Each subsystem shallhaveatleast2/3ofthe frequency-controlled normal operation reserve in itsownsystemintheeventofsplittingupandislandoperation. For2006,thefollowingdistributionapplies: Annualconsumption Frequencycontrolled 2005 normaloperation (TWh) reserve (MW) EasternDenmark 14.4 23 Finland 84.9 137 Norway 125.9 203 Sweden 147.3 237 Synchronoussystem 372.5 600

4.1.2 Frequency controlled disturbance reserve Thereshallbea frequency controlled disturbance reserve ofsuchmagnitudeandcomposition that dimensioning faults willnotentailafrequencyoflessthan49.5Hzinthe synchronous system . Takingintoaccountthefrequencydependenceofconsumption,theaboverequirementsentail thatthecombined frequency controlled disturbance reserve shallamounttoanoutputpower equaltothe dimensioning faults less200MW.Theoverall frequency controlled disturbance reserve mustbeabletobeuseduntilthe fast active disturbance reserve hasbeenactivated. Upwardregulationofthe frequency controlled disturbance reserve mustnotgiverisetoother problemsinthepowersystem.Whensettingthe transmission capacity ,localizationofthe

15January2007 69 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2 frequency controlled disturbance reserve mustbetakenintoaccount.Each subsystem shall haveatleast2/3ofthe frequency controlled disturbance reserve withinitsownsysteminthe eventofsplittingupandislandoperation. The frequency controlled disturbance reserve shallbeactivatedat49.9Hzandbecompletely activatedat49.5Hz.Itmustincreaseasgoodaslinearlythroughoutthefrequencyrangeof 49.949.5Hz. Themajorpartofboththe frequency controlled disturbance reserve andthe frequency controlled normal operation reserve willbeachievedviaautomaticfrequencyregulationfor productionfacilities.Tomeettheaboverequirements,theobjectiveforeachrespective system operator mustbetoplacedemandsonturbineregulatorsettings,e.g.intheformofdemands regardingregulatingtimeconstants.Thereshouldalsobethepossibilityofmonitoringand checking. Agreedautomatic load shedding, e.g.industrial,districtheatingandelectricboiler consumptionintheeventoffrequencydropsto49.5Hzcanbecountedaspartofthe frequency controlled disturbance reserve .Thefollowingrequirementsareapplicable,however: Load shedding canbeusedas frequency controlled disturbance reserve inthefrequency rangeof49.9Hzto49.5Hz,when load shedding meetsthesametechnicalrequirementsset belowforgenerators. Intheeventofafrequencydropto49.5Hzcausedbyamomentarylossofproduction: • 50%ofthe frequency controlled disturbance reserve ineach subsystem shallbe regulatedupwardswithin5seconds • 100%ofthe frequency controlled disturbance reserve shallberegulatedupwards within30seconds. Distributionoftherequirementforthe frequency controlled disturbance reserve betweenthe subsystems ofthe interconnected Nordic power system shallbecarriedoutinproportiontothe dimensioning fault withintherespective subsystem .Distributionoftherequirementshallbe updatedonceaweekormoreoftenifnecessary. Thefollowingexampleshowshowdistributionoftherequirementforthe frequency controlled disturbance reserve isachieved: Dimensionin Frequency Frequency gfaults controlled controlled (MW) disturbanceres. disturbanceres. (MW) (%) Denmark 580 153 15.0 Finland 865 228 22.4 Norway 1,200 317 31.0 Sweden 1,220 322 31.6 Total 1,020 100 Energinet.dk’srequirementofthe frequency controlled disturbance reserve isdistributed betweenEasternandWesternDenmarkasfollows: WesternDenmark75MW(7.4%)

15January2007 70 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2

EasternDenmark78MW(7.6%)

Energinet.dkacceptsthisrequirementaslongasE.ONNetzandUCTEaccepttheemergency powersettingontheHVDCSkagerrakandKontiSkanlinksandaslongasthisentailsno financialconsequencesforEnerginet.dk.Energinet.dkwillnotreservetradingcapacityinorder tobeabletodeliverthereserve. Energinet.dk’sACjointoperationofWesternDenmarkwithinthe UCTE systementailsthat Energinet.dkisrequiredtomaintainthefrequencyand frequency controlled disturbance reserve inaccordancewith UCTE rules.Thisisdescribedinsection5”Specialconditionsfor Energinet.dkasamemberofUCTE”.

4.2 Fast active disturbance reserve The fast active disturbance reserve shallexistinordertorestorethe frequency controlled normal operation reserve andthe frequency controlled disturbance reserve whenthese reserveshavebeenusedorlost,andinordertorestoretransmissionswithinapplicablelimits followingdisturbances. The fast active disturbance reserve shallbeavailablewithin15minutes. The fast active disturbance reserve shallexistandbelocalizedtotheextentthatthesystemcan berestoredto normal state followingfaults. Thesizeofthe fast active disturbance reserve isdeterminedbytheindividual subsystem’s assessmentoflocalrequirements. Bottlenecks onthenetwork, dimensioning faults andsimilar areincludedwhenassessingthis. The system operators havesecured,throughagreementorownership,a fast active disturbance reserve .Thisreserveconsistsofgasturbines,thermalpower,hydropowerand load shedding. Inroundfigures,Fingridhas1,000MW,SvenskaKraftnät1,200MW,Energinet.dk600MW inEasternDenmark(where300MWis slow active disturbance reserve which,onspecial occasions,canbemadefast),Energinet.dk620MWinWesternDenmark,andStatnett1,600 MW. Wheneverrequired,a subsystem canholdacertainamountof fast active disturbance reserve foranother subsystem ,ifthereisidle transmission capacity forthispurpose.Thekeepingof suchreservesistobeagreeduponbetweentheconcerned subsystems’ system operators upon eachoccasion,andall system operators shallbeinformedofthis.

4.3 Slow active disturbance reserve The slow active disturbance reserve isactivepoweravailableafter15minutes.

4.4 Reactive reserve Withineach subsystem,theremustbeareserveofreactivepowerwhichisconstitutedinsucha waywithregardtosize,regulationcapabilityandlocalizationthat dimensioning faults willnot entailasystemcollapse.

15January2007 71 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2

5 Special conditions for Energinet.dk as a member of UCTE N-1 security The n-1 criterion alsoappliestothe UCTE area.Ifn1securityismaintainedwiththehelpof adjacentsystems(e.g.using system protection ),thisshallbeapprovedbytheadjacentsystem owners.

Primary regulation Fortheentire UCTE, a frequency response of18,000MW/Hzisrequired.Thedimensioning productionlossis3,000MW.Thedifferentcountries’shareoftheprimaryregulationreserve isdistributedinproportiontotheindividualcountries’productioncapacities.Energinet.dk shallthus,during2006,beabletodeliver32MWas frequency controlled disturbance reserve inWesternDenmark.This frequency controlled disturbance reserve shallbefullyactivatedin theeventofamomentaryfrequencychangeof±200mHz. Secondary reserve Generallywithin UCTE, itisapplicablethatthedeliveryofsecondaryreserveshallbe commenced30secondsafteranimbalancehasarisenbetweenproductionandconsumption andshallbefullyregulatedoutafter15minutes.Theremustbesufficientreservetosafeguard eacharea’sownbalancefollowingalossofproduction.

6 Principles for determining the transmission capacity

6.1 Introduction Thevarious system operators’ abilitytotransmitpowershallbecalculatedforeachstateof operation.Thisappliesbothtotransmissionswithineach subsystem andtoexchangesbetween subsystems .Mostfrequently,thisisachievedbymeansofa transmission cross-section being defined,andstaticanddynamicsimulationsdeterminehowmuchpowercanbetransmittedin anydirectionthroughthecrosssectionbeforethermaloverloads,voltagecollapseand/or instabilityarisefollowinga dimensioning fault (forthecrosssection)beingadded.Inthe crosssection,anarbitrarynumberoflinesondifferentlevelsofvoltagecanbeincluded. Theresultofthecalculationswillbethemaximumtechnicallimitationfortransmission.For theoperationalphase,thislimitmustbereducedasregardsthecalculatoryinaccuracyand normalvariationsduetofrequencycontrollednormaloperationregulation.

6.2 Thermal limitation Incaseswhenthermallimitationsonlinesand/orequipmentrestrictthe transmission capacity througha transmission cross-section ,themaximumtransmissioncapabilitythroughacross section,orforsinglelinesfollowingasimplefault,canbesetatagivenpercentageoverthe nominallimitincaseswhenthecrosssection/linecanberelievedwithin15minutes.

6.3 Voltage collapse Itisneitherofinterestnorpossibletospecifyexactlyatwhichvoltageavoltagecollapse occursasthiswillvarywiththestateofoperationandaccesstoactiveandreactive synchronized productionattheonsetofthefault.Someeventsthatlowvoltagecanleadtoare: • Consumersbeingaffectedatavoltageof0.50.7p.u.(contactorsopen)

15January2007 72 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 2

• Riskofoverloadingequipmentat0.8p.u. • Riskofproductionbeingshedduetolowvoltageonauxiliarypowerequipment(0.85 p.u.) • Reactiveresourcesbeingexhausted,i.e.generatorsareattheircurrentlimitsforrotors andstators.Canappearatavoltageof0.850.9p.u. Neitherisitpossibletospecifyaglobalvalueforthecalculatoryinaccuracy.Thisisdifferent foreach system operator and transmission cross-section andprimarilydependsonthequality ofdata,representationoftheunderlyingsystemsandthecalculationtechniqueused.The marginforprimaryvoltageregulationissetbyeach system operator forinternalcrosssections andbilaterallybetweenthe system operators forcrosssectionsbetweensystems.

6.4 System dynamics Dynamicsimulationofapowersystembefore,duringandafterafaultprovides,asatypical result,howthedifferentproductionfacilities’generatorsoscillateagainsteachother.These oscillationscaneitherbeattenuatedafterawhileoraccelerated.Todaythereisnoaccepted normforhowquicklytheoscillationsmustbeattenuatedinorderforthesystemtobeassumed tobestable;ratherthisisamatterofjudgement.Inthesamewayasabove,thecalculated technicallimitisreducedusingacalculatoryinaccuracymargin. Afaultscenarioistobesimulatedoveraperiodsolengthythatallconceivableoscillation frequenciescanbedetectedandthatthesearewellattenuated.

15January2007 73 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 3

BALANCE REGULATION STANDARDS Theworkof balance regulation shallbeconductedinsuchawaythatregulationstakeplacein the subsystem withthelowestregulationcost. Parties carryingoutregulationshallbe compensatedfortheircosts.

1 Balance regulation within the synchronous system Balance regulation withinthe synchronous system shallbeconductedinsuchawaythatthe belowspecifiedqualitystandardsregardingfrequencyand time deviation areintegrated. Requirementsregarding frequency response andfrequencycontrolledreserves(seeappendix2) shallbemaintained.Furthermore, balance regulation shallbeconductedinsuchawaythatthe transmission capacity isnotexceeded. SwedenandNorwayrepresentapprox.75%ofthe annual consumption ofthe synchronous system .The Parties agreethatSvenskaKraftnätandStatnettwillthushavethetaskof maintainingthefrequencyand time deviation withinthesetlimits.FingridandEnerginet.dk willnormallyonly balance-regulate aftercontactingSvenskaKraftnät.Energinet.dkWestwill exchange supportive power withthe synchronous system aftercontactingStatnett. ThedistributionofworkbetweenSvenskaKraftnätandStatnettisregulatedbilaterallyand communicatedtoallthe Parties .

1.1 Quality standards Frequency Therequirementofthehighestpermissiblevariationinthefrequencyduringnormal state is between49.90and50.10Hz.Thegoalistomaintain50.00Hz. Incertainoperationalsituationsitmaybenecessarytodeviatefromthenormalactivation sequenceandgooverto regulating bids ontheregulatinglistinordertomaintainthe frequency. Time deviation The time deviation isusedasatoolforensuringthattheaveragevalueofthefrequencyis 50.00Hz. The time deviation Tshallbeheldwithinthetimerangeof30to+30seconds.At T=15 seconds,StatnettandSvenskaKraftnätshallcontacteachotherinordertoplanfurtheraction. Thefrequencytargethasahigherprioritythanthe time deviation andthecostsoffrequency regulation. The time deviation shallbecorrectedduringquietperiodswithhigh frequency response and withamoderatefrequencydeviation. Joint operational planning ThereshallactivecommunicationsbetweenStatnettandSvenskaKraftnätbeforeeachhourof operationand day of operation inordertojointlydrawupasuitablestrategyandtoplanfuture

15January2007 74 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 3 actionsothattheabovegoalsareachieved.Bothpartiesareresponsibleformaintaining sufficientlyactivecommunications. Informationonplannedandtakenactioninordertoachievetheabovegoalsshallbedelivered toFingridandEnerginet.dk.

1.2 Momentary area control error Momentaryareacontrolerrorsarecalculatedforeach subsystem andusedasaninstrumentfor measuringthe subsystem’s momentaryimbalance.Momentaryareacontrolerrorsarenot normallyusedasregulationcriteria. Areacontrolerrors(I)arecalculatedinaccordancewiththefollowingformula: I=P mom P plan + fxR Pmom =themomentaryreadingonthelinksbetweenthe subsystems Pplan =theexchangeplanincluding supportive power betweenthe subsystems f =frequencydeviation R =momentary frequency response

2 Balance regulation in Western Denmark Balance regulation inWesternDenmarkshalltakeplacesothattherequirementsconcerning WesternDenmarkasa“controlblock”inUCTEaremetonthe cross-border links between GermanyandJutland.

3 Regulation measures and principles of pricing Ajointlistof regulation bids iscompiled,intheorderofprice,containingbidsfromboththe synchronous system andWesternDenmark.Duringthehourofoperation,regulationisinitially carriedoutfornetworkreasonsandthen,ifnecessary,tomaintainthefrequencyinthe synchronous system orthebalanceinWesternDenmark.Regulationcarriedoutfornetwork reasonsneedonlybeinonedirection. Powerexchangebetweenthe subsystems inthe synchronous system primarilytakesplaceinthe formof balance power . Balance power canbeexchangedaslongasthisdoesnotcause unacceptableconditionsfortheadjacentareas.Powerexchangebetweenthe synchronous system andWesternDenmarkprimarilytakesplaceintheformof supportive power .

3.1 Regulation of frequency and balance Fortheregulationofthefrequencyofthe synchronous system andthebalanceinWestern Denmark,thebidsonthejoint regulation list areusedintheorderofprice,withtheexception ofbidsconfinedbehinda bottleneck .Theactivatedbidsaremarkedas balance regulations and areincludedwhencalculatingthe regulation price andregulationvolume. Foreachhour,the regulation price isdeterminedinall Elspot areas .The regulation price is setatthemarginpriceofactivatedbidsinthejoint regulation list .When bottlenecks donot ariseduringthehourofoperation,thepriceswillbeequal.Theavailablecapacityduringthe hourofoperationcanbeutilisedeventhereisabottleneckinElspotsothatajoint regulation price isobtained.Iftherehasbeennoregulation,the regulation price issetasthe area price in Elspot.

15January2007 75 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 3

Whena bottleneck arisesduringthehourofoperationbetween Elspot areas whichentailsthat abidinanareacannotbeactivated,therelevantareawillobtaina regulation price ofitsown. This regulation price willbedecidedbythelastbidactivatedinthejoint regulation list prior tothe bottleneck arising. Thereisa bottleneck betweenthe Elspot areas whenitisnot“possible”tocarryout balance regulation onthebasisofajoint regulation list withoutdeviatingfromthenormalpriceorder ofthelist.Thereasonforthisnotbeing“possible”canbeforexamplelevelsoftransmission thataretoohighonthe cross-border link itselforonotherlines/ transmission cross-sectionsor operational/tradingruleswhichentailthatitisnotpermittedtoactivatebidsinthejoint regulation list . Ifthetransmissionbetween Elspot areas isgreaterthanthe trading plan andthiscreates bottleneck problems forother Elspot areas ,thearea(s)whichcausedthiswillregulateagainst thebalance.Thearea(s)thereforeobtain(s)its/theirownregulation price(s) .Thiswillbe decidedby balance regulations withintheareaorwithinseveraladjacentareasthatare affectingthe bottleneck inthesameway. Duringbidirectionalregulationforanhourinthe synchronous system ,thenetregulatedenergy willdecidewhetherthe regulation price willbetheupwardordownwardregulationprice.If noregulationhastakenplaceorifthenetvolumesupwardsanddownwardsareequal,theprice willbesetatthe Elspot price .Regulationbehinda bottleneck willonlyaffectthenetvolumeif the bottleneck hasarisenthroughactivated balance regulations .ThisalsoappliestoWestern Denmark. Bottlenecks to/froman Elspot area whicharecausedbyimbalanceswithinan Elspot area are dealtwithas balance regulation andgiverisetoadivided regulation market . Bottlenecks causedbyareduced transmission capacity to/froman Elspot area, afterElspotpricing,are managedusing counter trading and special regulations . Aprerequisiteforthe system operator inthe synchronous system tobeabletosethisown regulation price isthatthe trading plan isexceeded.Intheoppositecase, counter trading couldbenecessarybetweenthe system operators .

3.2 Regulation for network reasons Regulationscarriedoutfornetworkreasonsshallnot,inthebasiccase,affectther egulation price calculation ,buttheyarecarriedoutas special regulations . Forregulationsfornetworkreasonsininternalcrosssectionsinan Elspot area ,bidsareused inthe subsystems whichrectifythenetworkproblem.Whenchoosingaregulationobject, attentionmustbepaidtoboththepriceandtheeffectivenessoftheregulation. Forregulationscarriedoutfornetworkreasonsontheborderbetween Elspot areas ,the cheapestbidsarenormallyusedinthe subsystems whichrectifythenetworkproblem.When suchregulationiscausedbyanimbalancevisàvisthe trading plan between Elspot areas ,the regulation price willbeaffectedinthesubnetworkwheretheregulationwascarriedout.

15January2007 76 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 3

4 Pricing of balance power

4.1 Balance power between the subsystems within the synchronous system Balance power betweentwo subsystems ispricedattheaverageofthe regulation prices in these subsystems .

4.2 Balance power between Western Denmark and Sweden Swedish regulation prices applytothepricingof balance power betweenWesternDenmark andSwedeninaccordancewiththedualpricemodelappliedinternallywithinSweden.

4.3 Balance power between Western Denmark and Norway Norwegian regulation prices applytothepricingof balance power betweenWesternDenmark andNorway.

5 Pricing of supportive power

5.1 Pricing within the synchronous system Whenthereisaneedto exchange supportive power betweentwo Parties ,thepricewillbeset attheregulating Party’s cost,andconclusivelysetafterthehourofoperation.Thepriceof supportive power shallnotnormallyaffectthe pricing of balance power betweenthe subsystems .

5.2 Pricing between Western Denmark and Norway, and Western Denmark and Sweden Thefollowingappliesto supportive power for balance regulation betweenthe synchronous system andWesternDenmark: Whenthebalanceinthe synchronous system andWesternDenmarkisregulatedinthesame direction,thepriceof supportive power issettothat regulation price –iftheyaredifferent– whichisclosesttothe system price inElspot.Thesameruleapplieswhenthereisno regulationinanyoftheareas. Whenthebalanceinthe synchronous system andWesternDenmarkisregulatedindifferent directions,thepriceof supportive power issettothe system price inElspot. Intheeventof bottleneck situations, itmaybeappropriatetocarryouttriangular supportive power exchanges betweenSweden,NorwayandWesternDenmark.Thiswillnotaffectthe individual subsystem’s balanceandthepriceoftheexchangewillbesetat0SEK. Supportive power forbalanceregulationhaspriorityovertriangulartransit.

5.3 Pricing during operational disturbances on cross-border links Thepriceof supportive power during counter trading whichisduetoan operational disturbance onthe cross-border link itselfwillbetheaverageofthe area prices inElspotin theadjacentsystems.

15January2007 77 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 3

6 Operational/trading rules between the synchronous system and Western Denmark Exchangeof supportive power for balance regulation betweenthe synchronous system and WesternDenmarkiscarriedoutinaccordancewithasetmodelbasedonthebelowprinciples. Energinet.dkWestsendsplansinadvanceforeachoperatinghourforexchangebetweenthe synchronous system andWesternDenmark.Theplansaregivenper15minutesandtheyare drawnuponthebasisofforecastsforimbalanceinWesternDenmark,currentbidsinthejoint regulation list andotherinformationexchangebetweenStatnettandEnerginet.dkWest. StatnettandEnerginet.dkWestarejointlyresponsiblefortheplanconcerningthecominghour beingacceptablewithrespecttoregulationinbothsystemsatthelatest15minutesbeforethe hourshift. Afterthis,theplancanbealteredduringthehourofoperationinaccordancewiththerules below. Supportive power isexchangedbetweenthe synchronous system andWesternDenmarkinone directiononlyduringeachhour.Thevolumecanincreaseordecreaseduringthehourof operation,butnotmoreoftenthanevery15minutes. Afteradecreaseinthe supportive power volume,thevolumecannotincreaseagainduringthe samehour.However,thisdoesnotapplytohourshiftsiftheagreedexchangeduringthe cominghourishigherthanthecurrentvolume. Exchangeof supportive power takesplaceinaccordancewithapowerplanat5minutes’ discontinuation.Intheactivationof supportive power duringthehourofoperation,achangein thepowerplanshallnormallybecarriedoutinamaximumof15minutes.

15January2007 78 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 4

EXCHANGING INFORMATION ThepurposeofthisAppendixistodescribetheinformationwhichshallroutinelybe exchangedbetweentheconcerned Parties toanextentwhichissignificantforthecollaboration betweenthe Parties inrespectofsystemoperationandbalancemanagement. Thetechnicaldescription(networkmodel,networkdataetc.)ofthepowersystemisgoverned byotheragreements. Informationtobeprovidedtothe players ontheelectricitymarketisgovernedbythe system operators’ agreementvisàvisNordPoolSpot.

1 Outage planning Plansforoutageshavingimpactonthe transmission capacity betweenthe subsystems orwhich areinsomeotherwaysignificantfor system security ortheelectricitymarketshallbe exchangedandcoordinatedbetweenthe Parties concerned.Plansshallbeadvisedforupto oneyearforwardintime.Alterationstoplansshallbeadvisedassoonaspossible. Theimpactofsuchoutagesonthe transmission capacities betweenthe subsystems shallalso beexchanged.Preliminaryvaluesshallbeexchangedasearlyonaspossible.Finalvaluesshall beexchangedimmediatelyfollowingapprovalofthecapacities. Outageshavingimpactonthe transmission capacity betweenthe subsystems shallbeenteredin thejointNordicoutageplanningsystemNOPS(NordicOutagePlanningSystem).

2 Prior to the hour of operation Informationwhichistoberoutinelyexchangedbetweenthe Parties priortothehourof operation: • Plansforthe transmission capacities and trading capacities onthelinksbetweenthe subsystems onanhourlybasis • Currentlimitationswithinthe subsystems • Forecastofavailable frequency controlled normal operation reserve , frequency controlled disturbance reserve and fast active disturbance reserve • Forecastof dimensioning faults • Changestothenetworkconfigurationofsignificancetothe subsystems’ system security andtheimpactofthesechanges • Changestosettingsofregulationequipmentandautomaticsystems • Hourly exchange plans and trading plans betweenthe subsystems • Hourly exchange plans fornonNordiclinks • Hourlyplansorforecastsregardingtheoverallproductionandconsumption.Quarter hourlyplansforproductionshallbeexchangedtotheextenttheseareavailable.

15January2007 79 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 4

• Plansfor counter trading betweenthe subsystems • Regulation bids . ThejointNordicinformationsystemNOIS(NordicOperationalInformationSystem)shallbe usedfortheexchangeofinformationwhichisnecessaryin balance regulation (regulationbids, productionplansandHVDCplans,consumptionforecastsetc.).

3 During the hour of operation Informationwhichmustroutinelybeavailabletothe Parties duringthehourofoperation: • Ongoingoutages • Authorizationdependent transmission capacity andparametersofsignificanceinthis regard(e.g. system protection ) • Counter trading /special regulation andothercorrespondingmeasuresconcerningthe other Parties • Anaccountofeventsanddisturbancesofamajorcharacter,togetherwithimplemented measures • Volumeanddurationofrequested load shedding intheeventof power shortages . Measuredvaluesandstatusindicationstobeexchangedbetweenthe Parties duringthehourof operation: • Transmissionofreactiveandactivepowerontheindividuallinks,plusthesumofthe activepowerbetweenthe subsystems • Transmissionofreactiveandactivepowerontheindividuallinks,plusthesumofthe activepowertosystemsoutsidetheNordicpowersystemprovidedthatthe counterpartyapprovesofthis • Activepowerincritical transmission cross-sections withinthe subsystems • Activatedregulationsandcurrentpricesforregulatingimbalancesupwardsand downwards • Areacontrolerrors • Surpluses/deficitsasdefinedinAppendix9 • Overallproductionandconsumption • Productionatpowerplantsthatarecriticaltothe interconnected Nordic power system’s operationalsituation • Frequency response andavailable frequency controlled normal operation reserve , frequency controlled disturbance reserve and fast active disturbance reserve .If measuredvaluesarenotavailable,forecastsshallbeexchanged. • Measurementsthatareneededformonitoringthestabilityofthepowersystem.

15January2007 80 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 4

4 Following the hour of operation Informationwhichmustroutinelybeexchangedbetweenthe Parties followingthehourof operation: • Activatedupwardand/ordownwardregulationvolumeand regulation prices • Reconciliationofpreviouscalendarday’sexchanges, frequency response ,deals,prices etc,inaccordancewiththesettlementroutines • Measuredvaluesonthelinksbetweenthe subsystems inaccordancewithotherrelevant agreements • Anaccountofeventsanddisturbances,togetherwithimplementedandplanned measures,toberenderedassoonaspossible.

15January2007 81 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

SYSTEM PROTECTION

1 General Automatic system protection isusedtolimittheimpactoffaultsbymeansofmeasuresover andabovedisconnectingthedefectivecomponent. System protection canbeusedtoincrease the system security ,the transmission capacity, oracombinationofthese.For system protection whichisusedtoincreasethe transmission capacity, requirementshavebeenset.Theseare specifiedinAppendix2oftheSystemOperationAgreement. Automatic system protection usestwodifferentprinciplesofoperation.Oneoftheseis system protection thatisactivatedviameasurementsofthesystemstate,e.g.thevoltageatacritical pointorthesystemfrequency.Theotheris system protection thatisactivatedbypredetermined events,e.g.oneormorerelaysignalsfromthefacilities’protectiveequipment. Automatic system protection limitstheconsequencesofoperationaldisturbancesinoneor moreofthefollowingways: • regulationofDCfacilities, emergency power • productionsheddingordownwardregulationofproduction • loadsheddingand,insomecases,reactiveshunts • startupofproduction • networkswitchings. Automatic system protection isadaptedtothecombined operational reserves ofthe interconnected Nordic power system .FrequencycontrolledfunctionsareshowninFigure1.A detaileddescriptionoftheFigurecanbefoundintheNordelreport”Rekommandasjonfor frekvens,tidsavvik,regulerstyrkeogreserve”fromAugust1996.Minorfrequencydeviations aredealtwithbythe frequency controlled disturbance reserve ongenerators.Majorfrequency deviationsstartupregulationattheDCfacilities.Atlowerfrequencies,automatic load shedding startsup.

15January2007 82 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

Frequency controlled actions in the NORDEL-system

f Hz Power plants are disconnected

52

Emergency power actions on the HVDC-links

Manual down 51 regulation

50 Frequency control Frequency controlled disturbance reserve is activated - frequency control of active generation Emergency - disconnection of eventual pumping aggregates power actions - emergency power actions on the HVDC-links on the HVDC-links - start of gas turbines 49 - switching into active generation and loading of synchronised hydro generator sets

Load shedding 48 Network splitting

47 Large thermal power plants are disconnected

Figure 1 Frequency controlled actions in the Nordel-system

15January2007 83 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

2 System protection activated by frequency deviations Frequencycontrolled system protection activatedbyadeviatingfrequency: • regulationofDCfacilities, emergency power • production shedding ordownwardregulationofproduction,PFK • startupofproduction • load shedding ,AFK • networkswitchings. Alowfrequencyduring operational disturbances istraditionallydealtwithusing frequency controlled disturbance reserve . Frequency controlled disturbance reserve isdimensionedtomaintainthefrequencywithin permissiblelimitsintheeventof operational disturbances .Ifthisisnotsuccessfulandthe frequencycontinuestodrop, load shedding ,forinstance,mightcurbthefrequencydrop.The increaseduseoffrequencycontrolledregulationofDCinstallations, emergency power ,isin ordertopreventmajorfrequencydrops. Ahighfrequencyistraditionallydealtwithusingthedownwardregulationofproductionor,in extremesituations,using load shedding. Inthiscasetoo,therewillbeanincreaseduseofthe frequencycontrolledregulationofDCinstallations.

2.1 Frequency controlled regulation of DC installations, Emergency power ThemaximumimpactofregulationofDCinstallationsduringfrequencydropscanbeseenin Figure2.AsillustratedbytheFigure,allDCinstallationsbetween the synchronous system and otherACsystemscontributefrequencycontrolled emergency power .Itshouldbepointedout, however,thatifaDCinstallationisperformingafullimporttoanareawithalowfrequency,it willnotbeabletocontribute emergency power .

Maximum frequency controlled emergency power

52,00

51,50

51,00 KS1+KS2 50,50 BALTIC KONTEK 50,00 SWEPOL 49,50 Skagerrak Frequency (Hz) Frequency

49,00 Vyborg

48,50

48,00 -2000 -1500 -1000 -500 0 500 1000 1500 2000 Emergency power import (MW) Figure 2 Maximum frequency controlled emergency power TheVyborgDClinkisdisconnectedatafrequencyinFinlandof>52Hzfor0.5sec.

15January2007 84 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

2.2 Frequency controlled start-up of production Automaticfrequencycontrolledstartupofproductioniscarriedoutinordertoincreasethe numberofproductionunitsinthepowersystemduring operational disturbances . Hz Denmark Norway Sweden Finland East West 49.8 25MWGT 49.749.5 520MWGTinthree 180MWGT, stagesof0.1Hz 15sec 49.5 Schedule1

2.3 Frequency controlled load shedding IfafrequencydropcannotbecurbedbytheregulationofDCinstallationsandthefrequency continuestodrop,automatic load shedding willoccur.Thiswilltakeplaceinaccordancewith Schedule2: Denmark East 10%ofconsump.f<48.5Hzmomentary,f<48.7Hz20sec. 10%ofconsump.f<48.3Hzmomentary,f<48.5Hz20sec. 10%ofconsump.f<48.1Hzmomentary,f<48.3Hz20sec. 10%ofconsump.f<47.9Hzmomentary,f<48.1Hz20sec. 10%ofconsump.f<47.7Hzmomentary,f<47.9Hz20sec. West 15%ofconsump.f<48.7 25%ofconsump.f<47.7 Norway 7,000MW*instagesfrom49.0Hzto47.0Hz Sweden Southofcross electricalboilersandheatpumps section2 P ≥35MW.f<49.4for0.15sec 35>P ≥25MW.f<49.3for0.15sec 25>P ≥15MW.f<49.2for0.15sec 15>P ≥5MW.f<49.1for0.15sec 30%ofconsumpin5stages stage1.f<48.8for0.15sec stage2.f<48.6for0.15sec stage3.f<48.4for0.15sec stage4.f<48.2for0.15sec.f<48.6for15sec stage5.f<48.0for0.15sec.f>48.4for20sec Finland 10%ofconsump.f<48.5Hz0.15sec.f<48.7Hz20sec 10%ofconsump.f<48.3Hz0.15sec.f<48.5Hz20sec Schedule2 *ForNorway,thisreferstopeakloads.

2.4 Frequency controlled disconnection of lines Denmark East DisconnectionoftheSwedishlinkatf<47.0Hzfor0.5secorf<47.5for9sec West Norway Sweden Finland DisconnectionofVyborgDClinkatafrequencyinFinlandof>52Hzfor0.5 sec DisconnectionofnorthernAClinkstoSwedenatafrequencyof>50.7for2sec ifimportsfromSwedenare>900MWandthevoltageonthe400kVnetwork is<380kV.

15January2007 85 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

3 System protection activated by voltage deviations

InSweden,therearetwoimportanttypesof system protection whicharecontrolledbyvoltage. Bothtypesof system protection regulatedownexportstothecontinentonHVDClinksinthe eventofariskofvoltagecollapseoroverloadsonimportantlines.

3.1 System protection in Sweden cross-section 2 The System protection thatistorelievecrosssection2during operational disturbances measuresthevoltageat4stationsnorthofcrosssection2;Storfinnforsen,Kilforsen, Stornorrfors,andHjälta.Whenthevoltagehasbeenlowerthan390kVfor2seconds,asignal willbesenttothe system protection .Ifthevoltagehasbeenlowinatleasttwoofthestations, the system protection willsendasignaltoFennoSkan( emergency power 400MW)andKonti Skan2( emergency power 100MW).

3.2 System protection in Sweden cross-section 4 The System protection willregulatedownthetransmissionsonthreeDClinkstothecontinent whenthevoltageinsouthernSwedenfallsbelow390kV.Indoingso,crosssection4willbe relievedimmediatelyintheeventofan operational disturbance .When system protection isin operation,ahigherleveloftransmissionwillbeallowedincrosssection4(2/3ofthe emergency power intervention).Theincreasedcapacityincrosssection4mayonlybeused whenconsumptionsouthofcrosssection4islessthan4,500MW. System protection obtainsmeasuredvaluesfrom6substations:Breared,Hallsberg,Hjälta, Kilanda,TenhultandSege.When system protection isinoperation,ahigherlevelof transmissionwillbeallowedincrosssection4.Theincreasewillaccrueontherespective overseas,BalticCable,theSwePollinkandÖresundconnection. Thecriterionfortheactivationsignalof system protection isthatthevoltageinoneofthesesix pointsgoesunder390kVfor4seconds.Uponactivation,therewillbeapowerchangeof200 MWnorthboundforBalticCable(BCemergencypowercontrolentry3),250MWnorthbound forKontek,and300MWnorthboundfortheSwePolLink(SwePolemergencypowercontrol entry4).FortheSwePolLinktobecomeactivated,itisalsonecessarythatthevoltageat Stärnöislowerthan415kV.

3.3 System protection in southern Norway InNorway,thereis system protection ,whichisvoltagecontrolled.TheSkagerrakcableshave emergency power regulationwhichiscontrolledbylocalvoltagemeasurementsat Kristiansand.Alowvoltageof275and270kVwillprovide200+200MWofrelief.

3.4 System protection in Finland InFinland,thereis system protection whichiscontrolledbyvoltageandthetransmission betweenSwedenandFinlandatthecritical transmission cross-section inFinland(north south).Thes ystem protection uses emergency power regulationwithautomatedsystemsonthe HVDCFennoSkanlink.The system protection providesapowerchangeof200or400MWto Finland. Thefourtypesof system protection areshowninFigure3.

15January2007 86 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

Low voltage and high transmission North->South in Finland

Low voltage in an Sk cross-section 2 o - nn Fe

Low voltage in Kristiansand

S k a g e r r a k an Sk nti Ko Low voltage in cross-section 4

S w eP o l Kontek Baltic

Figure 3 Control of HVDC-links on low voltage

4 System protection activated by one or more relay signals from the facilities’ protective equipment

System protection activatedbyrelaysignalsisoftenmorecomplicatedandtheprotectionoften controlsfacilitiesalongwayfromtherelays.Figure4showsanoverviewof system protection for production shedding and/orcontroloftheHVDClinks.Figure5showsanoverviewof system protection for load shedding and/ornetworkdivision. TheFiguresarefollowedbyadescriptionofthe system protection .

15January2007 87 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

PSH in case of line disconnection PSH Nordlands ~ ~ ~ cross-section ~ ~ SWEDEN ~ ~

PSH for cross-section 1

FINLAND PSH in case of overload ~ ~ PSH for cross-section 2 NORWAY

PSH for system PSH Hasle and oscillations ~ Flesaker cross-section ~

PSH, overload Sørlandet ~ ~

~ Control of Skagerrak overload in Sørlandet Skagerrak, line disconnection in Kontiskan, West- Energinet or over- Coast cross-section load in Germany Kontiskan, local West-Denmark DENMARK ~

PSH for West- Coast cross-section

Figure 4 System Protection based on Production Shedding (PSH) or Control of HVDC- links

15January2007 88 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

110 MW on line disconnection

Network division Network division on overload on overload

Network division on line disconnection SWEDEN Network division on import, high frequency or low voltage

150 or 400 MW on line disconnection FINLAND

NORWAY Network division on high frequency

220 MW on line Network division on disconnection line disconnection

DENMARK

Network division on low frequency

Figure 5 System Protection based on Load Shedding or Network Division

15January2007 89 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

4.1 Eastern Denmark: System protection for stability in Eastern Denmark Disconnectionofgasturbinesanddownwardregulationofthesteamturbineatunit2ofthe Avedøreplantuponactivationofcertainbreakersonthe400kVnetworkinZealand.This system protection isonlyactivatedduringoperationalsituationswhencritical400kVnetwork componentsaredisconnectedorduringhighexportvolumestowardsSweden.

4.2 Sweden: System protection with production shedding for limiting overloads on lines in Sweden SheddingofhydropowerproductioninnorthernSwedenviaremotelytransmittedsignalsfrom activatedprotectionfunctions.Extentofapprox.1,600MWofinstalledpower.Upon disconnectionoflinesincrosssection1,thereisariskthatotherlineswillbecomeoverloaded. The system protection willdisconnectproductionsothatthelineswillberelieved.Thesignals originatefromGrundfors,Betåsen,andHjältaandaresenttostationsnorthwards.Thesetting oftheautomatedequipmentisadaptedtothestateofoperation. The system protection alsoincludesalinkwithNorwaysothatthelossofalinkbetween PorjusandOfotenwillleadto load shedding innorthernNorway.

4.3 Sweden: System protection in the West Coast cross-section (Kilanda- Horred + Stenkullen-Strömma) DuringimportsfromGermany,ZealandandJutlandandahighlevelofproductionatRinghals, simultaneoustoexportstowardsNorway,thereisariskofoverloadsontheremaininglinein theeventofalongtermfaultononeofthelines. The system protection willworkasfollows: IntheeventoflosingKilandaHorredand transmissionofmorethan500MWnorthboundon theline,thiswillresultinapowerchangeof300MWonKontiSkan2towardsWestern Denmark. IntheeventoflosingStenkullenStrömmaand transmissionsofmorethan500MW northboundontheline,thiswillresultinapowerchangeof300MWonKontiSkan2towards WesternDenmark. These system protections donotprovideincreasedcapacity,rathertheyincreasethe system security . DuringexportstoJutland,thereisariskthattheregionalnetworkaroundGothenburgwillbe overloadedintheeventofalong–termfaultontheStrömmaLindomeline.Thesy stem protection willfunctionasfollows: IntheeventoflosingStrömmaLindome,KontiSkan2willberegulateddownto0ifthereare exportsonthelink. Extended system protection : Thisprotectiondisconnects”production”inZealandthrough production shedding .Thiswill reducetheimportsfromZealandwhichwillrelievetheWestCoastcrosssectionandprovide increasedsystemsecurity.Theactivationof”production”inZealandbythesystem protection willbetaken,followingagreementbetweenthe Parties concerned,intoandoutofoperationon thebasisoftheoperationalsituation.

15January2007 90 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

4.4 Sweden: System protection Forsmark IntheeventofastoppageoneitherofthelinesForsmarkOdensala(FL4)orTunaHagby,the transformeratTunarisksbecomingoverloadedifafaultarisesontheremainingline. The system protection willgointooperationintheeventofastoppageononeofthementioned lines.The system protection willregulatedowntheproductionatForsmarktounloadthe transformer. The system protection willworkasfollows: IntheeventoflosingForsmarkOdensala(FL4)orTunaHagby,G12willberegulateddown ifForsmarkG11,G12andG21orG22areinoperation,and : intheeventoflosingForsmarkOdensala(FL4)orTunaHagby,G22willberegulateddown ifForsmarkG21,G22andG11orG12areinoperation.

4.5 Sweden: System protection Långbjörn ProductionatÅngermanälvenisfedoutviatransformationsatLångbjörnandBetåsen.Inthe eventoflosingatransformation,thereisariskthattheotherwillbecomeoverloaded.The system protection atLångbjörnwilldisconnecttheLångbjörnKorsselbrännaStalonlinewith itsconnectedproductionwhenthelinkbetweenKilforsenandLångbjörnisbroken(400kV lineKilforsenLångbjörn+transformerT1atLångbjörn).

4.6 Norway: System protection in the Hasle and Flesaker cross-section DuringhighexportlevelsfromsouthernNorwaytoSweden,thereisariskthatthelossofa linecanbringaboutoverload,voltageorstabilityproblems.Intheeventofcriticallosses,the system protection mustrelievethecrosssectionsbymeansofautomatic production shedding atKvilldal,Sima,Aurland,Tonstad,Tokkeand/orVinje.Themaximumpermissible production shedding is1,200MWandactivationwilloccurasaresultofthefollowingevents: LossofHasleBorgvik,TegnebyHasle,RødHasle,HasleHalden,HaldenSkogssäter, KvilldalSyllingandSyllingTegneby.Duringtheseevents,the system protection has redundancywhenmeasuringhighpowerlevelsonHasleBorgvik,HasleHalden,300kV TegnebyHasle,300kVFlesakerTegnebyand300kVFlesakerSylling.The system protection’s settingwilldependontheoperationalsituation.

4.7 Norway: System protection in the Nordland cross-section IntheeventofalargepowersurplusinnorthernandcentralNorway,thereisariskof network collapse intheeventoflosingcriticallines.Thesystem protection mustrapidlyrelievethe crosssectionbymeansofautomatic production shedding orthroughnetworkdivisionsothat the surplus area isseparatedfromtherestofthe synchronous system .Thelargestpermissible production shedding is1,200MW. The system protection willbeactivatedbythefollowingevents: ThelossofOfotenRitsem,RitsemVietas,VietasPorjus,OfotenKobbelvorSvartisen N.Røssåga. Highlevelsofcurrenton300kVTunnsjødalVerdal,300kVTunnsjødalNamsosor300kV NeaJärpströmmen. The system protection’s settingwilldependontheoperationalsituationandcanresultin production shedding atVietas,Ritsem,Kobbelvand/orSvartisen.LossofthelinesOfoten

15January2007 91 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

RitsemVietasPorjusmightalsoleadtonetworkdivisionsouthofKobbelv.The system protection isalsodescribedunderpoint4.2.

4.8 Norway: Local system protection at Kvilldal Automatic load shedding atKvilldalwhenthelossofalineentailshighlevelsoftransmission westbound(towardsSaurdal).

4.9 Norway: Network division in southern Norway AutomatedsystemsthatestablishseparateoperationforthesouthernNorwayareaduring simultaneousstoppagesonboththelinksbetweensouthernNorwayandSweden.

4.10 Norway: System protection for load shedding System protection whichdisconnectsupto220MWofindustrialloadintheeventoftheloss ofoneorboth300kVlinesintheSaudacrosssectionwhichsuppliesBergenandimportant industrialcentresinVestlandet. System protection whichdisconnects150MWor400MWofindustrialloadintheeventofthe lossofoneortwo300kVlinesadjacenttoMøreorintheeventoflossoflineswhichentailsa lowvoltageoroverloadontheNeaJärpströmmenline.Thenetworksuppliesgeneral consumptionandimportantindustrialcentresinNordVestlandet. System protection whichdisconnectsupto110MWofindustrialloadintheeventoflosingthe 420kVlinesnorthofOfoten.The system protection willpreventoverloadsintheparallel132 kVnetworkwhichmightotherwiseleadtoacollapseinthemostnortherlypartofNorway.

4.11 Norway: System protection at Sørlandsnittet (PFK and HVDC control) DuringabundantexportsfromSouthernNorwaytoDenmarkandwithsimultaneouslowlocal production,thereisariskoflossofaline,whichcanleadtooverloadorvoltageproblems. Duringacriticallossofaline,the system protection willrelievethecrosssectionthrough automaticdownwardregulationoftheSkagerrakHVDCline.The system protection measures overloadonthe300kVlinesat4stations.The system protection regulates400MWofexports downonPole3during1sec. DuringabundantimportstoSouthernNorwayfromDenmarkandwithsimultaneoushighlocal production,thereisariskoflossofaline,whichcanleadtooverloadorvoltageproblems. Duringacriticallossofaline,the system protection willrelievethecrosssectionthrough automaticdownwardregulationoftheSkagerrakHVDClineorPFKatTonstad.The system protection measuresoverloadonthe300kVlinesat3stations.The system protection regulates 300MWofimportsdownonPole3during1secand/orregulatesproductiondownatthe Tonstadpowerplant(4x160MWavailable).

4.12 Western Denmark: Konti-Skan pole 2 The system protection onKontiSkan2willbeactivatedataloadofover80%ofthe400kV transformerattheNordjyllandplant(NVV3+NNV5)(seepoint1inFigure6).Transmissions onpole2willbereduceduntiltheloadisonceagainunder80%ofthetransformer(30MW persec.).

15January2007 92 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

The system protection isusedtoincreasetheimportcapacityfromSweden(loadflow). SBA3

DYB3 NVV5 1 ~ BDK3 I>

>> Konti Skan 2

3 HVO3 >> Konti Skan 1 NVT3

NVV3 VHA3 2

I> ÅBØ3

ADL3 FER5 Figure 6 System Protection on Konti-Skan

4.13 Western Denmark: Konti-Skan pole 1 & 2 Tosafeguardthe150kVlinkÅlborgØst(ÅBØ3)–theNordjyllandplant(NVV3)from dangerousoverloads,thereisanoverloadprotectorattheÅlborgØst(ÅBØ3)stationwhich disconnectstheTbranch(NVT3)ÅlborgØst(ÅBØ3)duringloadsofover150%for25 minutes.Additionally,the150kVlineÅdalen(ADL3)ÅlborgØst(ÅBØ3)isdisconnectedif theoverloadexceeds174%. The system protection isusedtoincreasetheimportcapacityfromSweden(loadflow).

4.14 Western Denmark: Skagerrak pole 3 Intheeventofadisconnectionofthe400kVlineTjele–Askaerandthe400kVlineAskaer RevsingKassö,importsarereducedfromSkagerrakpole3to50MW. The system protection isnotusedtoincreasetheimportcapacityfromNorway,onlytoprotect theHVDCstation.

4.15 Western Denmark: the German link IntheeventofloadsonthelinkstoGermanyinexcessof120%formorethan15seconds,the remotecontrolsystemwillautomaticallycommencedownwardregulationoftheHVDClinks.

15January2007 93 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 5

Regulationwillbeterminatedwhentransmissionsarenormalagainorwhenmaximum regulationhasbeenreached.Thefunctionallowsamaximumof200MWonSkagerrakpoles 1,2and3aswellas150MWoneachoftheKontiSkanpoles.

4.16 Finland: Frequency regulation (during island operation) with automated systems on the HVDC Fenno-Skan link The system protection canbeusedwhenthenorthernACnetworkbetweenRaumaand Danneboisbroken.ThiscancontrolthefrequencyofthepotentialislandnetworkinFinland.

4.17 Finland: Power modulation for Fenno-Skan (Power modulation control) The system protection canbeusedtoattenuatelargepoweroscillationsbetweenthecountries. UsesthefrequencydifferencebetweenSwedenandFinlandasasignalandmodulatesthe power ±100MW.

4.18 Finland: Network division in northern Finland to protect the 110 kV network from overloads The system protection sectionsthelineVajukoskiMeltaus110kVwhenthepowerontheline isover100MWfor0.2seconds.

4.19 Finland: System protection for avoiding system oscillations The system protection isusedtoincreasethecapacityinthenorthtowardsSweden.Incertain faultscenarios,withlargetransmissionlevels,thereisariskofsystemoscillations. System protection relievestransmissionsbymeansof production shedding insouthernFinland. Production shedding isactivatedbymeansofremotelytransmittedsignalsfromactivated protectionfunctions.Extentapprox.900MW.The system protection isactivatedautomatically dependingontheoperationalsituation.ThePowerSystemCentreinHelsinkicanput system protection into/outofoperationusingtheremotecontrolsystem,dependingonthe transmissionsituation.

15January2007 94 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

SYSTEM SERVICES

System services isagenerictermforservicesthatthe system operators needforthetechnicaloperation ofthepowersystem.Theavailabilityof system services isagreeduponbetweenthe system operator andtheothercompanieswithintherespective subsystem .

1 Survey of system services

1.1 System services defined in Appendix 2 of the System Operation Agreement

1.1.1 Frequency controlled normal operation reserve Activatedautomaticallywithina ±0.1Hzdeviationandshallberegulatedoutwithin23minutes.The jointrequirementforthe synchronous system is600MW.Thismeansajointrequirementfor frequency response inthe synchronous system of6,000MW/Hz. Thisservicecanbeexchangedtoacertaindegree.Each subsystem shallhaveatleast2/3ofthe frequency controlled normal operation reserve withinitsownsystemintheeventofsplittingupand islandoperation.Amajorexchangeoftheservicebetweenthe subsystems canrequireagreaterneedfor regulating margin (thedifferencebetweenthe transmission and trading capacities ).Elspotexchanges andjointNordic balance regulation takepriorityovertheexchangeof automatic active reserve .Thus, theexchangeofthisserviceisagreedaftertheElspothasclosed. TSO Generation of system service Exchange between subsystems Energinet.dk Droopcontrolatthermalpowerplants. Yes East Energinet.dk Norequirementregardingfrequencycontrollednormaloperation West reservefromUCTE. Fingrid Measureddroopcontrolathydropowerandthermalpowerplants. Yes DClinktowardsRussia. Yes Statnett %turbineopening/Hzinhydropower. Yes Svenska %turbineopening/Hzinhydropower. Yes Kraftnät

15January2007 95 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.1.2 Frequency controlled disturbance reserve Activatedautomaticallyat49.9Hzandfullyactivatedat49.5Hz.Atleast50%shallberegulatedout within5secand100%within30sec.Jointrequirementforthe interconnected Nordic power system is approx1,000MW,dependingontherelevant dimensioning fault . Theserviceiscloselylinkedto frequency controlled normal operation reserve ,andtheprincipleof exchangeisthesame. TSO Generation of system service Exchange between subsystems Energinet.dk Disconnectionofdistrictheating. Yes East Turbineopeningatthermalpowerplants. Droopcontrolfromthermalpowerplants. HVDCinterventions. Energinet.dk Condensatestoppageatthermalpowerplants. No(only West Droopcontrol(modifiedglidingpressure)atthermalpowerplants. exchanged between Energinet.dk WestandUCTE) Fingrid Droopcontrolathydropowerandthermalpowerplants. Yes Sheddableload. Yes Statnett %turbineopening/Hzinhydropower. Yes HVDCinterventions,instagesdependingonfreq Svenska %turbineopening/Hzinhydropower. Yes Kraftnät HVDCinterventions,instagesdependingonfreq.Automaticstartup ofgasturbines,instagesdependingonfreq.Somewith5secstartup delay.

1.1.3 Voltage controlled disturbance reserve Thisservicebecomesrelevantwhenlowvoltageactivates emergency power onHVDClinksoutfrom the synchronous system .Theserviceisapplicabletoexchanges. TSO Generation of system service Exchange between subsystems Energinet.dk Notused. East Energinet.dk Notused. West Fingrid Notused. Statnett EmergencypowerSkagerrak. Yes Svenska AutomaticexportrestrictiononDClinkssouthofcrosssection4in Yes Kraftnät Sweden.SwePolLink,BalticCableandKontek(Zealand).

15January2007 96 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.1.4 Fast active disturbance reserve Thisservicerestores frequency controlled disturbance reserve andshallbeactivatedwithin15minutes. Thisservicecanbeexchangedbetweenthe subsystems ofthejointNordic regulation market oras supportive power. However,intheeventof power shortages, Appendix9comesintoforce. TSO Generation of system service Exchange between subsystems Energinet.dk Contractwithproducer. Yes East Gasturbines,upwardregulationofrollingreserve,faststartthermal powerplants. Energinet.dk Contractwithproducer,bidscanbemadeviaregulationmarket. Yes West Fingrid Gasturbines. Yes Sheddableload. Yes RussianDClink. Yes Statnett Contractedregulatingpower:Optionsmarketforregulatingpower Yes (productionandconsumption). Voluntarybidsonregulationmarket. Yes Svenska RequirementforproducerstoreporttoSvK,gasturbinesand Yes Kraftnät hydropower.

1.1.5 Slow active disturbance reserve Requirementsforeach system operator tocomplywithwilldependonnationallegislation.Activationis slowerthan15minutes.Theserviceisnotyetrelevanttoexchangesbetweenthe subsystems .However, intheeventof power shortages, Appendix9comesintoforce. TSO Generation of system service Exchange between subsystems Energinet.dk Thermalpowerplantswithastartuptimeofupto4hoursand East rearrangementofproductiontypesatthermalpowerplants. Energinet.dk Therearenoplantswithastartuptimeof<4hours. West Fingrid Poweravailableafter15minutes,marketisresponsible. No Statnett Notused Svenska Mostfrequentlyreplacedbyasurplusoffastactivedisturbance No Kraftnät reserve.

15January2007 97 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.1.6 Reactive reserve Reactive reserve isofalocalnature.Consequently,itcannotbeexchangedbetweenthe subsystems . TSO Generation of system service Exchange between subsystems Energinet.dk Over/undermagnetizationofproductionplants. No East Synchronouscondenseroperationinonegenerator. Connection/disconnectionofcapacitorbatteriesandreactors. Energinet.dk Over/undermagnetizationofcentralproductionplants. No West ChangeofMvarproductionatpowerplants. SynchronouscondensersatTjeleandVesterHassing. Connection/disconnectionofcapacitors. Connection/disconnectionofreactors. Fingrid Over/undermagnetizationofproductionplants. No Synchronouscondenseroperationatcertainhydropowerplants. No Connection/disconnectionofpowerlines. Connection/disconnectionofcapacitorbatteriesandreactor. No No Statnett Over/undermagnetizationofproductionplants. No Connection/disconnectionofpowerlines. Connection/disconnectionofcapacitorbatteries. Staticphasecompensation(SVCplants). Svenska Over/undermagnetizationofproductionplants. No Kraftnät Connection/disconnectionofpowerlines. Connection/disconnectionofcapacitorbatteries,reactors. Staticphasecompensation(SVCplants). ¹)Paymentforproductionofreactivepoweringeneratorsoutsidecertainlimitsfortanφ.

15January2007 98 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.2 System services not defined in Appendix 2 of the System Operation Agreement

1.2.1 Load following Load following entailsthat players withmajorproductionchangesreportproductionplanswitha resolutionof15minutes. Load following withaquarterhourlyresolutionimprovesthequalityofthe frequencyofthe synchronous system .Thisservicecanbeexchangedbetweenthe subsystems . TSO Generation of system service Exchange between subsystems Energinet.dk Notused. East Energinet.dk Productionbalancecentreswithvariableproductiondeliverrunning Partly,5minand West scheduleswitharesolutionof5min. 15min.plansare senttoother TSOs Fingrid Hourshiftregulation. Yes¹ BalancecentresinformFingridabouthourscontainingmorethan100 MWofchangesintheirbalance. Statnett Playerswithmajorproductionchangesmaketheirproductionplans usingaquarterhourlyresolution. Yes¹ Statnettcanmoveplannedproductionchangesforallplayersbyupto 15minutes. Yes¹ Svenska Playersreportproductionplanswithaquarterhourlyresolutionto Yes¹ Kraftnät SvK.SvKhastherighttomoveproductionbyatleastaquarterofan hour. ¹)Quarterhourlyregulationimprovesthequalityofthefrequencythroughoutthesynchronoussystem.

1.2.2 System protection Theserviceisexchangedtosomedegreetoday.ItisimaginablethattheNordicpowersystemwill becomemoreintegratedinthefuture.Then,eventsinone subsystem willbeableto activate system protection inanother subsystem . TSO Generation of system service Exchange between subsystems Energinet.dk Automaticdownwardregulationand/ordisconnectionofpowerplants No East and/orKONTEK,automaticupwardregulationofKONTEK. SpecifiedinApp.5. Energinet.dk EmergencypoweronKontiskanandSkagerrak. Yes West DownwardregulationofKontiskanintheeventofanoverloadon transformers. DownwardregulationofSkagerrak3uponthelossofsome400kV lines(downwardregulationinrespectofvoltagequality). Fingrid Automaticproductionshedding. No Networkdivision.SpecifiedinApp5. Statnett Automaticdisconnectionofpowerplantsandsmeltingworks. Yes EmergencypoweronSkagerrak. Yes Svenska AutomaticdownwardregulationofSwePollink,BalticCableand Yes Kraftnät Kontek.

15January2007 99 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.2.3 Ramping Ramping entailsa system operator designatingafacilityforcompleteorpartialregulationinstepwith theHVDClinks,whenitisbeingregulatedonanHVDClinkoutfromthe synchronous system .Thisis a system service forimprovingthequalityofthefrequencyandforallowingmajorloadchangesonthe HVDClinks.Thisservicecanbeexchangedbetweenthe subsystems . TSO Generation of system service Exchange between subsystems Energinet.dk Notused. East Energinet.dk Notused. West Fingrid Notused. Statnett Notused. Svenska Notused. Kraftnät

1.2.4 Black starts Thisserviceisofalocalnature.Consequently,itcannotbeexchangedbetweenthe subsystems . TSO Generation of system service Exchange between subsystems Energinet.dk Dieselgeneratorand/orgasturbines. No East Energinet.dk 2gasturbines. No West Fingrid Somehydropowerplantsandgasturbines. No Statnett Someselectedhydropowerplants. No Svenska Someselectedhydropowerplants. No Kraftnät

1.2.5 Automatic load shedding Thisserviceisrelevantduringmajor operational disturbances .The subsystems willthenhardlybe interconnectedandtheservicewillnotberelevanttoexchanges. TSO Generation of system service Exchange between subsystems Energinet.dk Frequencycontrolledloadsheddinganddisconnectionoflinks No East betweenSwedenandZealand.SpecifiedinApp.5. Energinet.dk Loadshedding.LinkwithGermanyisnotdisconnected.Load No West sheddingbetween48.7Hzand47.7Hz. Fingrid Automaticloadsheddingbetween48.7Hz–48.3Hz. No Statnett Automaticloadsheddingbetween49.0Hz–47.0Hz. No Svenska Automaticloadsheddingbetween48.8Hz–48.0Hz. No Kraftnät

15January2007 100 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.2.6 Manual load shedding Thisserviceisusedduringmajor operational disturbances and power shortages andcannotbe exchangedbetweenthe subsystems .ThisisregulatedbyAppendix9. TSO Generation of system service Exchange between subsystems Energinet.dk Theloadcanbeshedtoeliminatenonapprovedtransmissionsonthe No East network,formanagingpowershortages,duringislandoperationand whenautomaticsheddinghasnotbeensufficient. Energinet.dk Theloadcanbeshedtoeliminatenonapprovedtransmissionsonthe No West network,formanagingpowershortages,duringislandoperationand whenautomaticsheddinghasnotbeensufficient. Fingrid Sheddableloadusedasfastactivedisturbancereserve,canalsobe No usedduringpowershortageswhenonly600MWoffastactive disturbancereserveremainsinthesynchronoussystem. Statnett Usedduringpowershortageswhenonly600MWoffastactive No¹ disturbancereserveremainsinthesynchronoussystem. Svenska Usedduringpowershortageswhenonly600MWoffastactive No Kraftnät disturbancereserveremainsinthesynchronoussystem. ¹)Noparticularcompensationispaidtotheplayers.However,whentheserviceisactivated,Statnettwillobtain theCENS(CompensationforEnergyNotSupplied)liability,entailingareductionoftherevenuelimit.

1.2.7 Fast active forecast reserve Thisservicerestoresthe frequency controlled normal operation reserve .Usingthis,deviationsin consumptionand/orproductionforecastsareadjusted.Requirementsforeach system operator to complywithwilldependonnationallegislation.Activationtimeis1015min. Theserviceisexchangedbetweenthe subsystems inthejointNordic regulation market asvoluntaryor contracted regulation power ,butintheeventof power shortages, Appendix9willcomeintoforce. TSO Generation of system service Exchange between subsystems Energinet.dk Contractwithproducersregardingbids(asbidsintheregulation Yes East market). Energinet.dk Contractwithproducersregardingminimumbids(asbidsinthe Yes West regulationmarket). Voluntarybidsintheregulationmarket. Yes Fingrid Voluntarybidsintheregulationmarket. Yes Statnett Contractedregulationpower:Optionsmarketforregulationpower Yes (productionandconsumption). Voluntarybidsintheregulationmarket. Yes Svenska Voluntarybidsinthebalanceregulation(secondaryregulation). Yes Kraftnät

15January2007 101 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

1.2.8 Fast active counter trading reserve Requirementsforeach system operator tocomplywithwilldependonnationallegislation.Theservice canbeexchangedbetweenthe subsystems duringthe operational phase . TSO Generation of system service Exchange between subsystems Energinet.dk Particularpurchasesfromproducers. East Energinet.dk Particularpurchasesfromproducersandbidsintheregulationmarket Yes West canbeused. Fingrid Voluntarybidsintheregulationmarketcanbeused. Yes Statnett Contractedregulationpower:Optionsmarketforregulationpower Yes (productionandconsumption). Voluntarybidsintheregulationpowermarket. Yes Svenska Voluntarybidsinthebalanceregulation(secondaryregulation). Yes Kraftnät

1.2.9 Peak load resource Requirementsforeach system operator tocomplywithwilldependonnationallegislation. By peak load resource ismeantactivereservewhichisnotnormallyused.Foranticipatedpeakload periods,thepreparednesstimeisreducedsothatthecapacity,asandwhenneeded,canbeused.The servicecanbeexchangedbetweenthe subsystems inthejointNordic regulation market .However,in theeventof power shortages, Appendix9willcomeintoforce. TSO Generation of system service Exchange between subsystems Energinet.dk Notused. East Energinet.dk Notused. West Fingrid Notused. Statnett Notused. Svenska Beingprocured. Kraftnät

15January2007 102 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 6

2 Description of routines for trading in system services

2.1 General Tradingin system services shallnotbeanobstacletoeither Elspot trading or balance regulation .

2.2 Trading in frequency controlled normal operation reserve and frequency controlled disturbance reserve Tradingin frequency response canbesimultaneouslytradingin frequency controlled normal operation reserve and frequency controlled disturbance reserve dependingonhowtheindividualservicesare acquiredintheseparate subsystems . Duringconversionbetweenthe frequency response , frequency controlled normal operation reserve and frequency controlled disturbance reserve, thefollowingconversiontableistobeused,unlessotherwise agreed: Frequency response Frequency controlled normal operation Frequency controlled disturbance reserve reserve 10MW 1MW 1.5MW System operators caninformeachotheronadailybasisaftertheElspothasclosedregardingsurpluses of frequency response thatcanbeofferedtotheother system operators . System operators thathaveaneedtopurchasecancontacttherelevant system operator toobtain informationonpricesandvolumes. Whenthetotalpurchasingrequirementislargerthanthesupply,distributionshalltakeplaceonthe basisofthebasicrequirementforthe frequency controlled normal operation reserve . Tradingiscarriedoutbilaterallybetween system operators . Iftradinginvolvestransittransmissionthrougha subsystem ,the system operator inwhosenetworkthe transittransmissionwilltakeplaceshallbeinformedbeforemakingtheagreement. Intheeventofsellingtoseveral system operators, allwillpaythesameprice,themarginalprice.

2.3 Exchanges using other types of reserves ServiceslinkedtothejointNordic regulation market aredescribedinAppendix3.

15January2007 103 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.1

JOINT OPERATION BETWEEN THE NORWEGIAN AND SWEDISH SUBSYSTEMS ON THE AC LINKS

1 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected.The subsystem ofWesternDenmarkisconnectedtoNorwayandSwedenusing DClinks.ThisAppendixdescribestheoperationoftheAClinksbetweenthe subsystems of SwedenandNorway.

2 Transmission facilities linking the subsystems of Sweden-Norway

2.1 Transmission facilities which are owned/held by system operators at both ends Facility Voltage kV Settlement point Misc.

OfotenRitsem 400 Ritsem N.RössågaGejmånAjaure 220 Gejmån,Ajaure NeaJärpströmmen 300 Nea HasleBorgvik 400 Hasle Incl.inHasle crosssection HaldenSkogssäter 400 Halden Incl.inHasle crosssection

2.2 Other transmission facilities

SildvikTornehamn 130 Tornehamn Vattenfall owneron Swedishside

2.3 Other transmission facilities than those under 2.2 EidskogCharlottenberg 130 Charlottenberg Fortum owneron Swedishside This transmission facility isnotincludedinthegridontheSwedishside.The trading capacity ofthelinkissubmittedtoNordPoolbyStatnettontheNorwegiansideandbyFortumonthe Swedishside.

15January2007 104 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.1

3 Electrical safety for facilities under 2.1

3.1 General Thecommongroundfortheelectricalsafetyworkofthe system operator companieswithin NordelisconstitutedbytheEuropeanstandardformanagingelectricalhighvoltagefacilities EN50110whichgovernstheorganisationandworkingmethods.Inadditiontothestandard, therearenationalregulationsandspecialinstructionswhichentailcertainmutualdifferences betweenthe system operators asregardsdealingwithoperationalissuesfromanelectrical safetypointofview.

3.2 Responsibility for electrical operation/Operational management Responsiblefortheelectricaloperation ofthefacilityontheSwedishsideisSvenskaKraftnät, whileontheNorwegiansideitisStatnett.The power operation responsibility boundaries for electricaloperationforfacilitiesunder2.1lieatthenationalborderbetweenSwedenand Norway.

3.3 Switching responsible operator Foreachofthecrossborderlinks,thereisaspecificswitchingagreementbetweentheparties. Line Norway Sweden OfotenRitsem RegionalCentreatAlta OperationsCentreat Sollefteå(DCSO) N.Rössåga RegionalCentreat OperationsCentreat GejmånAjaure Sunndalsöra Sollefteå(DCSO) Nea RegionalCentreat OperationsCentreat Järpströmmen Sunndalsöra Sollefteå(DCSO) HasleBorgvik RegionalCentreinOslo OperationsCentreat Råcksta(DCRÅ) Halden RegionalCentreinOslo OperationsCentreat Skogssäter Råcksta(DCRÅ)

3.4 Operations monitoring and control in respect of electrical safety Same Parties asunder3.3.

3.5 Switching schedule Switchingsonthelinksarecarriedoutinaccordancewithaswitchingscheduledrawnupby SvenskaKraftnät.Statnett’sRegionalCentresacknowledgereception.

3.6 Disturbance management

15January2007 105 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.1

3.6.1 Cross-border link trips – management During operational disturbances ,measuresinaccordancewithissuedinstructionsshallassoon aspossiblerestorethelinkto normal state .

3.6.2 Switching schedule Intheeventoffaultsneedingswitchingswhichwillaffectthe cross-border link, Statnettand SvenskaKraftnätaretobeinformedbeforeanyswitchingsaremade.Inthecaseofswitchings ontheSwedishgrid,switchingschedulesaretobedrawnupbySvenskaKraftnät.

3.6.3 Fault finding Initialfaultfindingwillbecarriedoutdifferentlyfromcasetocase.Generallyspeaking,the respectivefacilityownerwillberesponsibleforfaultfindinginconsultationwiththeswitching responsibleoperator.

3.6.4 Fault clearance, remaining faults Oncethefaulthasbeenlocalized,therespectivefacilityownerwillattendtoclearingthefault.

4 System operation for facilities under 2.1 and 2.2

4.1 Transmission capacity (TTC) The transmission capacity ofthelinksisasfollows,inMW. Line 20 °C 10 °C 0°C 10 °C 20 °C 30 °C Totalto Totalto Sweden Norway Sildvik– 120 120 120 120 120 100 Approx900 Approx700 Tornehamn 1,300 1,100 (toSweden) Sildvik– 70 70 70 70 70 70 Tornehamn (fromSweden) Ofoten–Ritsem 1,350 1,350 1,350 1,350 1,170 880 N.Rössåga 536 496 451 398 334 250 Gejmån–Ajaure Nea Järpströmmen 730 690 650 610 550 500 HasleBorgvik 2,100 2,000 1,900 1,780 1,650 1,510 Seebelow Seebelow Halden– 3,070 2,900 2,700 2,490 2,260 2,000 Skogssäter

The transmission capacity islimitedbydefined transmission cross-sections,stability conditionsorsimilar.The transmission capacity thusvariesinaccordancewithhowitis distributedbetweenthelinks. ToNorwayintheHaslecrosssection:The transmission capacity isdependentonthe temperatureasfollows(attemperaturesbelow0ºC,thetransmissioncapacityis restrictedbyvoltageinSweden):

15January2007 106 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.1

Temperature[ °C] 20 10 0 10 20 30 Capacity[MW] 2,150 2,150 2,150 2,150 2,050 1,900 ToSwedenintheHaslecrosssection:The transmission capacity is1,600MWwithout production shedding .Forevery100MWofproduction, production shedding increases the transmission capacity by50MW.Themaximum production shedding is1,200MW, correspondingto2,200MWofcapacity. The transmission capacity willbereducedduetoahighOsloload,inaccordancewiththe followingtable: Osloload[MW] 3,200 3,300 3,400 3,500 3,600 3,700 3,800 3,900 4,000 4,100 Capacity[MW] 2,200 2,175 2,090 2,000 1,900 1,785 1,700 1,600 1,450 1,250 Osloload[MW] 4,200 4,300 4,400 4,500 4,600 4,700 4,800 4,900 5,000 Capacity[MW] 1,050 850 650 500 350 200 100 50 0

4.2 Routines for determining the transmission capacity The transmission capacity betweenNorwayandSwedenshallbejointlydeterminedonadaily basisbythe Parties .

4.3 Trading capacity (NTC) Whendeterminingthe trading capacity ofthelinks,the transmission capacity shallbereduced bythe regulating margin . The regulating margin oftheHaslecrosssectionisnormally150MW.Thetotal regulating margin oftheotherlinksisnormally50MW. Ifacountrycanguarantee counter trading andtheexistenceofasufficient fast active disturbance reserve ,thenthe trading capacity maybeincreased. Forthe trading capacity, aweeklyforecastisestablishedforthecomingweek.Theforecastis senttoNordPoolbyatthelatesttheTuesdayoftheweekbefore.

4.4 Operation monitoring and control in respect of system operation Operationmonitoringofcapacitiesand transmission cross-sections,whichcanaffect exchanges,areconductedinaccordancewiththebelow: Line Norway Sweden SildvikTornehamn NationalCentreinOslo VattenfallNorrnät’s OperationsCentreatLuleå OfotenRitsem NationalCentreinOslo SvK’sGridSupervisorat NetworkControlat Råcksta N.Rössåga NationalCentreinOslo SvK’sGridSupervisorat GejmånAjaure NetworkControlat Råcksta NeaJärpströmmen NationalCentreinOslo SvK’sGridSupervisorat NetworkControlat Råcksta

15January2007 107 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.1

HasleBorgvik NationalCentreinOslo SvK’sOperationsCentre atRåcksta HaldenSkogssäter NationalCentreinOslo SvK’sGridSupervisorat NetworkControlat Råcksta

4.5 Voltage regulation Thebasicprincipleforvoltageregulationisgovernedbyitem7point7.5intheagreement.

4.5.1 Voltage regulation on the Norwegian side VoltageismonitoredbytheNationalCentreinOsloandRegionalCentresinAlta,Sunndalsöra andOslo.IftheRegionalCentresdonothavesufficientresourcestomaintainthevoltage withinthegivenlimits,theNationalCentrewillbecontacted. Thefollowingvoltagelevelsareapplied: Substation Min Normaloperationrange Max voltagekV kV voltagekV Ofoten 400 400415 425 NedreRössåga 235 240250 250 Nea 285 285300 306 Hasle 380 410415 430 Halden 380 410415 430

4.5.2 Voltage regulation on the Swedish side TheOperationsCentreinSollefteå(DCSO)isresponsibleforvoltageregulationinthe northernpartsofthegrid,andtheOperationsCentreinRåcksta(DCRÅ)isresponsiblefor voltageregulationinthesouthernpartsofthegrid.IftheOperationsCentresdonothave sufficientresourcestomaintainthevoltagewithinthegivenlimits,SvK'sOperationsCentre shallbecontacted. Thefollowingvoltagelevelsareapplied: Substation Min Normaloperationrange Max voltagekV kV voltagekV Ritsem 395 400415 420 Ajaure 230 245255 260 Järpströmmen 280 285295 305 Borgvik 395 400415 420 Skogssäter 395 400415 420

15January2007 108 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.1

4.5.3 Co-ordination of voltage regulation Innormaloperation,thegoalisthehighervoltagewithinthenormaloperationrange.In conjunctionwithoperationaldisturbancesandswitching,therespectiveoperationscentresin SwedenandNorwaycanagreeonactiontomaintainthevoltagewithinthegivenintervals.

4.6 Outage planning SvenskaKraftnätshallplanthefollowinginconsultationwithStatnett: OutagesorothermeasuresontheSwedishnetworkimpactinguponthe transmission capacity ofthelinksbetweenSwedenandNorway. Outagesononeofthe400kVlinesbetweenPorjusandRitsem. Outagesonthe400kVlinebetweenMidskogandJärpströmmenorthe400/300kV transformeratJärpströmmen. Outagesononeofthe220kVlinesbetweenGrundforsandGejmånorthe400/220kV transformeratGrundfors. Outagescausingamajorreductionof the transmission capacity incrosssections1or2, ortheWestCoastcrosssectioninSweden. ControlfacilityworksatSkogssäter,Borgvik,Porjus,RitsemandVietas. StatnettshallplanthefollowinginconsultationwithSvenskaKraftnät: OutagesorothermeasuresontheNorwegiannetworkimpactinguponthe transmission capacity ofthelinksbetweenSwedenandNorway. Outagesentailingthat,ontheNorwegiannetwork,thereisnolinkbetweenOfotenand Rössåga. Outagesentailingthat,ontheNorwegiannetwork,thereisnolinkbetweenRössågaand Nea. Outagesentailingthat,ontheNorwegiannetwork,thereisnolinkbetweenNeaand Hasle.

4.7 Disturbance situation Thetermdisturbancesituationmeansthatthe transmission capacities havebeenexceededdue to,forinstance,longtermlinefaultsorthelossofproduction.Ifthe transmission capacities arenotexceededduringthefaults,thesituationwillbedeemedtobenormal. Intheeventof operational disturbances, measuresinaccordancewiththeissuedinstructions shall,assoonaspossible,restorethelinkto normal state .

15January2007 109 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2

JOINT OPERATION BETWEEN THE FINNISH AND SWEDISH SUBSYSTEMS ON THE AC LINKS AND FENNO-SKAN

1 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected.The subsystem ofWesternDenmarkisconnectedtoNorway andSwedenusing DClinks.ThisAppendixdescribestheoperationoftheAClinksandtheFennoSkanDClink.

2 Transmission facilities linking the subsystems Sweden – Finland

2.1 Transmission facilities which are owned/held by system operators

Facility Voltage level Settlement point: PetäjäskoskiLetsi 400kVAC Letsi400kV KeminmaaSvartbyn 400kVAC Svartbyn400kV FennoSkan 400kVDC Dannebo400kV Ossauskoski–Kalix*) 220kVAC Kalix220kV *)SvKandFingridowntheline,VattenfallNorrnätandFingridare responsibleforitselectricaloperation. ThetransmissionsdependonconsumptionintheKalixregion.Thetransmissionsaretaken intoaccountwhendeterminingthetradingcapacitybetweenFinlandandSweden.

3 Electrical safety for facilities under 2.1

3.1 General Thecommongroundfortheelectricalsafetyworkofthe system operator companieswithin NordelisconstitutedbytheEuropeanstandardformanagingelectricalhighvoltagefacilities EN50110whichgovernstheorganisationandworkingmethods.Inadditiontothestandard, therearenationalregulationsandspecialinstructionswhichentailcertainmutualdifferences betweenthesystem operators asregardsdealingwithoperationalissuesfromanelectrical safetypointofview.

3.2 Responsibility for electrical operation/Operational management Theresponsibilityforelectricaloperationforthe transmission facilities isheldinFinlandby Fingrid.InSweden,SvKholdstheresponsibilityforelectricaloperation .

15January2007 110 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2

The power operation responsibility boundary concerningthe400kVlinksliesattheborder betweenFinlandandSweden.The power operation responsibility boundary regardingFenno SkanliesatthecableconnectionpointintheterminalatRihtniemi,Finland.

3.3 Switching responsible operator Facility Swedish side Finnish side Petäjäskoski–Letsi OperationsCentreatSollefteå(DCSO) TavastehusNetwork Centre KeminmaaSvartbyn OperationsCentreatSollefteå(DCSO) TavastehusNetwork Centre FennoSkan OperationsCentreatRåcksta(DCRÅ) TavastehusNetwork Centre

3.4 Operations monitoring and control in respect of electrical safety Operations monitoring and control inFinlandarecarriedoutfrom: − TavastehusNetworkCentreasregardstheAClinksandFennoSkan. Operations monitoring and control inSwedenarecarriedoutfrom: − TheOperationsCentreatSollefteå(DCSO)asregardsthe400kVAClinks. − TheOperationsCentreatRåcksta(DCRÅ)asregardsFennoSkan.

3.5 Switching schedule Switchingsonthelinksarecarriedoutinaccordancewithaswitchingscheduledrawnupby SvenskaKraftnät.

3.6 Disturbance management Whena cross-border link istakenoutofoperation,thecontrolroomswillcontacteachother immediately. Asandwhenrequired,theswitchingresponsibleoperatorsissuethenecessaryswitching schedulesinordertocarryoutfaultfindingandclearance. Theswitchingresponsibleoperatorsconductfaultfindinginconsultation. Clearanceofremainingfaultsisorganisedbytheswitchingresponsibleoperatorsin consultation. ForFennoSkan,thePreparednessplanforfaultclearanceisused.

4 System operation for facilities under 2.1

4.1 Transmission capacity (TTC)

15January2007 111 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2

4.1.1 400 kV AC links The transmission capacity toFinlandisdependentuponthetemperatureinnorthernSweden andFinland,asfollows: Temperature °C <20 >20 Capacity 1,650MW 1,600MW The transmission capacity toSwedenislimitedbecauseofdynamicreasonsasfollows: Crosssection1 Max.transmissiontoSweden 3,000MW 1,200MW 3,100MW 1,100MW 3,300MW 1,000MW The transmission capacity ofonlyone400kVlinkinthenorthisamaximumof: Plannedoutageintheother Disturbanceintheotherlink link ToFinland 700MW 500MW FromFinland 400MW 400MW

4.1.2 Fenno-Skan The transmission capacity ofFennoSkanistransientlymax.600MW.The transmission capacity ofFennoSkanistemperaturedependent,thenormalvaluebeing550MW.Asthe trading capacity, atemperaturedependentvalueisusedcontinuously,normally550MW.

4.2 Routines for determining the transmission capacity The transmission capacity betweenthe subsystems issetonadailybasisinconsultation betweentheSystemOperationCentreinHelsinkiandSvK’sGridSupervisoratNetwork ControlatRåcksta. Bothpartiesshallinformtheother party ingoodtimebeforethedayofoperationofthe transmission capacity onFennoSkanandonthenorthernlinks.Theminimumvalueswillbe the transmission capacity.

4.3 Trading capacity (NTC) Whendeterminingthe trading capacity oftheAClinks,the transmission capacity isreduced bya regulation margin of100MW.ConsumptionintheKalixregionistakenintoaccount whendeterminingthe trading capacity betweenFinlandandSweden.The trading c apacity of FennoSkanisequaltoits transmission capacity ,normally550MW.Forthe trading capacity,

15January2007 112 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2 aweeklyforecastissetforthecomingweek.TheforecastissenttoNordPoolbyatthelatest theTuesdayoftheweekbefore.

4.4 Operations monitoring and control in respect of system operation Operations monitoring and control inFinlandarecarriedoutfrom: − TheSystemOperationCentreinHelsinkiasregardsAClinksandFennoSkan. Operations monitoring and control inSwedenarecarriedoutfrom: − SvK’sGridSupervisoratNetworkControlatRåckstaconcerning400kVAClinksand FennoSkan. RegulationofFennoSkaniscarriedoutonanalternatingbasisperhalfcalendaryear:thefirst halfbySvenskaKraftnät’sOperationsCentreatRåckstaandthesecondhalfbytheSystem OperationCentreinHelsinki.

4.5 Voltage regulation Thebasicprincipleforvoltageregulationisgovernedbyitem7point7.5intheagreement.

4.5.1 Voltage regulation on the Swedish side TheOperationsCentreinSollefteå(DCSO)isresponsibleforvoltageregulationinthe northernpartsofthegrid. Thefollowingvoltagelevelsareapplied:

Substation Min Normaloperation Max voltagekV rangekV voltagekV

Letsi 395 400410 415

Svartbyn 395 400415 420 Theminimumvoltageisavoltagewhichthepowersystemcanwithstandwithacertainmargin againstavoltagecollapse.Themaximumvoltageisthedesignvoltageoftheequipment.The targetvalueforvoltagelieswithinthenormaloperationrange.

4.5.2 Voltage regulation on the Finnish side Forvoltageregulation,therearereactorsonthetertiarywindingsoftransformersand capacitorsinthe110kVsystem. AtKeminmaa,thecapacitorisconnectedforreactivepoweronthe110kVsideof transformers.Thereactorsareconnectedbymeansofautomationfor400kVvoltages.The automationhasthreewindowsof+/4kVanditcanbeadjustedupwardsanddownwardsfrom theSystemOperationCentre. AtPetäjäskoski,thereactorsareconnectedmanually. Thefollowingvoltagelevelsareapplied:

15January2007 113 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2

Substation Min Normaloperation Max voltagekV rangekV voltagekV

Petäjäskoski 380 400417 420

Keminmaa 380 399417 420

4.5.3 Co-ordination of voltage regulation ProblemscanariseontheSvartbynKeminmaalineiftheSwedishsidedoesnotpayattention totheFinnishvoltageregulationprinciple.Therecanbeconsequentialimpactsbetweenreactor connectionsatSvartbynandcorrespondingconnectionsatKeminmaaonaccountofthesizeof thereactoratSvartbyn,150Mvar.ThevoltageatSvartbynshallbeheldwithin406414kV. Ifproblemsoccur,therelevantpartiesshallcontacteachother.

4.6 Outage planning The Parties shallplan,inconsultationwitheachother,outagesonthelinksandontheirown networkswhensuchoutageswillimpactuponthe transmission capacities ofthelinks. PlannedoutagesonFennoSkanaretobecoordinatedwiththeotherHVDClinksoftheNordic area.

4.7 Disturbance management Thetermdisturbancesituationmeansthatthe transmission capacityhasbeenexceededdueto,for instance,longtermlinefaultsorthelossofproduction.Ifthe transmission capacity hasnotbeen exceededduringthefaults,thesituationwillbedeemednormal. Whena cross-border link isdisconnected,thecontrolroomswillimmediatelycontacteachother andjointlyreducethetransmissionleveltopermissiblevalues. Duringhourswhenadisturbancesituationisinforce,lossminimizationisnotemployed.This meansthatnocompensationforlossminimizationbenefitwillbepaidout.The Parties willonly payfornonnotified balance power . Duringdisturbancesituations,both Parties havetherighttoregulateFennoSkantosupporttheir networks.FennoSkancanbeusedasmuchaspossiblefacilitywiseandtoanextentnotentailing anydifficultiesintheother Party’s network. Duringadisturbancesituation,the Parties shallimmediatelycontacteachotherandagreethatitis adisturbancesituation.Inconjunctionwiththis,itmustalsobeagreedhowmuchFennoSkanis toberegulatedandwhowillregulate.Ifthesituationisveryseriousandthesituationintheother Party’s networkcanbeassumedtobenormal,thenFennoSkancanberegulatedbythe Party affectedbythedisturbancewithoutanypreviouscontact.Suchunilateralregulationmaynot, however,exceed300MWcountedfromthecurrentsetting. IfFennoSkan’s emergency power regulationhasbeenactivated,thiswillalsobedeemedtobea disturbancesituation.Ifthe emergency power interventionentails counter trading requirements

15January2007 114 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2 fora Party notbeingaffectedbyadisturbance,thenFennoSkanshallberegulatedwithin15 minutestosuchavaluethatthe counter trading requirementceases.

5 Distribution of capacity utilization between Finland and Sweden Thedistributionofcapacityutilizationonthecrossborderlinksisgovernedbyaseparate agreementbetweenFingridandSvenskaKraftnät.Themainprinciplesareasfollows: ThetransmissioncapacityofthecrossborderlinksisdefinedfortheAClinksinthenorthandfor FennoSkan.Thetransmissioncapacityshallbedeterminedcontinuouslybythepartiesin accordancewiththerelevanttechnicalconditionsoftheSystemOperationAgreement.The tradingcapacityisdeterminedbycalculatingthetransmissioncapacityminusdetermined regulatingmargin.

5.1 Basic distribution Basicdistributionisusedasastartingpointforthedistributionofelectricitytransmissions betweennorthernandsouthernlinks.Basicdistributionisdeterminedbytheproportionbetween thedetermined trading capacity ,atanyonegiventime,oftheAClinksandFennoSkan1.Basic distributionshallbeusedifneitherlossminimizationnortheuseoftheother Party’s idlecapacity isrelevant. Basicdistributionisappliedasfollows: − Foreachhour,theplannedcrossborderpowertradeistotalled. − ThepowertradeisdistributedbetweenthenorthernAClinksandFennoSkaninaccordance withtheabovebasicdistribution. − Elbasandsupportive power tradingacrosstheborderarenothandledinbasicdistribution. Ifeither Party needstolimittheAClinksorFennoSkanduetointernallimitations,e.g.cross sections1,2orP1,theabovetradingcapacitywillneverthelessbeusedfortheAClinkand FennoSkanwhencalculatingbasicdistribution.

5.2 Loss minimization (Fenno-Skan optimization) Intheeventoflossminimization,FennoSkanwillberegulatedinsuchawaythatthe transmissionlossesontheFinnishandSwedishgridsareminimized.Thebenefitsthusgained aretobedividedequallybetweenFingridandSvKthroughfinancialreimbursementtwicea year.

5.3 Loss minimization model ThemodelforlossminimizationisbaseduponSvKandFingridcalculatingtheirnetworklosses asafunctionofthetransmissionsonFennoSkan.Thecurvesarecalculatedusingthecurrent operatingsituationandtheconstantnettrade.Thecurvesaresenttotheothercompanyandadded inordertoobtaintheminimumpointgivingareferencevalueforFennoSkan.

15January2007 115 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2

Thepriceofenergyusedinlossminimizationshallbe area price SwedeninNordPoolSpot’s Elspotmarket.The Parties shallspecifythepricesinSEK.Asofthebeginningof2006,theprices shallbespecifiedinEUR.

5.4 Distribution of benefit Theoverallbenefittothesystemduringaperiodofonehourisdefinedasthepositivedifference betweenthecalculatedoveralllossoverheadsduringbasicdistributionandduringthereal referencevalue.Normally,theminimumpointisusedasthereferencevalue. Theoverallbenefitshallbedistributedinaccordancewiththe50/50principle;both Parties shall haveequalbenefitoflossminimization.Thedistributionofbenefitwillbeasfollows:firstlythe overallbenefitiscalculatedassetoutabove.Followingthis,Fingrid’sbenefitiscalculatedasthe differencebetweenitslossoverheadsduringbasicdistributionandduringtherealreferencevalue. SvK’sbenefitiscalculatedthesameway.Subsequently,eitherofthe Parties compensatesthe other Party totheextentthatSvK’sbenefitincreased/decreasedbythecompensationisthesame asFingrid’sbenefitincreased/decreasedbythecompensation.

5.5 Utilizing the other party’s idle capacity Bothcountrieshavepledgedtointernally counter trade intheeventoftransmissionlimitationson theirownnetworksduring normal state ,thisappliesduringthe operational phase . Parties experiencingproblemsontheirnetworksduetolossminimizationhavetherighttochange,free ofcharge,thepowerdistributionwithintherange[basicdistribution,optimum].Ifthereare, nevertheless,bottlenecksinoneofthenetworks,theSystemOperationCentreinHelsinkiand SvK’sGridSupervisoratNetworkControlatRåckstashallagreeupontheredistributionas follows.

5.5.1 Bottlenecks in Fingrid’s network Ifthereare bottlenecks inFingrid’snetworkandthereisidlecapacityinSvK’snetwork,the SystemOperationCentreinHelsinkiandSvK’sGridSupervisoratNetworkControlatRåcksta shallagreeupontheutilizationofSvK’snetworkinordertorelieveFingrid’stransmissions.The agreementmustfeaturethefollowingpoints: − newreferencevaluesforthenorthernlinksandFennoSkan − thetransitamount=thevolumeoutsidetherange[basicdistribution,optimum]. Afterwards,FingridshallcompensateSvKforutilizingSvK’scapacity.Thiscompensation willbecalculatedastheproductofthetransitpriceandthetransitsum.Thetransitpriceis, untilfurthernotice,setatSEK30/MWhunlessotherwiseagreedbetweentheparties.The transitpriceshall,however,beadjustedbythepartiesforeachcommencingperiodoftwo(2) calendaryears.

5.5.2 Bottlenecks in SvK’s network Ifthereare bottlenecks inSvK’snetworkandthereisidlecapacityinFingrid’snetwork,the SystemOperationCentreinHelsinkiandSvK’sGridSupervisoratNetworkControlatRåcksta

15January2007 116 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.2 shallagreeupontheutilizationofFingrid’snetworkinordertorelieveSvK’stransmissions.The agreementmustfeaturethefollowingpoints: − newreferencevaluesforthenorthernlinksandFennoSkan − thetransitamount=thevolumeoutsidetherange[basicdistribution,optimum]. Afterwards,SvKshallcompensateFingridforutilizingFingrid’scapacity.Thiscompensation willbecalculatedastheproductofthetransitpriceandthetransitamount.Thetransitpriceis, untilfurthernotice,setatSEK30/MWhunlessotherwiseagreedbetweentheparties.The transitpriceshall,however,beadjustedbythepartiesforeachcommencingperiodoftwo(2) calendaryears.

5.5.3 Bottlenecks in both parties’ networks Ifbothpartiesareexperiencing bottleneck situationssimultaneously,thenettradeshallbe distributedbetweenthelinksasinbasicdistribution.Butifthe counter trading overheadsinthe parties’networksdiffergreatlyandthecontrolroomsagreeuponcostdistribution,anothertypeof powerdistributioncanbeused.

5.6 Settlement of loss minimization Thecompensationoflossminimisationtakesplacetwiceayear,atthebeginningofJanuaryand atthebeginningofJuly,ifthepartiesdonotagreeuponanotherprocedure.Fingridmakesoutthe invoiceifthepartiesdonotagreeotherwise. Thecompensationoftheuseoftheotherparty’sidlecapacityalsotakesplacetwiceayearatthe sametimewithlossminimisationcompensation.

15January2007 117 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.3

JOINT OPERATION BETWEEN THE NORWEGIAN, FINNISH AND SWEDISH SUBSYSTEMS IN ARCTIC SCANDINAVIA

1 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected.The subsystem ofWesternDenmarkislinkedtoNorway andSwedenusingDC links.ThisAppendixgovernsthespecialcircumstancesresultingfromnoseparatetradebeing conductedviatheIvaloVarangerbotnlink.Thecapacitywillinsteadbeincludedinthetrading scopeforNordPool’sElspotmarketbetweenNorwaySwedenandSwedenFinland.

2 Transmission facilities linking the subsystems of Norway-Finland Transmission facilities owned/heldatbothendsby system operators : Facility Voltage kV Settlement point IvaloVarangerbotn 220kVAC Varangerbotn

3 Electrical safety for facilities under 2

3.1 General Thecommongroundfortheelectricalsafetyworkofthe system operator companieswithin NordelisconstitutedbytheEuropeanstandardformanagingelectricalhighvoltagefacilities EN50110whichgovernstheorganisationandworkingmethods.Inadditiontothestandard, therearenationalregulationsandspecialinstructionswhichentailcertainmutualdifferences betweenthe system operators asregardsdealingwithoperationalissuesfromanelectrical safetypointofview.

3.2 Responsibility for electrical operation/Operation management ResponsiblefortheelectricaloperationontheNorwegiansideisStatnett,whileontheFinnish sideitisFingrid.The power operation responsibility boundary liesattheborderbetween FinlandandNorway.

3.3 Switching responsible operator Line Norway Finland IvaloVarangerbotn RegionalCentreatAlta TavastehusNetworkCentre

3.4 Operations monitoring and control in respect of electrical safety Inaccordancewith3.3.

15January2007 118 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.3

3.5 Switching schedule Switchingsonthelinksarecarriedoutinaccordancewithaswitchingscheduledrawnupby the Party withtheoutagerequirement.The Party drawinguptheswitchingscheduleisalsothe switchingresponsibleoperator.

3.6 Disturbance management

3.6.1 Cross-border link trips – management During operational disturbances ,measuresinaccordancewithissuedinstructionsshall,as soonaspossible,restorethelinkto normal state .

3.6.2 Switching schedule Sameasunder3.5.

3.6.3 Fault finding Initialfaultfindingisconducteddifferentlyfromcasetocase.Generallyspeaking,the respectivefacilityownerwillberesponsibleforfaultfinding.

3.6.4 Fault clearance, remaining faults Oncethefaulthasbeenlocalized,therespectivefacilityownerwillattendtoclearingthefault.

4 System operation for facilities under 2

4.1 Transmission capacity (TTC)

4.1.1 From Norway to Finland The transmission capacity variesbetween50and130MWdependingonwherethesectioning pointinNorwayislocatedandthetransmissionsituationinFinland.

4.1.2 From Finland to Norway The transmission capacity is100MWfromFinlandtoNorway.

15January2007 119 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.3

4.2 Routines for determining the transmission capacity Theexchangeof supportive power isagreedupononeachseparateoccasionbetweenStatnett andSvenskaKraftnätandbetweenFingridandSvenskaKraftnät. Statnettmanagesthetransmissionsonthe cross-border link byredistributingproductionand sectioninginNorwaysothatthe transmission capacity isnotexceeded.Fingridconfirmsthe daily transmission capacity .

4.3 Trading capacity (NTC) The trading capacity isincludedinthetradingscopeofNordPool’sElspotmarketbetween NorwaySwedenandbetweenSwedenFinland.

4.4 Operations monitoring and control in respect of system operation InFinland, operations monitoring iscarriedoutfromtheSystemOperationCentreinHelsinki. Control iscarriedoutfromtheTavastehusNetworkCentrefollowingpermissionfromthe SystemOperationCentre. InNorway, operations monitoring and control arecarriedoutfromtheRegionalCentreatAlta followingpermissionfromtheNationalCentreinOslo.

4.5 Voltage regulation Thebasicprincipleforvoltageregulationisgovernedbyitem7point7.5intheagreement.

4.5.1 Voltage regulation on the Norwegian side AtVarangerbotn,thetargetvoltagelevelis220kVinnormaloperation,butthevoltagecan rangebetween205and235kV.

4.5.2 Voltage regulation on the Finnish side Thenormaloperationrangeofvoltageis230–243kV,butthevoltagecanrangebetween215 and245kV.AtUtsjoki,thereisastationaryreactorof20MVA.

4.5.3 Co-ordination of voltage regulation Thelinkislongandsensitivetovoltagevariations.Thevoltageismonitoredincooperation betweentherelevantcontrolcentres.

4.6 Outage planning Outage planning andmaintenancearecoordinatedinconjunctionwithFingrid’sSystem OperationCentreinHelsinki/UleåborgRegionalCentreandStatnett’sNationalCentrein Oslo/OperationCentreatAlta.

15January2007 120 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.3

4.7 Disturbance management Thetermdisturbancesituationmeansthatthe transmission capacities havebeenexceededdue to,forinstance,longtermlinefaultsorthelossofproduction.Ifthe transmission capacities havenotbeenexceededduringthefaults,thesituationwillbedeemednormal. Intheeventofdisturbances,measuresinaccordancewithissuedinstructionsshall,asquickly aspossible,restorethelinkto normal state .

5 Miscellaneous

5.1 Settlement SettlementofpowerexchangesbetweenNorwayandFinlandshallbecarriedoutinaccordance witthefollowingprinciples: − PowerexchangesviatheIvaloVarangerbotnlineshall,forStatnett’spart,beincludedin thetotalexchangesbetweenStatnettandSvenskaKraftnät. − PowerexchangesviatheIvaloVarangerbotnlineshall,forFingrid’spart,beincludedin thetotalexchangesbetweenFingridandSvenskaKraftnät. SettlementiscarriedoutinaccordancewithseparatebilateralagreementsbetweenStatnettand SvenskaKraftnät,andbetweenFingridandSvenskaKraftnät.

5.2 Information exchange StatnettisresponsibleforFingridandSvenskaKraftnätobtainingcalendardayforecastsfor transmissionsontheIvalo–Varangerbotnline.

15January2007 121 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.4

JOINT OPERATION BETWEEN THE NORWEGIAN AND WESTERN DANISH SUBSYSTEMS ON THE DC LINKS SKAGERRAK POLES 1, 2 AND 3

1 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected.The subsystem ofWesternDenmarkisconnectedtoNorway andSwedenusing DClinks.ThisAppendixdescribestheoperationoftheDClinksbetweenNorwayandWestern Denmark.

2 Transmission facilities linking the subsystems of Norway-Western Denmark

Facility Voltage kV Settlement point KristiansandTjele SK1,SK2 250kVDC Kristiansand300kVDC SK3 350kVDC Kristiansand300kVDC Together,SK1,SK2andSK3makeuptheSkagerraklink.

3 Electrical safety for facilities under 2

3.1 General Thecommongroundfortheelectricalsafetyworkofthe system operator companieswithin NordelisconstitutedbytheEuropeanstandardformanagingelectricalhighvoltagefacilities EN50110whichgovernstheorganisationandworkingmethods.Inadditiontothestandard, therearenationalregulationsandspecialinstructionswhichentailcertainmutualdifferences betweenthe system operators asregardsdealingwithoperationalissuesfromanelectrical safetypointofview.

3.2 Responsibility for electrical operation/Operational management Theresponsibilityforelectricaloperationofthe transmission facilities isheldinWestern DenmarkbyEnerginet.dkandinNorwaybyStatnett.Theresponsibilityforelectricaloperation isregulatedbytheoperationagreementsbetweenEnerginet.dkandStatnett. The power operation responsibility boundaries forthelinkslieontheDanishsideofthe submarinecableatBulbjerginJutland.

15January2007 122 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.4

3.3 Switching responsible operator

3.3.1 Switchings IntheeventofoutagesontheHVDClinks,thereshallbeanexchangeofwrittenconfirmation, beforeaworkauthorizationcanbedespatched,betweenStatnett’sRegionalCentreinOsloand Energinet.dk’scontrolroomatTjelestatingthattheHVDCisolatorsareopenandthelineis terminalgroundedandblockedagainstconnection.

3.3.2 Switching responsible operator OntheDanishside,theauthorizationtoinrespectoftheswitchingandswitchingoffof theconverterstationsisgivenbyEnerginet.dk’scontrolroomatSkærbæk,whileauthorization forallswitchingsandworkauthorizationsontheHVDCsideofthefacilitiesisgivenbythe localoperationalmanagementatTjele. OntheNorwegianside,Statnett’sRegionalCentreinOslogivestheswitchingauthorization, andissuesworkauthorizationsontheNorwegianside. SwitchingsattheACfacilitiesarenormallycarriedoutfromEnerginet.dk’scontrolroomat SkærbækandfromStatnett’sRegionalCentreinOslo.SwitchingsattheHVDCfacilities,once thesehavebeendisconnectedfromtheACnetwork,arecarriedoutfromKristiansandand Tjele.

3.4 Operation monitoring and control in respect of electrical safety Operation monitoring and control inWesternDenmarkiscarriedoutfrom: Energinet.dk’scontrolroomsatSkærbækorTjele. Operation monitoring and control inNorwayiscarriedoutfrom: Statnett’sRegionalCentreinOslo. Thethreepolescanbeoperatedindividually.

3.5 Switching schedule PriortoplannedoutagesontheHVDClinks,writtenconfirmationshallbeexchangedbetween Statnett’sRegionalCentreinOsloandEnerginet.dk’scontrolroomatTjele. Outage planning forthelinkswillbecarriedoutinaccordancewith4.5.

3.6 Disturbance management Faultsentailingthedisconnectionoflinksaremanagedviaconsultationinaccordancewith internalinstructions.Forfaultlocalizationandclearance,thereisaspecialpreparednessplan forsubmarinecables.

15January2007 123 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.4

4 System operation for facilities under 2

4.1 Transmission capacity (TTC) The transmission capacity ofthelinksisdependentonthetemperatureoftheair,cablerunway andearth. SK1,SK2: Techn.min10MW/pole Nominal(500+40)MW SK3: Techn.min13MW Nominal500MW

4.2 Routines for determining the transmission capacity The transmission capacity betweenWesternDenmarkandNorwayshallbejointlydetermined onaroutinebasisbythe Parties .Inthecaseofintactconnectingnetworks,the transmission capacity willbedeterminedbythethermalcapacityofthefacilities’components.Thethermal overloadcapabilityallowedbymonitoringequipmentshallbecapableofbeingusedasand whenrequiredinaccordancewithspecialinstructions.Foranylimitationstotheconnecting ACnetworks,Energinet.dk’scontrolroomatSkærbækisresponsibleforsupportivedataon theWesternDanishsideandStatnettfortheequivalentontheNorwegianside.

4.3 Trading capacity (NTC) Thenormal trading capacity in”bipolaroperation”: 950MWfromWesternDenmarktoNorway 1,000MWfromNorwaytoWesternDenmark TheaboveapplieswhenKristiansandistheexchangepoint(50MWoflosses). Thefollowingcalendarday’s trading capacity isdecidedeachday.Similarly,aweekly forecastisestablishedforthecomingweek’s trading capacity .Theforecastissubmittedto NordPoolSpotbyatthelatesttheTuesdayoftheweekbefore.The trading capacity canbe limitedbylinework,productionintheconnectionarea,overhaulsetc. Both Parties informtheother Party ingoodtimepriortotherelevantcalendardayaboutthe transmission capacity seenfromeachrespectiveside.Thevaluesthatarethelowestwillform thebasisfordeterminingthe trading capacity .

4.4 Operation monitoring and control in respect of system operation Operation monitoring and control inWesternDenmarkiscarriedoutfrom: Energinet.dk’scontrolroomatSkærbæk. Operation monitoring and control inNorwayiscarriedoutfrom: Statnett’sNationalCentreinOslo. Thethreepolescanbeoperatedindividually.

15January2007 124 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.4

4.4.1 The power flow and distribution between the poles Thedistributionofthepowerflowbetweenthepolesshallbedeterminedonaroutinebasisby the Parties takingintoaccounttheminimumelectrodecurrents,lossminimizationorother technicalcircumstancesinthepolesoronthetransmissionnetworksoneachrespectiveside. Tominimizelossesandelectrodecurrents,thefollowingshallbeaimedatduringresulting exchanges: ≥75MWfor>2hours,thepowerisdistributedat42%onSK1,2and58%onSK3. Alsoappliesduring ”monopoleoperation ”. <75MW,SK3isusedalone. Duringspecialoperationalcircumstances,othertypesofoperationcanbeagreedupon.

4.4.2 Regulating the link RegulationoftheSkagerraklinkinaccordancewithagreed exchange plans willbecarriedout, untilfurthernotice,fromtheDanishside.Energinet.dk’scontrolroomatSkærbækis responsibleforitsown balance regulation towardsNorway.Regulationiscarriedout,in principle,inaccordancewithapowerplanusing ramping transitionsbetweendifferentpower levels. TheplansareissuedaspowerplansinwholeMWforeach5minvalue.Thelinkisregulated inaccordancewiththispowerlinearlyfrompowervaluetopowervalue. Thepowerplanisdeterminedinaccordancewiththeenergyandpowerplanagreements formingthebasisforutilizingtheSkagerraklink. Plannedpowerregulationduringthe operational phase issetatmax.30MW/min.

4.5 Outage planning Outagesonthelinksandonownnetworkswhichaffectthe transmission capacity shallbe plannedinconsultationbetweenthe Parties . Planningandmaintenancearecoordinatedbetweentherespectiveoperationalmanagements. OverhaulplanningiscoordinatedwiththeotherHVDClinksintheNordicarea.

4.6 Disturbance management

4.6.1 General TheSkagerraklinkisofgreatimportancetoNorwayandDenmark,thusoutagesdueto disturbancesgenerallyentailmajoreconomiclosses.Intheeventof operational disturbances, measuresinaccordancewithissuedinstructionsshall,assoonaspossible,restorethelinkto normal state .

15January2007 125 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.4

AutomatedoperationaldisturbancesystemsareinstalledatKristiansandandTjelewhichbegin tofunctionduringdisturbancesontheNorwegianorJutlandnetworks.

4.6.2 Emergency power Emergency power consistsofregulatingmeasureswhichareinitiatedmanually( manual emergency power )orautomaticallybymeansofacontrolsignalbeingtransmittedtothe converterstationsusingtelecoms. Bothsideshavetherighttoinitiate manual emergency power intheeventofunforeseenlosses ofproduction,networkdisturbancesorother operational disturbances . Manual emergency power withoutpreviousnoticemaybeactivatedwithin100MWand100 MWh/calendarday.Priortoactivationoverandabovethis,notificationandapprovalshall occurbetweenEnerginet.dk’scontrolroomatSkærbækandStatnett’sNationalCentreinOslo.

4.6.3 System protection AttheDCfacilities, system protection isconstitutedby emergency power settingsatthe converterstations.Activationcriteriacanbelocallymeasuredfrequencyandvoltageorvia telecomsbasedonthesuppliedsignal.Intheeventofactivation,anyongoingnormal regulationwillbeinterrupted.Activationoverandabovetheagreedlimitsandregulationback toplanmaynotoccuruntilthecounterpartyhasapprovedthis.(SeefurtherinAppendix5– Systemprotection).

Energinet.dkandStatnettcanadditionallyenterintoagreementsregardingothertypesof systemservices.

5 Miscellaneous

5.1 System services Fortheautomaticormanualactivationof operation reserves, theavailable transmission capacity canbeused. The regulation margin ismaintainedfollowingtheagreementbetweenthe Parties takinginto accounttheexchangeofsystemservices.The Parties havetherighttoutilizeidle transmission capacity forthetransmissionof system services. Configurationvalues,powerlimitsetcare agreeduponbilaterally.

5.2 Settlement Energinet.dkmanagesbalancesettlement.

15January2007 126 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.5

JOINT OPERATION BETWEEN THE WESTERN DANISH AND SWEDISH SUBSYSTEMS ON THE KONTI-SKAN 1 AND 2 DC LINKS

1 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected.The subsystem ofWesternDenmarkisconnectedtoNorway andSwedenusing DClinks.ThisAppendixdescribestheDClinksbetweenSwedenandWesternDenmark.

2 Transmission facilities linking the subsystems of Sweden - Western Denmark

Facility Voltage kV KS1 LindomeVesterHassing 285kVDC KS2 LindomeVesterHassing 285kVDC Together,KS1andKS2makeuptheKontiSkanlink. SettlementpresentlytakesplaceontheACsideatVesterHassing.

3 Electrical safety for facilities under 2

3.1 General Thecommongroundfortheelectricalsafetyworkofthe system operator companieswithin NordelisconstitutedbytheEuropeanstandardformanagingelectricalhighvoltagefacilities EN50110whichgovernstheorganisationandworkingmethods.Inadditiontothestandard, therearenationalregulationsandspecialinstructionswhichentailcertainmutualdifferences betweenthe system operators asregardsdealingwithoperationalissuesfromanelectrical safetypointofview.

3.2 Responsibility for electrical operation/Operational management TheresponsibilityforelectricaloperationofthetransmissionfacilitiesisheldinWestern DenmarkbyEnerginet.dkandinSwedenbySvenskaKraftnät.Theresponsibilityforelectrical operationisregulatedbyfacilityagreementsbetweenEnerginet.dkandSvenskaKraftnät. The power operation responsibility boundary betweenSvenskaKraftnätandEnerginet.dklies atLäsöÖst,atthetransitionbetweenthesubmarineandshoreendcables.

15January2007 127 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.5

3.3 Switching responsible operator DuringworkbetweenLindomeandXL1FatLäsöÖstorLindomeandXL2FatLäsöÖst,the OperationsCentreatRåcksta(DCRÅ)shallbethe power operation managerfortheentirelink uptoVesterHassing. DuringworkontheDanishpartsofthelink,Energinet.dk’scontrolroomatVesterHassingis the power operation manager fortheentirelinkuptoLindome.

3.4 Operation monitoring and control in respect of electrical safety Operation monitoring and control iscarriedoutfromEnerginet.dk’sOperationsCentreat SkærbækorVesterHassingandtheOperationCentresatRåcksta(DCRÅ). Normally,bipolaroperationisappliedtoKontiSkan1and2buteachofthemcanalsobe operatedinmonopolarmode.

3.5 Switching schedule Switchingsonthelinksarecarriedoutinaccordancewithswitchingschedulesdrawnupby SvenskaKraftnät.Energinet.dk’sOperationsCentreatSkærbækacknowledgesreceipt.

3.6 Disturbance management

3.6.1 Cross-border link trips – management During operational disturbances ,measuresinaccordancewithissuedinstructionsshall,as soonaspossible,restorethelinkto normal state .

3.6.2 Switching schedule Intheeventoffaultsrequiringswitchingsimpactinguponthe cross-border link, Energinet.dk’s OperationsCentreatSkærbækandSvenskaKraftnätareinformedpriortoanyswitchings beingmade.IntheeventofswitchingsontheSwedishgrid,aswitchingschedulewillbe drawnupbySvenskaKraftnät.

3.6.3 Fault finding Initialfaultfindingwillbecarriedoutdifferentlyfromcasetocase.Generallyspeaking,the respectivefacilityownerwillberesponsibleforfaultfinding.Forfaultfinding,aspecial preparednessplanforsubmarinecableshasbeendrawnup.

3.6.4 Fault clearance, remaining faults Oncethefaulthasbeenlocalized,therespectivefacilityownerwillattendtoclearingthefault. Forfaultclearance,aspecialpreparednessplanforsubmarinecableshasbeendrawnup.

15January2007 128 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.5

4 System operation for facilities under 2

4.1 Transmission capacity (TTC) The transmission capacity ofthelinkisdependentonthetemperatureoftheairandtheearth. Inbipolaroperation,thenominalcapacityis740MW,andinmonopolaroperation(KS1 orKS2),thecapacityis370MW. TechnicalminimumcapacityofKS1:12MW;KS2:9MW.

4.2 Routines for determining the transmission capacity The transmission capacity betweenJutlandandSwedenshallbesetonaroutinebasisbythe Parties .Inthecaseofintactconnectingnetworks,the transmission capacity isdeterminedby thethermalcapacityofthefacilities’components.Thethermaloverloadcapabilityallowedby monitoringequipmentshallbecapableofbeingusedasandwhenrequiredinaccordancewith specialinstructions.Technicaldataforthefacilities’ transmission capacities isreportedinthe currentfacilityagreementbetweenEnerginet.dkandSvenskaKraftnät. ForanylimitationsintheconnectingACnetworks,Energinet.dk’sOperationsCentreat SkærbækisresponsibleforsupportivedataontheWesternDanishsideandSvenskaKraftnät forthesameontheSwedishside.

4.3 Trading capacity (NTC) Thenormal trading capacity afterthemodernisationofthe400kVlineNordjyllandsværket VesterHassing,scheduledtobecommissionedin2007,is: 740MWfromWesternDenmark Sweden 680MWfromSweden WesternDenmark Untilthen,thenormaltradingcapacityis: 500MWfromWesternDenmark Sweden 620MWfromSweden WesternDenmark TheaboveapplieswhenVesterHassingistheexchangepoint(30MWoflosses). Thefollowingcalendarday’s trading capacity isseteveryday.Similarly,aweeklyforecastis establishedforthecomingweek’s trading capacity .TheforecastissubmittedtoNordPoolby atthelatesttheTuesdayoftheweekbefore.The trading capacity canbelimitedbylinework, productionintheconnectionarea,overhaulsetc. Both Parties informtheother Party ingoodtimepriortotherelevantcalendardayregarding the transmission capacity seenfromtherespectivesides.Thevaluesthatarethelowestwillbe the trading capacity .

15January2007 129 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.5

4.4 Operation monitoring and control in respect of system operation Operation monitoring and control iscarriedoutfromEnerginet.dk’sOperationsCentreat SkærbækandSvenskaKraftnät’sGridSupervisoratNetworkControlatRåcksta.

4.4.1 The power flow and distribution between the poles KontiSkan1and2arenormallyoperatedinbipolarmode. Duringdisturbancesandmaintenanceononepole,monopolaroperationisapplied.

4.4.2 Regulating the link RegulationoftheKontiSkanlinksinaccordancewithagreed exchange plans willbecarried out,untilfurthernotice,fromtheDanishside.Energinet.dk’sOperationsCentreatSkærbækis responsibleforitsown balance regulation towardsSweden. Regulationtakesplace,inprinciple,inaccordancewithapowerplanusing ramping transitions betweendifferentpowerlevels.TheplansareissuedaspowerplansinwholeMWforeach5 minofplanvalue.Thelinksareregulatedinaccordancewiththispowerlinearlyfrompower valuetopowervalue. Thepowerplanisdeterminedinaccordancewiththeenergyandpowerplanagreementswhich formthebasisforutilizingtheKontiSkanlink.

4.5 Outage planning The Parties shall,inconsultation,planoutagesonthelinkitselfandontheirownnetworks whentheseoutagesimpactuponthe transmission capacity ofthelink. OperationalplanningandmaintenancearecoordinatedbetweenSvenskaKraftnät’s OperationalDepartmentandEnerginet.dk’sOperationsCentreatSkærbæk. OverhaulplanningiscoordinatedwiththeotherHVDClinksintheNordicarea.

4.6 System protection - emergency power

4.6.1 General TheKontiSkanlinkisofmajorimportancetoSwedenandDenmarkandoutagesdueto disturbancesthusgenerallyentailmajoreconomiclosses.Intheeventofoperational disturbances, measuresinaccordancewithissuedinstructionsshall,assoonaspossible,restore thelinkto normal state . AutomatedoperationaldisturbancesystemsareinstalledatLindomenandVesterHassing whichcanbegintofunctionduring operational disturbances ontheSwedishorJutland networks.

15January2007 130 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.5

4.6.2 Emergency power Emergency power isregulatingmeasureswhichareinitiatedmanually( manual emergency power )orautomaticallybymeansofacontrolsignalbeingtransmittedtotheconverterstations bymeansoftelecommunications. OntheWesternDanishside,Energinet.dk’sOperationsCentreatSkærbækhastherightto initiate manual emergency power intheeventofdisturbancestothepowerbalanceor transmission network . OntheSwedishside,SvenskaKraftnäthastherighttoinitiate manual emergency power inthe eventofdisturbancestothepowerbalanceor transmission network .SvenskaKraftnätcangive VattenfallRegionnätABtherighttoinitiatethe operational reserve duringdisturbancesonthe regionalnetworkinwesternSweden. Manual emergency power oflessthan100MWand100MWh/calendardaymaybeactivated withoutpreviousnotification.Priortoactivationoverandabovethis,notificationandapproval shalloccurbetweenthecontrolroomstaffofEnerginet.dk’sOperationsCentreatSkærbæk andSvenskaKraftnät’sGridSupervisoratNetworkControlatRåcksta.

4.6.3 System protection AttheDCfacilities, system protection isinstalledintheformofanemergency power function. Activationcriteriafor emergency power canbelocallymeasuredfrequencyandvoltageorvia telecommunicationsonthebasisofasuppliedsignal.Intheeventofactivation,anyongoing normalregulationwillbeinterrupted.Activationoverandabovetheagreedlimitsand regulationbacktoplanmaynotoccuruntilthecounterpartyhasapprovedthis.(Seefurtherin Appendix5–Systemprotection).

5 Miscellaneous

5.1 System services

5.1.1 Transmission scope for operation reserves Available transmission capacity canbeusedfortheautomaticormanualactivationof operational reserves . The regulation margin ismaintainedfollowingtheagreementbetweenthe Parties takinginto accounttheexchangeof system services .The Parties havetherighttoutilizeidle transmission capacity forthetransmissionof system services. Configurationvalues,powerlimitsetc.are agreeduponbilaterally.

15January2007 131 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

JOINT OPERATION BETWEEN THE EASTERN DANISH AND SWEDISH SUBSYSTEMS ON THE AC LINKS ACROSS ÖRESUND AND TO BORNHOLM

1 Background The subsystems ofNorway,Sweden,FinlandandEasternDenmarkaresynchronously interconnected.The subsystem ofWesternDenmarkisconnectedtoNorway andSwedenusing DClinks.ThisAppendixdescribestheoperationoftheAClinksacrossÖresundandto Bornholm.

2 Transmission facilities linking the subsystems of Eastern Denmark and Sweden

2.1 Transmission facilities owned/held by system operators at both ends

Facility Voltage level Settlement point

HovegaardSöderåsen(FL25) 400kV Söderåsen GørløseSöderåsen(FL23) 400kV Gørløse

Theownershipstructureofthefacilitiesissetoutin”Anlægsaftalenfor400kV forbindelserna”betweenSvenskaKraftnätandElkraftTransmission(mergedwith Energinet.dkasof1January2005),dated12December2001. SvenskaKraftnätownsthreesinglephase400kVcablesincludedinFL23,cablesK4001, K4002andK4003,betweenKristinelundandEllekildeHage,includingthecorresponding sharebelongingtotheoilequipmentatKristinelundandEllekildeHage.Theownership boundarybetweenwhollyownedDanishandSwedishfacilitiesisconstitutedbythesplicing pointsbetweenthelandlinesandsubmarinecablesontheDanishside.Thecablejointsbelong totheSwedishownedfacilities. Asinglephase400kVcableK4004betweenKristinelundandEllekildeHage,includingthe correspondingsharebelongingtooilequipmentatKristinelundandEllekildeHage,isowned to50%bySvenskaKraftnätandto50%byEnerginet.dk.TheboundarybetweenK4004and surroundingfacilitiesiscomposedofthesplicingpointsbetweenthelandlinesandsubmarine cablesonboththeDanishandSwedishsides.ThecablejointsarepartofK4004. Energinet.dkownsthreesinglephase400kVcableswhichareincludedinFL25,cables K4005,K4006andK4007,betweentheSwedishshoreandEllekildeHage,withassociatedoil equipmentatKristinelundandSkibstrupgaard.TheownershipboundarybetweentheDanish andSwedishownedfacilitiesisconstitutedbythesplicingpointsbetweenthesubmarine

15January2007 132 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6 cablesandlandlinesontheSwedishside.ThecablejointsbelongtotheDanishowned facilities.

2.2 Other transmission facilities

Facility Voltage level Settlement point Teglstrupgaard1Mörarp 130kV Mörarp Teglstrupgaard2Mörarp 130kV Teglstrupgaard Hasle,BornholmBorrby 60kV Borrby

Theownershipstructureofthe130kVlinksissetoutin”Anlægsaftalenfor132kV forbindelserna”betweenSydkraftandElkraftTransmission(mergedwithEnerginet.dkasof1 January2005),dated13May2002. Theownershipstructureofthe60kVfacilityissetoutin”Anlægsaftalefor60kV forbindelsen”betweenSydkraftandØstkraft.

3 Electrical safety for facilities under 2.1

3.1 General Thecommongroundfortheelectricalsafetyworkofthe system operator companieswithin NordelisconstitutedbytheEuropeanstandardformanagingelectricalhighvoltagefacilities EN50110whichgovernstheorganisationandworkingmethods. Inadditiontothestandard,therearenationalregulationsandspecialinstructionswhichentail certainmutualdifferencesbetweenthe system operators asregardsdealingwithoperational issuesfromanelectricalsafetypointofview.

3.2 Responsibility for electrical operation/Operational management Responsibilityforelectricaloperationofthe400kVÖresundlinksontheSwedishsideisheld bySvenskaKraftnät,andoperationalmanagementontheDanishsideiscarriedoutby Energinet.dk. The power operation responsibility boundaries forelectricaloperation/operational managementarethesameastheownershipboundaries,seeunder2.1. The power operation manager ofK4004isSvenskaKraftnät.

3.3 Switching responsible operator/Switching leader The power operation manager forthe400kVÖresundlinksontheSwedishsideisSvenska Kraftnät’sOperationsCentreatRåcksta(DCRÅ),andtheswitchingleaderontheDanishside isEnerginet.dk’sControlCentreatBallerup.

15January2007 133 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

SwitchingsonthelinkstakeplaceafteragreementbetweenSvenskaKraftnät’sOperations CentreatRåcksta(DCRÅ)andEnerginet.dk’sControlCentreatBallerup. The party which initiatesaplannedoutageistheswitchingresponsibleoperator/switching leaderfortheswitchingsandotheroperationalmeasurescarriedout(leadingswitchingleader) ifnototherwiseagreedupon. Intheeventoffaultswhichrequireswitchingsthathaveanimpactonthe400kVÖresund links,that party whosefacilitysuffersfromthefaultistheswitchingresponsible operator/switchingleaderfortheswitchingsandotheroperationalmeasurescarriedout (leadingswitchingleader). Ifthefaultcannotbelocated,theswitchingsshalltakeplaceonthebasisofmutual consultation. Ifa party needsswitchingsbytheother party becauseofelectricalsafetyreasons,theother party shallcarryoutsuchswitchingswithoutdelay.

3.4 Operation monitoring and control in respect of electrical safety Operation monitoring andcontrolofthe400kVÖresundlinksismanagedontheDanishside byEnerginet.dk’sControlCentreatBallerupandontheSwedishsidebySvenskaKraftnät’s OperationsCentreatRåcksta(DCRÅ). Both parties’ switchingresponsibleoperators/switchingleadershaveaccesstostatus indicationsandelectronicmeasuredvaluesviaremotecontrolfromeachothers’facilitiesand fromthosestationswherethe400kVÖresundlinksareconnectedtotherespective parties’ grids.

3.5 Operational orders/Switching schedule Switchingsonthelinksarecarriedoutinaccordancewithoperationalordersdrawnupby SvenskaKraftnät’sOutagePlanningatRåcksta.Energinet.dk’sControlCentreatBallerup shallacknowledgethereceiptoforder. The parties shallexchangeswitchingconfirmationsinaccordancewiththeoperational orders/switchingschedulebeforetheworkbeginsandaftertheworkiscomplete.

3.6 Disturbance management

3.6.1 Cross-border link trips – management Intheeventof operational disturbances, measuresinaccordancewithissuedinstructionsshall,as soonaspossible,restorethelinkto normal state.

15January2007 134 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

3.6.2 Switching schedule/Operational orders Intheeventoffaultsrequiringswitchingswhichhaveanimpactonthe400kVÖresundlinks, Energinet.dk’sControlRoomatBallerupandSvenskaKraftnät’sOperationsCentreatRåcksta (DCRÅ)areinformedpriortoanyswitchingsaremade. ForswitchingsintheSwedishgrid,aswitchingschedule/operationalorderisdrawnupby SvenskaKraftnät’sOperationsCentreatRåcksta(DCRÅ). ForswitchingsintheDanishgrid,aswitchingprogrammeisdrawnupbyEnerginet.dk’s ControlRoomatBallerup.

3.6.3 Fault finding Initialfaultfindingiscarriedoutdifferentlyfromcasetocase.Generally,itistherespective facilityownerwhoisresponsibleforfaultfinding.Aspecialpreparednessplanhasbeendrawn upforfaultfindingandrepairforsubmarinecables.

3.6.4 Fault clearance, remaining faults Oncethefaulthasbeenlocalized,therespectivefacilityownerwilllookafterfaultclearance. Forfaultclearance,aspecialpreparednessplanforsubmarinecableshasbeendrawnup.

4 System operation for facilities under 2.1 and 2.2

4.1 Transmission capacity (TTC)

4.1.1 Transmission capacity in MW per cable bundle Line 5 °C 1520 °C 30 °C Hovegaard–Söderåsen 830 830 830 Gørløse–Söderåsen 830 830 830 Teglstrupgaard1–Mörarp 182 182 154 Teglstrupgaard2–Mörarp 173 173 157 Hasle,BornholmBorrby, 51 51 51

4.1.2 Transmission capacity in MW per link − ToEasternDenmark

15January2007 135 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

Link Capacity Öresund(Zealand) 1,350 Bornholm 51 − ToSweden(thermallimitation) Link Capacity Öresund(Zealand) 1,750 Bornholm 51 The transmission capacities ofthelinksaretechnicallydependentandcanbeaffectedbythe currentoperationalsituationinZealand.

4.2 Routines for determining the transmission capacity The transmission capacity betweenEasternDenmarkandSwedenshallbesetonadailybasis bythe Parties .

4.3 Trading capacity (NTC) Determinationofthecapacityisbasedonthecombined transmission capacity ofthe400,130, and60kV transmission facilities .Whendeterminingthe trading capacity ofthelinks,the applicable regulation margin of50MWistakenintoaccount.Aweeklyforecastforthe trading capacity shallbeestablishedforthecomingweek. Ifacountrycanguarantee counter trading andtheexistenceofsufficient fast active disturbance reserve, the trading capacity maybeincreased.

4.4 Operation monitoring and control in respect of system operation Operation monitoring ofbordersandtransmissioncrosssections,whichcanaffectexchanges, ismanagedontheDanishsidebyEnerginet.dk’sControlCentreatBallerupandonthe SwedishsidebySvenskaKraftnät’sNetworkControlCentreatRåcksta(SvKvhi).

4.5 Voltage regulation Thebasicprincipleforvoltageregulationisgovernedbyitem7point7.5intheagreement.

4.5.1 Voltage regulation on the Swedish side TheOperationsCentreinRåcksta(DCRÅ)isresponsibleforvoltageregulationinthesouthern partsofthegrid. Thefollowingvoltagelevelsareapplied:

15January2007 136 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

Substation Min Normaloperation Max voltagekV rangekV voltagekV

Söderåsen 395 400410 420

4.5.2 Voltage regulation on the Danish side TheControlCentreatBallerupisresponsibleforvoltagecontrolinZealand. Thefollowingvoltagelevelsareapplied:

Substation Min Normaloperation Max voltagekV rangekV voltagekV

Hovegaard 380 390410 420

Gørløse 380 390410 420

Teglstrupgaard1 130 130137 137

Teglstrupgaard2 130 130137 137

4.5.3 Co-ordination of voltage regulation MvarcontributionfromthecablesisdistributedbetweenSvenskaKraftnätandEnerginet.dkin thesameproportionastheirownership. Atavoltageof400kV,thefacilitiesFL23andFL25eachwillgenerate150–170Mvar.The reactorsatHovegaardandSöderåsencompensatethisgenerationby110Mvarperline. The400kVvoltageatHovegaardandSöderåsenshallberegulatedsothatthegivenMvar distributionisachievedaswellaspossible.Minordeviationsintheregionof25Mvarare acceptedinnormaloperation.ShorttermdeviationsfromthisMvarrangecanoccurfor exampleinconjunctionwiththeconnectionofcapacitorbatteriesorreactors.Therecanbe deviationsintheMvardistributioninconjunctionwithdisturbances.

4.6 Outage planning The Parties shall,inconsultation,planoutagesonthelinksandontheirownnetworksifthe transmission capacity ofthelinksisaffected. Operational planning andmaintenancearecoordinatedinconsultationbetweenEnerginet.dk’s OperationalPlanningatBallerupandSvenskaKraftnät’sOutagePlanningatRåcksta. Operational planning andmaintenancewhichaffectstheentireNordicsystemshall,whenever possible,becoordinatedinconsultationwithall system operators .

15January2007 137 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

4.7 Disturbance management Thetermdisturbancesituationmeansthatthe transmission capacity hasbeenexceededdueto,for instance,longtermlinefaultsorlossesofproduction.Ifthe transmission capacities arenot exceededduringthefaults,thesituationwillbedeemednormal. Intheeventof operational disturbances ,measuresinaccordancewithissuedinstructionsshall,as soonaspossible,restorethelinkto normal state .

5 Miscellaneous

5.1 Parallel operation 130 kV Powertransmittedviathe130kVnetworkdoesnotentailanyliabilitytorenderpaymentor anyotherreimbursementofexpensesfromSvenskaKraftnätorEnerginet.dk.

5.2 Transmissions to Bornholm Asregardsbalance,BornholmismanagedasapartoftheEasternDanishsubsystem . Energinet.dkshallberesponsiblefortheproductionresourcesonBornholmbeingcapableof beingutilizedforgeneralsystemoperationrequirementsinthesamewayastheproduction resourcesintherestofEasternDenmark.

5.3 Co-ordination of fast active disturbance reserve south of cross-section 4 SvenskaKraftnätandEnerginet.dkshallensurethatthereissufficient fast active disturbance reserve tocopewith dimensioning faults baseduponeach subsystem’s responsibilityforits ownreserves.SvenskaKraftnätandEnerginet.dk’sControlCentreatBallerupshallexchange informationregardinghowmuch fast active disturbance reserve thereiswhichcanrestorethe operationalsituationto normal state followingafault. During normal state, SvenskaKraftnätandEnerginet.dk’sControlCentreatBallerupco ordinatethe fast active disturbance reserve inSouthernSwedenandEasternDenmarkin accordancewiththefollowingdistributionrules: (Dimensioningfault)x(ownfault)/(ownfault+counterpartyfault) Dimensioningfault=largestfaultinareasouthofcrosssection4 Ownfault=largestfaultinownareasouthofcrosssection4 Counterpartyfault=largestfaultincounterparty’sareasouthofcrosssection4 InSweden,southofcrosssection4,thelargestfaultistypicallytheresultof: • Networkpartofcrosssection4 • BalticCable • SwePolLink. InEasternDenmark,thelargestfaultistypicallytheresultof: • UnitattheAvedøreorAsnæsplants • KONTEK.

15January2007 138 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.6

5.4 Counter trading Energinet.dk’sControlCentreatBallerupcanagreewithSvenskaKraftnäton counter trade in Swedentoincreasethe trading capacity betweenSwedenandEasternDenmark.Energinet.dk shallinthiscontextcompensateallofSvenskaKraftnät’scostsinrespectofthis counter trading .

15January2007 139 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.7

JOINT TRIANGULAR OPERATION BETWEEN THE NORWEGIAN, SWEDISH AND WESTERN DANISH SUBSYSTEMS

1 Transmission facilities triangularly linking the subsystems Sweden - Western Denmark - Norway Facility Voltage kV Other HasleBorgvik 400kVAC IncludedinHaslecrosssection HaldenSkogssäter 400kVAC IncludedinHaslecrosssection StenkullenVHassing 250kVDC KontiSkan1 LindomeVHassing 285kVDC KontiSkan2 KristiansandTjele1and2 250kVDC Skagerrak1and2 KristiansandTjele3 350kVDC Skagerrak3

2 Principles for the distribution of exchange plans on the links NordPoolutilizesthe trading capacity whichthe system operators havesetinordertotryto avoidpricedifferencesbetweenthe Elspot areas . Energinet.dk’sControlCentreatSkærbæksetsa trading capacity toandfromthe Elspot area inWesternDenmarkwhichcanentailalimitationofthe trading capacity betweenthe Elspot areas WesternDenmarkNorwayandWesternDenmarkSweden.Distributionbetweenthe cablestakesplaceonaproratabasis,dependingontheDClinks’ trading capacities .Inthe eventofapricedifferencebetweentheareas,the trading capacity willberedistributedsothat itisincreasedfromalowprice area toahighprice area withintheframeworkoftheoverall trading capacity . SvenskaKraftnät,Energinet.dkandStatnettagreethat trading plans betweenWestern DenmarkandtherestoftheNordic subsystem willnotbechangedmorethan600MWfrom onehourtothenext(thisappliestotheoverallnetregulationbetweenWesternDenmarkand Sweden/Norwayaswellaspersinglelink). Theplanned ramping rateonKontiSkanandtheSkagerraklinkisamaximumof30MW/min. BasedonhourlyplansfromNordPoolSpot,Energinet.dk’sControlCentreatSkærbækdraws uppreliminarypowerplansontheDClinkstowardsSwedenandNorwaywithramping transitionsbetweenthedifferentpowerlevels,takingintoaccountthe ramping rateand minimisingnetworklossesinthetriangularlink.Energinet.dk’sControlCentreatSkærbækis responsiblefortheplansmeetingthestipulatedrequirements. The UCTE systemhasarequirementthattheentireregulationmustbecompletedwithin+/5 minutesathourshifts.

15January2007 140 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 7.7

TransitsthroughWesternDenmarkentailthatpowerplansandregulationsfortheDClinks reflectthe UCTE requirement. Thesepowerplanscanlaterbereplannedasaresultofexchangesofsupportive power ,either bilaterallybetweentwooftherelevant system operators orbetweenallthree system operators . Theexchangeofequalvolumesof supportive power betweenallthree system operators ina triangle(triangulartrading)isusedtorelieveheavilyloadedlinksonthenetwork,toobtain scopeforregulatingthefrequencyandtominimisetheneedfor counter trading .Allthree system operators cantaketheinitiativeasregards supportive power tradingviatherelevant DClinksortheHaslecrosssection.Statnetthasacoordinatingfunction.Triangulartrading requirestheapprovalofallthree Parties . Energinet.dk’sControlCentreatSkærbækisresponsiblefordrawingupnewpowerplansfor theDClinksinaccordancewiththestipulatedrequirementsandforinformingtheother system operators . All Parties shallbeinformedaboutthepotential transmission capacity ofallthreelinksas regardstheallocationof balance power and supportive power .

15January2007 141 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 8

MANAGING TRANSMISSION LIMITATIONS BETWEEN SUBSYSTEMS

1 Background All trading capacity (NTC) shallbeputatthedisposaloftheelectricitymarket. System operators mayneed,forreasonsof system security orthestateofaffairsintheirownor adjacentnetworks,tolimitthe transmission capacity ofthelinksbetweenthe subsystems . Forthe transmission capacity ofthe cross-border links between Elspot areas ,thesame prioritizationrulesaretobeappliedbyall system operators inthe subsystems .Seetable below. Priority Sweden Finland Norway Eastern Western Denmark Denmark 1 Elspot X X X X X 2 Elbas X X X 3 Balancepower/ X X X X X Supportive power Supportive power agreedinadvancebetweenthe system operators, withreferencetostartups ofthermalpowerorsimilar,hasahigherprioritythan balance power .

2 Transmission limitations during the planning phase, prior to completed trading on Elspot 2.1 Elspotisusedtobalancetransmissionlimitationsbetweenthe subsystems duringthe planning phase .Theinvolved Parties reachagreementonadailybasisregardingthe trading capacity forexchangesbetweenthe subsystems . 2.2 Intheeventoflimiteddurationreduced transmission capacity betweenthe subsystems , the system operators willbeabletoagreetouse counter trading . 2.3 Intheeventoftransmissionlimitationswithinan Elspot area, itwillbethe respective system operator’s responsibilitytomanagethelimitationbyusing counter trading or bylimitingthe trading capacity .

3 Transmission limitations during the operational phase, following completed trading on Elspot 3.1 Duringthe operational phase ,reduced transmission capacity betweenthe subsystems , asaconsequenceofan operational disturbance ,ismanagedbymeansof counter trading .Thereisnolimitationofthe players’ plannedpowertradingonElspot. Counter trading takesplaceduringtheremainderofthecurrentperiodwhentradeonElspothas

15January2007 142 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 8

beenfixed. For Elbas trading ,the trading capacity isreducedbutprearrangedtradingwillbe counter traded fortheremainderofthecurrentElspotperiod. 3.2 Intheeventofan operational disturbance ina Party’s subsystem ,theresponsible Party willbearthefulltechnical,financialandoperativeliabilityforeliminatingtheeffectsof theincidentinitsown subsystem andminimisingtheeffectsinother sybsystems . 3.3 Intheeventofan operational disturbance onthe cross-border links themselves,the system operators onbothsidesofthelinkwillbearthetechnical,financialand operativeliabilityforeliminatingtheeffectsoftheincidentontheirown subsystems . Iftheagreedtradingexceedsthereduced trading capacity between subsystems , supportive power isexchangedbetweenthepartiesconcerned.Thevolumeof supportive power in counter trading asaresultofan operational disturbance onthe cross-border link itselfisnormallythedifferencebetweentheagreedtradingcapacity andcurrent trading capacity . 3.4 Acutesituations,suchasduringageneral power shortage orduring power shortages resultingfrom operational disturbancesinnetworksorduring bottleneck situations , whencompulsory load shedding hastooccur,aremanagedinaccordancewith Appendix9.

4 Step by step of the trading capacity Duringmajorchangestothe transmission capacity betweentwo Elspot areas, thiscanentail majorchangesinpowerflowsfromonehourtothenext.Thesemajorchangescanbedifficult tomanageregulationwise.Thus,restrictionsareplacedonchangesto trading capacities , MWh/h,fromonehourtothenext.Thischangemaybeamaximumof600MWh/h,unless otherwiseagreed.

15January2007 143 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 9

RULES FOR MANAGING POWER SHORTAGES DURING HIGH CONSUMPTION, BOTTLENECKS OR DISTURBANCES

Introduction Theserulesdescribehowthe system operators ofthe interconnected Nordic power system shall jointlymanagepossible power shortages. Thisshallbecarriedoutwithalevelof system security whichisashighaspossible. Extracts from Appendix 1 Definitions: A subsystem isthepowersystemforwhicha system operator isresponsible.A system operator canberesponsibleforseveral subsystems . Subsystem balance iscalculatedasthesumofmeasuredphysicaltransmissionsonthe cross- border links betweenthe subsystems .Thus,thereisadeficitifthissumshowsthatpoweris flowingintoa subsystem andasurplusifpowerisflowingoutofa subsystem .(Exchangeson cross-border links likeFinlandRussia,NorwayRussia,theSwePolLink,BalticCable,Kontek andWesternDenmarkGermanyarenottobeincludedinthecalculation.) A risk of power shortage definesthestatewhenforecastsshowthata subsystem isnolonger capableofmaintainingthedemandfora manual active reserve, whichcanbeactivatedwithin 15minutes,fortheplanningperiod. Power shortage occursduringthehourofoperationwhena subsystem isnolongercapableof maintainingthedemandfora manual active reserve whichcanbeactivatedwithin15minutes. Critical power shortage occursduringthehourofoperationwhenconsumptionhastobe reduced/disconnectedwithoutcommercialagreementsaboutthis. Prerequisites Each subsystem isresponsibleforitsownbalanceandfortherequirementsfor automaticandmanualreservesbeingfulfilled. Allregulationresourcesshallexistas regulation bids onthejointNordic regulation list .Thisconcernsbothmarketbasedbidsand manual active reserve (15min). System operators informeachotheronacontinuousbasis. A subsystem withaphysicalsurplusdoesnotneedtocarryout load shedding tothe benefitof subsystems withadeficit. Theneedfor manual active reserve (15min)ineach subsystem shallnormallybe equaltoorgreaterthanthe dimensioning faults ineach subsystem.

15January2007 144 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 9

When power shortages or critical power shortages exist,the manual active reserve (15min)isreducedtolessthanthenormallevel. The manual active reserve (15min),however,mustnotfallshortof600MW,in total,inthe synchronous system. Thephysical transmission capacities ofthenetworkshallbemaintainedanda frequencywhichdoesnotdropbelow50.0Hzshallbeaimedat. Each system operator formulatesinstructionswhichcomplywiththissetofrules. Thecontentoftheinstructionsiscoordinatedbetweenthe system operators .

1 General power shortages without bottlenecks in the network

1.1 Maintenance of manual active reserve (15 min) - Whena subsystem innormal balance regulation isapproachingthelimitof keepingthe manual active reserve (15min)initsown subsystem forits dimensioning faults ,thecontrolcentresoftheother system operators shallbe informed.Thisshallalsobedoneevenifthereisasurplusinthe subsystem .This informationshallbedeliveredbyemailandbytelephoneasearlyaspossible. - The system operators concernedassesswhetherthe manual active reserve (15min) intheirown subsystem canalsobeusedforupwardregulationpurposesinnormal balanceregulation.Thismeansthatthe subsystem willnothavesufficientown reservestocovertheneedfor manual active reserve (15min). - Iffurther upward regulation isneeded,thepartiesshallascertainwhetherthereare availablemarketbasedupwardregulationbidsintheneighbouringsystemsto coverthe subsystem ’sdeficitof manual active reserve (15min).“Available”means thatresourcescanbeactivatedforthispurposeandthatthereissufficient transmission capacity . - Ifthereareavailablemarketbasedupwardregulationbids,thepartiescanagreeon maintainingpartoftheneedfor manual active reserve (15min)inanother subsystem .Inthiscase,upwardregulationcantakeplaceinpriceorderinthejoint Nordic regulation list . - Infurtherupwardregulationinpriceorder,the subsystem canmaintainpartsofits manual active reserve (15min)continuously.The system operator ofthe subsystem shallspecifythevolumeandcompositionofthisreserveonthebasisof thecurrentoperationalsituation. - Iftherearenotavailablemarketbasedupwardregulationbidsintheneighbouring systemstocoverthe subsystem ’sdeficitof manual active reserve (15min),a power shortage generallytakesplaceinaccordancewithitem1.3.

15January2007 145 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 9

1.2 Risk of power shortages The system operator shallinformtheother Parties asquicklyaspossible.The measuresinquestionwillbetakeninordertoavoidanunacceptablereductionof the system security . Wheneverrequired,themarket players shallbeinformedviaUMMassoonas possible.Theinformationshallalsobedelivereddirectlyfromthe system operators totheotherP arties . Atleast600MWofthemostexpensive manual active reserve (15min) in the regulation list willbeearmarkedforeachhour.Unavailable regulation bids willbe markedonthejoint regulation list .Whenthereisapotentialriskof bottlenecks arising,thereserveistobedistributedinconsultationbetweenthe Parties . Thestartingof slow active disturbance reserve and peak load reserve willbe assessed.Theother system operators willbeinformedonplanstostartthereserve. Thecostsofstartingthereserveinordertokeepitinreadinessareconsideredas special regulation .

1.3 Power shortages Whena subsystem isnolongercapableofmeetingtherequirementfor manual active reserve (15min)andtherearenotsufficientavailablemarketbased regulation bids intheneighbouringsystems,theother system operators aretobe informedasquicklyaspossible Prearrangedtradingbetween players isfixedandcannotbechanged. SvenskaKraftnätand/orFingridcandemandthatcrossbordertradingonElbas betweenSwedenandFinlandceases,andSvenskaKraftnätand/orEnerginet.dkcan demandthatcrossbordertradingonElbasbetweenSwedenandEasternDenmark ceases. Whenthereisarequirementforupwardregulation,bidsonthe regulation list areto beusedintheorderofpriceunlessthe regulating power willleadto bottlenecks in the transmission network orwillbeunavailableforotherreasons.Marketbased bidsareusedbefore fast active disturbance reserve. Theearmarked manual active reserve willnot,however,beactivateduntilalloftheremaining regulation list has beenactivated.Whenunexpected bottlenecks arise,theearmarkedreservecanbe redistributed.

1.4 Critical power shortages

Whena critical power shortage isapproaching,preparationsformanual load shedding (15min)willbeorderedinthe deficit areas .The Parties willagreeonthe subsystem(s) wherethe load shedding willtakeplaceandwhereinthe subsystem(s)

15January2007 146 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 9

the load shedding willtakeplace.Theconsequencesforloadshiftmustbeassessed. Ifnonetworkproblemsarise,bidsinthe regulation list willbeuseduntilonly600 MWof manual active reserve (15min)remainsinthe synchronous system .The activationof regulation bids shalltakeplaceinpriceorder,andiffrequency regulationsorequires,allmarketbasedbidsshallbeactivatedbeforethe fast disturbance reserve . Whenonly600MWof manual active reserve (15min)remainsinthe synchronous system ,itwillbeactivatedandretainedasincreased frequency controlled normal operation reserve .Theactivatedreserveofatleast600MWwillberedistributed amongrapidlyregulatinghydropowerproductioninconsultationbetweenthe Parties. Themostexpensiveavailableupwardregulationbidinhydropower productionshallbedeactivated.Bidswithalowvolumecanbeskippedinorderto facilitatetheirhandling.Iftherearenoupwardregulationbids,thedownward regulationswillbeactivatedinpriceorder.SvKandStatnettareresponsibleforand coordinatethis. Atthesametime, load shedding willbeorderedwithoutacommercialagreement. Theexpectedactivationtimefor load shedding hastobeweighedintothedecision. Load shedding occursinthe subsystem withthegreatestphysicaldeficitinits balance.Sheddingoccursinstagesuntiltherequirementfor600MWof manual active reserve (15min)inthe synchronous system ismet.When load shedding has takenplaceuntiltwoormore subsystems haveanequallylargedeficit, load shedding isdistributedthereafterbetweenthese subsystems .Attentionmustbepaid tothepracticalhandling; load shedding instagesof200–300MWatatimeis consideredasuitablelevel. Whenassessinga subsystem’s balance,the manual active reserve (15min)thatis notactivatedmustbetakenintoaccount.A subsystem withaphysicaldeficitwhich canregulateitselfintobalancedoesnotneedtoimplement load shedding.

The system operator thatcarriesout load shedding shallinformthemarketandthe other system operators of critical power shortage .

2 Regional power shortages caused by bottlenecks or network disturbances Therelevant subsystem isresponsibleformeasuresaslongasregulationresources areavailable. Iftimeallows,preparationsfor manual load shedding (15min)willbeorderedin the deficit areas .

Ifa bottleneck ariseswithina subsystem towardsaareawithadeficitandall availablebidsinthemeritorder regulation list thatarewithoutsufficient manual active reserve (15min)withintheareaareactivated,then load shedding willbe orderedoutsidethemeritorder regulation list . Load shedding willbecarriedoutin the subsystem withthegreatestphysicaldeficitinitsbalanceandwhichremedies

15January2007 147 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 9

the bottleneck. Whenassessinga subsystem’s balance,the manual active reserve (15min)whichis notactivatedmustbetakenintoaccount.A subsystem withaphysicaldeficitwhich canregulateitselfintobalancedoesnotneedtoimplement load shedding. Iftherearestableconsumptionconditions,theneedfor manual active reserve (15 min)withinthe deficit area willbelessthanifconsumptionhadbeenrising. However, manual active reserve (15min)mustnotfallshortof600MWinthe synchronous system .

3 Connection of consumption following load shedding

Whenthepowerbalancewithinthe deficit area improves,consumptionwillbe reconnectedinsmallsteps.Thepotentialforincreasedconsumptionasa consequenceofsheddingmustbetakenintoaccount.

4 Pricing

Thepricingof supportive power and balance power shallbesetinaccordancewithnormal principles.Normally,no supportive power shallbeagreedupon,insteadthepowerwillbe exchangedas balance power .Intheeventofpricedisputes,thesettingofpricesshalltake placeafterwards.Thecorrectionofirregularitiesinthepricingcanbeachievedbymeansof subsequentlyreachingagreementabout supportive power .

15January2007 148 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 10

THE INTERCONNECTED NORDIC POWER SYSTEM’S JOINT OPERATION WITH OTHER SYSTEMS

1 Western Denmark’s joint operation with the UCTE system

1.1 Western Denmark’s joint operation with Germany Sincethemiddleofthe1960’s,WesternDenmarkhasbeenparallelconnectedwiththe Germanhighvoltagenetworkandhasthusbeenapartofthesynchronouscontinental UCTE system.Energinet.dkhasbeenapartofE.ONNetz’ balance area ,thusmeetingtheformal UCTE requirements.Irrespectiveofthis,Energinet.dkshallcomplywithalltherequirements setby UCTE .Effective25October2001,Energinet.dkisformallyanassociatedmemberof UCTE . Energinet.dk’srelationshipwithE.ONNetzissuchthatitdoesnothaveaformalsystem operationagreementwithE.ONNetz,butthereisadraftwhichisbeingprocessed. InGermany,thereisa”GridCode”forthecollaborationconditionsrelatingtothetechnical systemoperationbetweentheGerman system operators .

1.1.1 System operation collaboration with E.ON Netz Energinet.dkisconnectedtoE.ONNetzviathefollowinglinks: 220kVKassø–Flensborg, settlement point Kassø 220kVEnsted–Flensborg, settlement point Ensted 2st400kVKassø–Audorf, settlement point Kassø. The transmission capacity isnormally1,200MWinbothdirections.Takingintoaccountfaults atmajorproductionfacilities,the transmission capacity northboundis800MW,inrelationto planning. Energinet.dkandE.ONNetzarediscussingasystemoperationagreement.Irrespectiveofthis agreement,Energinet.dkmustcomplywiththefollowing UCTE requirements: Contributetothecombinedmomentaryreserveofthesynchronouscontinental system.Theproportionisdeterminedbythe dimensioning faults ,andthe requirementinrelationtothe system operator’s productioninhisownarea.See Appendix2section5 ThenetworkregulatingfunctionontheDanishGermanborder Eachareainside UCTE mustbeabletomanageitsownbalance

15January2007 149 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 10

Trading plans arespecifiedinquarterhourlyandhourlyenergy Theenergyplanisconvertedtoapowerplan.Toincludetheenergyasperthe trading plan, regulationiscommencedbetweenfiveminutesbeforeandfive minutesafteranhourshift The load shedding iscoordinated. TherampingrequirementforexchangeswithE.ONNetzhasadirectimpactontransiting betweenthe synchronous system andthecontinent.Thismeansthatthefiveminute requirementisdirectlytransferredtothetransiting,whenchangesaremadeinthesame directionduringhourshifts.

1.1.2 Commercial conditions

The transmission capacity acrosstheDanishGermanborderisutilizedforcommercial purposesinaccordancewiththefollowingprinciples;adetaileddescriptioncanbefoundon theEnerginet.dkandE.ONNetzwebsites. Annuallyandmonthly,someofthe transmission capacity ineachdirectionis offeredatauction.Thewinnersoftheauctionobtaintherighttosubmitbilateral trading plans viatheDanishGermanborderonthemorningpriortothedayof operation.Theseplansarebinding.Unutilizedcapacityislost. Everyday,theremainingpartofthe transmission capacity ineachdirectionis offeredatauction.Thewinnersoftheauctionobtaintherighttosubmitbilateral trading plans viatheDanishGermanborderonthedaybeforethedayofoperation. Utilizationofthecapacityisnotcompulsory. Thereareformalrequirementsforthetraderstocomplywithinordertobeabletotakepartin theauction.

1.2 Western Denmark’s joint operation with Flensborg Sincethebeginningofthe1920’s,StadtwerkeFlensborg(SWF)hasconductedAC collaborationacrosstheDanishGermanborder.Thiscollaborationhas,withtime,become moreandmoreintensive,anda150kVlinkbetweenFlensborgandEnstedisnowestablished. Energinet.dkandSWFhaveenteredintoanagreementwhichregulatesthesystemoperation andmarketconditions.

1.2.1 System operation collaboration with SWG StadtwerkeFlensborgisconnectedtoEnerginet.dkviathefollowinglinks: 150kVEnsted–Flensborg,settlementpointEnsted 60kVlinksbetweenKrusåandFlensborg. The transmission capacity isnormally150MWinbothdirections.

15January2007 150 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 10

SWFhastheopportunitytocarryoutexchangeswithSlesvigviathe60kVnetwork. Exchangesareregulatedviaatransversevoltagetransformer.

1.2.2 Commercial conditions SWFhasalimiteddurationprioritizedtransmissionforutilizingthecapacityofthenetwork betweenEnerginet.dkandSWF,i.e.onthe150kVlinkbetweenFlensborgandtheEnsted station. InSWF’sarea,therearenoothermarketplayersthanSWFasaproducer.Whenotherplayers emerge,andtherearecapacitylimitations,anauctionsystemwillbeintroducedwhichwill correspondtothatwhichappliesbetweenEnerginet.dkandE.ONNetztoday.

2 The synchronous system’s joint operation with the UCTE system

2.1 The synchronous system’s joint operation with Germany via the Baltic Cable TheBalticCableisanHVDClinkbetweenSwedenandGermany.Thelinkgoesbetween TrelleborgontheSwedishsideandLübeckontheGermanside.BalticCableABownsthe cablelink.CoownersareE.ONSverigeandStatkraftEuropa. Thecapacityis600MW.

2.1.1 System operation collaboration with E.ON Netz Thereisnosystemoperationagreement.The system services thatexisthavebeenproduced visàvisE.ONSverige.Thelinkisequippedwithan emergency power function.Thereisalso a system protection function,whichprovidesagreater transmission capacity insouthern Sweden.

2.1.2 Commercial conditions Thelinkisusedtodayfor Elspot trading .Theutilizationfeesareregulatedbymeansofatariff. Idlecapacitypermitting,thereareopportunitiesforSvenskaKraftnättodo supportive power dealsviaE.ONSverige.

2.2 The synchronous system’s joint operation with Germany via Kontek KontekisanHVDClinkbetweenEasternDenmarkandGermany. ThelinkgoesbetweenBjaeverskovontheDanishsideandBentwischontheGermanside. Energinet.dkistheownerofthefacilitiesinDenmarkandthecablelinkacrosstotheGerman coast.VattenfallEuropeTransmissionistheownerofthefacilitiesinGermany.Thelinkis connectedtothe400kVnetworkinZealandandGermany.The transmission capacity is600 MW.

15January2007 151 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 10

2.2.1 System operation collaboration with Vattenfall Europe Transmission

Thecombinedsuiteofagreements(enteredintobetweentheformerVEAGandtheformer ELKRAFT)containsrulesforsystemoperationaswellasallocation.Asyet,thereisno separatesystemoperationagreement. Thereisanagreementregardinga system protection function,whichcouldyieldahigher transmissioncapabilityinsouthernSweden.

2.2.2 Commercial conditions

Thelink’s transmission capacity isutilizedasfollows: Southbound: 550MWismadeavailabletoNordPoolSpotfor Elspot trading untilthemiddleof2006. 50MWisutilizedforthe frequency controlled disturbance reserve . Northbound: 550MWismadeavailabletoNordPoolSpotfor Elspot trading untilthemiddleof2006. 50MWisutilizedforthe frequency controlled disturbance reserve . Settlement point :Bentwisch.

2.3 The synchronous system’s joint operation with Poland SwePolLinkisanHVDClinkbetweenSwedenandPoland.ThelinkgoesbetweenKarlshamn ontheSwedishsideandSlupskonthePolishside.SwePolLinkABownsthecablelink.The ownersare: SvenskaKraftnät VattenfallAB PolishPowerGridCompany (PPGC) Thecapacityis600MW. The system operator onthePolishsideisPolskieSieciElektroenergetyczne(PSE).

2.3.1 System operation collaboration with PSE Thesystemoperationcollaborationisregulatedbyasystemoperationagreement.This agreementregulates,forinstance: Technicallimitations Outagecoordination - Emergency power functions Exchangesof trading plans . Thelinkisregulatedhalfyearlyfromtherespective system operator .

15January2007 152 NORDIC GRID CODE (SYSTEM OPERATION AGREEMENT) APPENDIX 10

2.3.2 Commercial conditions SwePolLinkABisatransmissioncompanythatsells transmission capacity onthelink. Theutilizationfeesareregulatedbymeansofatariff.Today,thebulkofthelink’scapacityis beingutilizedviaalongtermagreement.Aminorpartofthecapacityremainsunutilized.Idle capacitypermitting,thereareopportunitiesfortherespective system operator todo supportive power deals.

3 The synchronous system’s joint operation with Russia ElectricityimportsfromRussiabeganin1960.Therewasasignificantincreaseinimportsat thebeginningofthe1980’s,whentheHVDCstationsatViborgandthedouble400kVlines werecommissioned.Thethird400kVlinewentintocommercialoperationatthebeginningof 2003.

3.1 System operation collaboration with RAO UES of Russia TheFinnishgridisconnectedwithRussiaviathree400kVlinesfromViborg(Russia)to YllikkäläandKymi(bothFinland).Thetechnical transmission capacity is1,400MW. TransmissionstakeplaceviatheHVDCstationsatViborgandfroma450MWgasfired powerplantwhichisinisolatedoperation,i.e.synchronisedwiththe synchronous system .In additiontothis,therearetwo110kVlinksownedbyprivateregionalnetworkcompanies. FingridandRAOUESofRussiasignedasystemoperationagreementon6February2003, whichregulatesoperationalandtechnicalrelationsbetweenthepowersystems.Nordel’s recommendationsandrequirementshavebeentakenintoaccount.

3.2 Commercial conditions Fortechnicalandcommercialreasons,tradingviathelinkonlyoccursfromRussiatoFinland. The trading capacity is1,300MW. Thetransmissionserviceisbaseduponafirmfixedperiodtransmission.Theminimumperiod foratransmissionreservationisoneyearwhilethelongestisthreeyears.Thesmallestvolume forindividual players is50MW. Thedailyhourlytransmissionprogrammeisagreedupononadailybasisandimportsare managedasafirmdeliveryinthebalancesettlement.Fingridcarriesthebalanceresponsibility forthedelivery. FingridandRAOUESofRussiahaveagreedthatthelinkandtheHVDCstationsatViborg mayalsobeusedfortechnicalrequirements.100MWhasbeenreservedforthispurpose.The linkisusedforfrequencyregulationandcanalsobeusedfor fast active disturbance reserve .

15January2007 153 NORDIC GRID CODE (CONNECTION CODE)

The following documents have been included in this chapter: Document Status Nordel’s connection requirements to be met by Recommendations thermal production plants (Operational performance specifications for thermal power units larger than 100 MW and Operational performance specifications for thermal power units smaller than 100 MW), 1995 Dimensioning practice in the Nordic countries, Descriptive Nordel’s system committee, 1998 Nordel Connection Code Wind Turbines, November Recommendations 2006, Edited by the ad-hoc group Jan Havsager Energinet.dk, Inge Vognild Statnett, Matti Lahtinen Fingrid, Erik Thunberg Svenska Kraftnät and Fredrik Norlund Svenska Kraftnät The following national documents deal with the Connection Code: Document Status Electrical quality: The working group has attempted Varying: Guidelines (Sweden, to bring together the regulations of the different Finland, Norway) countries. Not complete. Production: The working group has attempted to upgrade Nordel’s recommendation for thermal power plants to apply to all types of power plant, on the basis of national regulations: Sweden: Technical design of power plants regarding Binding regulation (according reliability (SvKFS 2005:2 Affärsverket svenska to delegation in law) kraftnäts föreskrifter och almänna råd om driftsäkerhetsteknisk utformning av produktionsanläggningar) Norway: Regulations for hydro power Guidelines Finland: General Connection Terms of Fingrid Oyj’s Binding requirements and Grid, Specifications for the Operational Performance recommendations of Power Plants, Power Quality in Fingrid’s 110 kV grid

Denmark: Binding requirements Technical Regulations of Thermal Units of 1,5 MW or above (July 2006) Technical Regulations of Thermal Power Station Units below 1,5 MW (work in progress) Requirements to be met by installations connected above 100 kV (December 2004) Rules for regulation units (work in progress) Upgrading not complete.

15January2007 154 NORDIC GRID CODE (CONNECTION CODE)

CONNECTION CODE...... 157

1 INTRODUCTION ...... 157 2 CONNECTIONTOTHEGRID ...... 157 2.1 Electrical quality (in systems of 110 kV and above) ...... 157 2.1.1 Frequency...... 157 2.1.2 Voltagesandslowvoltagevariations...... 157 2.1.3 Rapidvoltagevariations...... 158 2.1.4 Voltagedips...... 158 2.1.5 Outages...... 158 2.1.6 Overvoltages...... 158 2.1.7 Voltageimbalance...... 159 2.1.8 Voltageharmonics...... 159 2.1.9 Voltageswithintermediateharmonics...... 159 2.2 HVDC...... 160 2.3 Connecting grids ...... 160 2.3.1 Takeoutandsurplusofreactivepower ...... 160 3 PRODUCTION ...... 161 3.1 Terms...... 161 3.1.1 Typesofproductionplant ...... 161 3.1.2 Otherterms...... 161 3.2 General requirements to be met by thermal power and hydropower ...... 162 3.2.1 Automaticfrequencycontrol...... 162 3.2.2 Turbineregulator,setpoint ...... 162 3.2.3 Tolerancetofrequencyvariations...... 162 3.2.4 Tolerancetovoltagevariations ...... 163 3.2.5 Generatorandvoltageregulatorcharacteristics...... 166 3.2.6 Verification...... 167 3.3 Operational performance specifications for thermal power units > 100 MW..... 168 3.3.1 Operationalcharacteristics ...... 168 3.3.2 Powercontrolequipmentcharacteristics...... 168 3.3.3 Powerresponsecapabilityduringnormaloperationofthepowersystem... 169 3.3.4 Powerresponsecapabilityduringpowersystemdisturbances ...... 170 3.3.5 Houseloadoperation...... 171 3.4 Specifications for thermal power units < 100 MW ...... 171 3.5 Special requirements for hydropower...... 172 NORDEL CONNECTION CODE WIND TURBINES...... 173

1 INTRODUCTION ...... 173 2 DEFINITIONS ...... 173 3 SCOPEOFTHECONNECTIONCODE ...... 173 4 ACTIVEPOWERCONTROL ...... 173 5 REACTIVEPOWERCAPACITY ...... 174 6 REACTIVEPOWERCONTROL ...... 174 7 DIMENSIONINGVOLTAGEANDFREQUENCY ...... 175

15January2007 155 NORDIC GRID CODE (CONNECTION CODE)

8 OPERATIONALCHARACTERISTICSDURINGGRIDDISTURBANCES ...... 176 9 STARTANDSTOP ...... 177 10 REMOTECONTROLANDMEASUREMENTS ...... 177 11 TESTREQUIREMENTS ...... 177

15January2007 156 NORDIC GRID CODE (CONNECTION CODE)

CONNECTION CODE

1 Introduction Thepurposeistolaydowncertainbasicrulesforconnectiontothetransmissionsystemon nondiscriminatingterms.Therearenationalrequirementswhichshallbetakenintoaccountin thefirstplace. Theconnectionconditionsspecifyrequirementsforminimumtechnicalrequirementstoensure securityofoperationintheNordicelectricpowersystem.Theconnectionconditionslaydown thelowesttechnicalrequirementsthataplantmustsatisfytohaveaccesstothegrid,andthe lowesttechnicalrequirementstobemetbyaplantthatmaybeimportanttotheoperational reliabilityoftheNordicelectricpowersystem.TherespectiveTSOslaydownnational requirements.TheyshouldbebasedonminimumrequirementslaiddowninthisConnection Code,butmaybestricter. TheConnectionCodeappliestonewinstallationsortothereconstructionofexisting installations.Existinginstallationsmustretainthepropertiestheyhadwhentheywere connectedtothegrid.

2 Connection to the grid

2.1 Electrical quality (in systems of 110 kV and above) Thissectionhasbeenwrittenwithnationalrequirementsinmind.

2.1.1 Frequency Thenominalfrequencyis50Hz.Undernormaloperatingconditions(synchronousoperationof theNordicgrid)thefrequencywilltypicallyremainwithintherange49.9to50.1Hz. However,largerfrequencydeviationsmayoccurduringoperationaldisturbances.SeeSection 4.1.2oftheSystemOperationAgreement,appendix2.

2.1.2 Voltages and slow voltage variations Thenominalvoltagesbetweenthephases(UN)andthecorrespondingminimuminsulation levelsfortheequipment(theinsulationlevelsarenormallylowerforpowerlines)areshownin thetablebelow: Nominal Usedfor Highest Withstand Withstand 50Hz,1min voltage transmissionin operating voltagefor voltagefor withstand orrated voltageon lightning switching voltage voltage equipment surge(LIWL) surge(SIWL) 110 Finland 123 550 230 132 Denmark,Norway 145 1) 650 275 150 Denmark 170 750 325 220 Denmark,Finland, 245 950 395 Sweden 300 Norway 300 1050 850 400 Denmark,Finland, 420 1425 1050 Norway,Sweden 1350(DENWest)

15January2007 157 NORDIC GRID CODE (CONNECTION CODE)

1) Isolationlevel.Highestoperatingvoltageis138kVaccordingtothermaldimensioningof transformercore,105%ofratedvoltageduetoinduction. Thelowestoperatingvoltagesateachvoltagelevelarehighlydependentonthelocal conditions.Thelowestvaluesarereachedduringoperationaldisturbancesandareusuallynot lowerthan90%ofthenominalvoltage.

2.1.3 Rapid voltage variations Duringnormaloperatingconditions,arapidvoltagevariationdoesnottypicallyexceed5%of thenominalvoltage. Arapidvoltagevariationduetoasingleregulationorswitchingactionmustnotgenerally exceed3%ofthenominalvoltage.However,thevaluemustbeloweriftheactionis constantlyrepeated,e.g.severaltimesaday(theexactrequirementdependsonthelocal conditions). Comment:Arapidvoltagevariationthatcausesavoltage,whichfallsbelow90%ofthepre existingvoltage,isregardedasavoltagedip. Rapidperiodicvoltagevariationsareknownasflickerandtheseverityofthesemustbe measuredwithspecialinstruments.Theaimistokeepthemeasuredvalueforshortterm flicker(Pst)below1.0andthemeasuredvalueforlongtermflicker(Plt)below0.8.Thelimit valuesapplyto95%ofallmeasuredvaluesduringaperiodofoneweek.Permittedflickerdue toonlyoneconnectingpartyisusuallylowerthanthesevaluesbutishighlydependentonlocal conditions.

2.1.4 Voltage dips Avoltagereductionwithdurationof10msto1minuteandavoltagedropofmorethan10% oftheexistingvalueisknownasavoltagedip.Therearenostandardrequirementsforthe severityorextentofvoltagedipssincetheyarehighlydependentonthegridstructure,weather conditions,etc.Mostvoltagedipsarecausedbyearthingfaults.Whetherornotsuchvoltage dipsaretransferredtolowervoltagesdependsonwhichearthingmethodsareusedandonthe transformerconnections.Thevoltagedipsmayoftenbecomedeeperandmayalsospreadto largerpartsofthegridiffaultsoccurinmorethanonephase,butthisisrelativelyrare.The durationofavoltagedipishighlydependentonthetypeoffaultconcernedandonwhichrelay protectionmethodsareusedlocally.

2.1.5 Outages Atoutages,thevoltageatthecustomer’sconnectionpointisbelow1%ofthenominalvoltage. Outagescanbedividedintoplannedoutages(customersareinformedbeforehand)andoutages duetooperationaldisturbances.Thenegativeeffectsofoutagesdiffergreatlybetweenthetwo cases.Therearenostandardswithdefinedlimitvaluesforoutages.

2.1.6 Overvoltages Temporaryovervoltages Earthfaultsarethemostcommoncauseoftemporaryovervoltages.Duringthefault,the voltageinnormalphasesrises.Thevoltagemayriseupto1.8timestheratedvoltage, dependingontheearthingmethodusedinthegrid.Inpractice,however,thevoltageisusually kepttoalowerlevel.

15January2007 158 NORDIC GRID CODE (CONNECTION CODE)

Switchingandlightningovervoltages Switchinginofshuntcapacitorsandautoreclosureoflinesarethemostcommoncausesof switchingovervoltages.Duringswitchingofacapacitor,thevoltagesbetweenphaseandearth may,dependingontheearthingmethodused,reachvaluesupto1.8timesthepeakvalueofthe phasevoltage(1.8p.u.).Switchingoflines,especiallyrapidautomaticreclosureoflines,may causehighovervoltages,upto3p.u.However,theprobabilityofsuchhighvaluesislow. Overvoltagesontheoverheadlinesofthegridduetoatmosphericphenomenaarelargely limitedbythedielectricstrengthofthelinesandtheovervoltageprotectionofthetransformer stations.Becauseofthesefactors,itmaylargelybeassumedthattheovervoltageswillbe limitedtoalevelof56p.u.

2.1.7 Voltage imbalance Dependingonlocalconditions,theaveragemeasuredvaluesfor10minutesforthephase componentofathreephasesystemwithnegativesequencemustbebelow12%ofthephase componentwithpositivesequencefor95%ofthetimeoverameasuringperiodofoneweek. InSwedenandNorwayalimitvalueof1%isused.2%isusedontheFinnish110kVgrid.

2.1.8 Voltage harmonics ThefiguresinTable1mustnotbeexceededforvoltageswithharmonics.Thismeansthat 99%oftheaveragevaluesforaperiodof10minutesoverameasuringperiodofoneweek mustbebelowthelimitvalues.NOTE:Thelimitvaluesdifferbetweenthecountries. PLANNING LEVELS FOR HARMONIC VOLTAGES Asapercentageofthenominalvoltage Odd Odd Even Multiplesotherthan3 Multiplesof3 n F N S n F N S n F N S % % % % % % % % % 5 3.0 2.0 2.5 3 3.0 2.0 2.0 2 1.0 1.5 1.0 7 2.5 2.0 2.5 9 1.5 1.0 1.0 4 0.7 1.0 1.0 11 1.7 1.5 1.5 15 0.5 0.3 0.6 6 0.5 0.5 0.5 13 1.7 1.5 1.5 21 0.5 0.2 0.4 8 0.3 0.2 0.5 17 1.5 1.0 1.0 >21 0.3 0.2 0.4 10 0.2 0.4 19 1.5 1.0 1.0 12 0.2 0.4 23 0.8 0.7 0.7 >12 0.2 0.2 25 0.8 0.7 0.7 >25 0.5 0.2+ 0.2+ 0.5* 0.5* 25/n 25/n Totalharmonicdistortion(THD)forthevoltage <3%(FandN),<4%(S) Table 1 (F = Finland, N = Norway, S = Sweden)

2.1.9 Voltages with intermediate harmonics Voltagesthatcontainintermediateharmonicsareusuallyfarlowerthanvoltageswithfull harmonics.Sofar,therearenostandardsthatlaydownlimitvaluesforsystemsabove110kV, but0.2%(ofthenominalvoltage)isusedinNorwayand0.5%inSweden.Voltagesand intermediateharmonicsaregeneratedbyarcfurnaces,weldingequipmentandfastfrequency converters.

15January2007 159 NORDIC GRID CODE (CONNECTION CODE)

2.2 HVDC 1 • EverynewHVDClinkshouldbedesignedsothatithasnonegativeeffectonexisting equipmentconnectedtothegrid.ExamplesofnegativeeffectsareSSR(subsynchronous resonance),rapidvoltagevariations,harmonicvoltagesandinterferencewith telecommunications.Inaddition,thelinkshouldnothaveanegativeeffectonsystem operation.Examplesofpossiblesystemoperationproblemsareinsufficientabilityto toleratevoltagedipsorexaggeratedinput/outputofreactivepower.Abipolarlinkshould alsobedesignedsothattheriskoflosingbothpolesforthesamereasonisaslowas possible. • Itshouldbepossiblewithinthefrequencyrange49.949.5HzfortheHVDCinter connectionstohavefrequencydependentregulationwithdroop.Frequencycontrolledstep orrampvariationofthepowerisnotpermittedinthisfrequencyrangewhenitisusedin droopregulation. • Anyotherregulationofemergencypowermustbebasedontheconditionsthatapplyatthe site.ThequestionalsoconcernstheaffectedTSOs. • TheownersofnewHVDCinterconnectionsaretonotifytheOperationsCommitteeofthe settingparametersfortheregulatingenergy,rampsandemergencypowerinrelationto existingHVDClinksaccordingtoagreementswiththeTSOsinNordel.

2.3 Connecting grids TheconnectionmustbesetupinsuchawaythatthequalityoftheNordicelectricpower systemisnotaffected.

2.3.1 Take-out and surplus of reactive power TAKE-OUT AND SURPLUS OF REACTIVE POWER Subject Denmark Finland Iceland Norway Sweden Tappingfrom Balanceper Balanceper PF(cosφ)= Theremustbe Balanceper thegrid voltagelevel. voltagelevel. 0.90at132 notransportof voltagelevel. MVAr Transportis 220kV. MVAr,which Notmeasured. transportis minimised PF(cosφ)= hasanegative minimised. withtheaidof 0.85<132 effectonthe a"window" kV. voltage. (tanφ=0.04 +"fine"1) 0.16).MW lossis minimised. Reactive Reactorsetc.~ Reactorsetc.~ Reactorsetc.~ surplus intactgrid intactgrid Gridintact after50% withthreein loadshedding reserve 2) 1) From1998,thelimitsarechangedto0.95and0.9respectively. 2) TheeasternpartsynchronoustotheNordelgrid.Thewesternparthasownrules correspondingtothedemandsfromthesynchronousUCTEgrid.

1WritteninthelightofdraftforNordelrecommendation.

15January2007 160 NORDIC GRID CODE (CONNECTION CODE)

3 Production

3.1 Terms

3.1.1 Types of production plant Definitions: Gas turbine unit Productionplantpoweredbyairandcombustiongasestogenerate electricpower.Onegeneratorwithoneormoregasturbines.There aretwotypes:jetandindustrial. Combined plant Steamturbinesandgasturbinesthatusethesamefuelcycle,in whichexhaustheatfromgasturbinesisusedtoproducesteamfor steamturbines. Condensing power plant Oneormorethermalpowerunitsinthesameproductionplant, whichproduceonlyelectricity. Combined heating and Oneormorethermalpowerunitsinthesameproduction power (CHP) plant plant,poweredbyfossiland/orbiofuelandwhichcombinethe productionofelectricityandheat,whichisusedfordistrictheating orforanindustrialprocess. plant Oneormorethermalpowerunitsinthesameproductionplant, whichproduceonlyelectricityandwhicharepoweredbynuclear fissioninareactor.Therearetwotypes:thepressurisedwater reactor(PWR)andtheboilingwaterreactor(BWR). Hydropower unit Turbineandgeneratorcoupledtogetherandpoweredbywater. Hydropower station Oneormorehydropowerunitsinthesameproductionplant. Wind power unit Turbineandgeneratorcoupledtogetherandpoweredbywind. Wind power farm Oneormorewindpowerunitswithacommonconnectiontothe powergrid. Thermal power unit Productionplantpoweredbyuranium,fossiland/orbiofuelsto generateelectricpower.Turbineandgeneratorcoupledtogether, poweredbysteamfromaboilerorareactor. Thermal power block Oneormorethermalpowerunitspoweredfromacommonboiler orreactor.Combinedheatingandpowerplantsareincludedin thermalpowerblocks.

3.1.2 Other terms Definitions: House load operation Operationofaunitwithitsownauxiliarymachineryasitsonly load,whentheunitisdisconnectedfromtheexternalpowergrid. Rated field voltage Thefieldvoltageofageneratoratratedloadandnominal operatingvoltage. Rated load Simultaneousnominalactiveandreactiveproduction. Nominal active power Nominaldesignpowerforelectricityproduction. Nominal operating voltage Theoperatingvoltageoftheconnectinggrid,whichisusedasa designpreconditionwhenplanningtheunit. Nominal generator voltage Thedesignvoltageofthegenerator. p.u. “Perunit”:atermwhichstatesthesizerelativetoanominalvalue whichmusthavebeendefinedineachindividualcase.

15January2007 161 NORDIC GRID CODE (CONNECTION CODE)

Frequency response Theratiobetweenpowerchangeandfrequencydeviationwhen automaticfrequencycontrolisused. Droop Theinverseoffrequencyresponse,i.e.theratiobetweenfrequency deviationandpowerchange. Synchronous generator Ageneratorwhoserotationspeedfollowsthefrequencyofthe connectinggrid.

3.2 General requirements to be met by thermal power and hydropower Requirements: • Thermalpowerplants(Norway,SwedenandDenmark>100MW, Finland>50MW) • Hydropowerplants(Norway>10MW,SwedenandFinland>50MW) Thenationalrequirementsmaybestricterthantherequirementsstatedbelow.

3.2.1 Automatic frequency control Theproductionplantsmustbecapableofautomaticallycontributingtofrequencyregulationof theelectricpowersystemwithafrequencyresponseintherange0.251p.u.power/Hz,which correspondstoadroopof82%,atafrequencyvariationof50 ±0.1Hz.Thelocallymeasured gridfrequencyortherotationspeedoftheplantisusedasacontrolsignal.

3.2.2 Turbine regulator, set point Theunitcontrollershallhaveanadjustablefrequencysetpointintherangefrom49,9Hzto 50,1Hz.Thesetpointresolutionshallbe0,05Hzorbetter.Forlargethermalpowerplantsan adjustablefrequencydeadbandoftheunitcontrollerwithinthesettingrangeof050mHzis acceptable.

3.2.3 Tolerance to frequency variations FrequencyRange49Hzto51Hz Itshallbepossibletooperatetheunitcontinuouslyatfulloutputpowerwithinthegridvoltage rangeof90105%ofthenormalvoltage,andatanyfrequencybetween49and51Hz.A maximumoperatingtimeof10hours/yearanddurationof30minutesmaximumpercasecan beassumedwithinthefrequencyrangeof50.351Hz.Atafrequencyabove50.3Hzasmall powerreductionisaccepted,ifstableoperationatfullpowercanbereestablishedwhenthe frequencyagaindropsbelowthisvalue.SeeFigure 1. FrequencyRange49Hzto47.5Hz Itshallbepossibletooperatetheunitunderdisturbanceconditionsfor30minwithinthegrid voltagerangeof95105%ofthenormalvoltage,atanyfrequencydownto47.5Hz.The outputpowermaythenbereducedby0%at49Hzandamaximumof15%at47.5Hz,and byavaluefoundbylinearinterpolationatfrequenciesbetweenthesetwolimits.Effortsshould bemadetolowerthisreductioninoutputpower,ifthiscanbeachievedwithouthighadditional costs. TransitoryFrequencyVariations51Hzto52Hz Itshallbepossibletooperatetheunitfor5secduringtransitoryconditionsofthenetworkin connectionwithexceptionaldisturbanceswithinthegridvoltagerangeof95105%ofnormal voltageatanyfrequencybetween51and52Hz.Duringsuchtransientsthepowermaybe

15January2007 162 NORDIC GRID CODE (CONNECTION CODE) reduced,ifstableoperationatfullpowercanbereestablishedwhenthefrequencyagaindrops below50.3Hz. FrequencyRange51Hzto53Hz Onaseparateelectricalnetworkitshallbepossibletooperatetheunitatstronglyreduced outputpowerwithinthegridvoltagerangeof95105%ofnormalvoltage,atanyfrequency between51and53Hzfor3min. FrequencyBelow47.5Hz Theunitmaybetrippedfromthenetworkatfrequenciesbelow47.5Hz.Theunitshallthenbe capableofchangingovertohouseloadoperation.However,thisshouldnottakeplace instantaneously,thetimedelaybeingdeterminedbythedesignlimitsoftheunitandsothat reliablechangeovertohouseloadoperationwillbeobtained. FrequencyGradients Thecontrolsystemshallbedesignedsothattheunitwillnottripbecauseofthetransient frequencygradientsoccurringincaseofshortcircuitonthehighvoltagenetworktowhichthe unitisconnected.

3.2.4 Tolerance to voltage variations GridVoltageRange90%to105%ofNormalVoltage Itshallbepossibletooperatetheunitcontinuouslyatfullloadwithinthefrequencyrangeof 4951Hzandatagridvoltagebetween90and105%ofnormalvoltage.Atafrequencyabove 50.3Hz,asmallpowerreductionisaccepted,ifstableoperationatfullpowercanbere establishedwhenthefrequencyagaindropsbelowthisvalue.Amaximumoperatingtimeof10 hours/yearandadurationof30minutesmaximumpercasecanbeassumedwithinthe frequencyrangeof50.351Hz.(SamerequirementsasinSection3.2.3(Frequencyrange49 Hzto51Hz).SeeFigure1. U[%]

110

105

100 f[Hz] 47,0 48,0 49,0 50,0 51,0 52,0 53,0 54,0 55,0

95

90

85

Figure 1 Performance requirements for power production in relation to frequency and voltage

15January2007 163 NORDIC GRID CODE (CONNECTION CODE)

GridVoltageRange85%to90%ofNormalVoltage Itshallbepossibletooperatetheunitfor1hourwithinthefrequencyrangeof49.750.3Hzat agridvoltagebetween85and90%ofthenormalvoltage,andanoutputpowerreductionofup to10%offulloutputmaythenbeacceptable. GridVoltageRange105%to110%ofNormalVoltage Itshallbepossibletooperatetheunitfor1houratafrequencywithintherangeof49.750.3 Hzandatagridvoltagebetween105and110%ofnormalvoltage.Asmalloutputpower reductionmaythenbeacceptable(approximately10%). ConsequencesofNearbyGridFaults a)AbilitytoWithstandMechanicalStressesDuetoLineSideFaults Thermalpowerunitsshallbedesignedsothattheturbinegeneratorsetcanwithstandthe mechanicalstressesassociatedwithanykindofsingle,twoandthreephaseearthorshort circuitfaultoccurringonthegridonthehighvoltagesideofthestepuptransformer.Thefault canbeassumedtobeclearedwithin0.25sec.Neitherdamagenorneedforimmediatestoppage forstudyofthepossibleconsequencesareallowed. b)LineSideFaultsofClearingTimeupto0.25Sec Theunitshallbedesignedsothatitremainsconnectedtothegridandcontinuesitsoperation afterisolationoflinesidefaultwithin0.25sec. Thermalpowerplants>100MWinDenmarkEast(synchronoustotheNordelgrid)shall fulfilltheabovedemands.Thermalpowerplants>100MWinDenmarkWest(synchronousto theUCTEgrid)shallfulfillUCTEdemands.(Clearingtime0.15Secandthedemandsareto thelinesideofthegeneratortransformer.)Forsmallerthermalpowerplantsandwindpower plantsthedemandsareweakerseedetailedspecifications.(Chapter6ofTF3.2.3willbe changedatnextrevision.) c)DeepVoltageTransient Theunitsshallbedesignedsothattheycanwithstandthefollowinglinesidevoltagevariation resultingfromfaultsinthegrid,withoutdisconnectionfromthegrid: stepreductionto0%ofthelinesidevoltagelastingfor0.25sec, followedbylinearincreasefrom25%to90%in0.5sec, followedbyconstantlinesidevoltage90%. Consequently,onlyasmallpowerreductioncanbeaccepted.

15January2007 164 NORDIC GRID CODE (CONNECTION CODE)

1,2

1,1

1,0

0,9

0,8

0,7

0,6 U U [%] 0,5

0,4

0,3

0,2

0,1

0,0 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 t [s] Figure 2 Deep voltage transient in line side voltage caused by a network fault Itshallbenotedthatthedesigncriteriaforthevoltageprotectionmaydeviate,astheunitmust manageseveralkindsofotherfaultsthatmayoccurinthegenerators/powergrid. LargeVoltageDisturbances Theunitmaybedisconnectedfromthepowersystem,iflargervoltagevariationsorlonger durationsthanthoseforwhichtheunithasbeendesignedoccur,andshall,ineachcase,be disconnectediftheunitfallsoutofstep. Theunitanditsauxiliarypowersystemshallbedesignedforsuchvoltagevariationsthatasafe changeovertohouseloadoperationcantakeplaceafterdisconnectionfromthenetwork. ReactivePowerOutputatLowVoltages Thermalpowerunitsshallbeequippedwithsuchexcitationsystemsandshallbedesignedfor suchapowerfactorthatthegeneratorwillbecapableofprovidingareactivepoweroutputof aboutthesamemagnitudeastheratedactivepoweroutputfor10sec,inconjunctionwith networkdisturbancesandatageneratorbusbarvoltageof70%oftheratedgeneratorvoltage. ReactivePowerCapability Thethermalpowerunitsshallbeabletogenerateandtoconsumereactivepowerinadequate amountswithintheircapabilitiesforthevoltagecontrolofthepowersystem.Atnormalgrid voltagethegeneratorsshallbedesignedtooperatewithinthelimitsofreactivepoweroutput andinputdefinedbythecapabilitydiagramsofthegeneratorsorbystablereactivedroop. Atgridvoltageshigherthanthenormalvoltagetheunderexcitedcapabilityofthegenerators shallbefullyavailableaccordingtothecapabilitydiagramorstaticstablereactivedroop, whicheverismorelimiting.

15January2007 165 NORDIC GRID CODE (CONNECTION CODE)

The countries’ MVAr requirements for the power plants MVArrequirementsfornewbuilding1) Operatingvoltage range Production Consumption Danishthermal tg ϕ=0.4at420kV tg ϕ=0.2at400kV 380420kV power Swedishthermal 1/3atU>90%Ugen3) 03) 395420kV power Finnishthermal cos ϕ=0.9at cos ϕ=0.95at 380420kV power 360…420kV2) 400…420kV2) Swedishhydro 1/3atU>90%Ugen3) 1/63) 395420kV power Finnishhydropower cos ϕ=0.9at cos ϕ=0.95at 380420kV 360…420kV2) 400…420kV2) Norwegianhydro cos ϕ=0.862) cos ϕ=0.952) 390420kV power Icelandichydro power 1) ThecountriescombinetheMVArrequirementsandassociatedvoltagesatthegenerator terminalsandbusbarindifferentways. 2) Powerfactor(cos ϕ)ismeasuredatthegeneratorterminals. 3) MVArmeasuredatthebusbarandUgenasnominalgeneratorvoltagetransformedto busbarsideoftransformer. TheinformationaboveillustrateshowtheMVArrequirementsaffectthemostcostly component(thegenerator).AnysupplementaryrequirementsthattheMVArrequirements shouldbemetatsetvoltagesforthebusbaraffectthesystemspropertiesofthepowerplants andthedesignoftheplant,buthaveonlyamarginaleffectonthepriceoftheplant,provided thatthisisspecifiedduringtheprojectphase.Thismay,forinstance,applytotheratioofthe machinetransformerandthewindingconnectionsfortheinternalconsumptiontransformer. Theactualoperatingpointisdetermineddependingontheactualoperatingsituationinthe transmissionnetwork.

3.2.5 Generator and voltage regulator characteristics Generators Thegeneratorreactanceshallbeaslowastechnicallyandeconomicallypossibleinorderto supportthestabledroopandreactivepowercontrol. Eachgeneratorshallbecapableofoperatingontheratedactivepowercontinuouslyatpower factordowntoatleast0.95underexcited,and0.9overexcited.Thisshallbepossiblein connectionwithvoltageandfrequencyconditionsasdescribedinTolerancetovoltage variations(90105%ofnormalvoltage).Atunderexcitedconditionsnormalgridvoltageis appliedinsteadof90%voltage. VoltageControl Thepreferreddynamiccharacteristicsforsteadystatearedefinedinameasurablewayas follows:

15January2007 166 NORDIC GRID CODE (CONNECTION CODE)

The10%stepresponseofgeneratorvoltageisrecordedinnoloadconditions,disconnected fromthegrid.Thesetvalueofthevoltageischangedbyplusandminusstepwisechanges causingchangeofgeneratorterminalvoltagefrom95to105%,andfrom105to95%.Inboth casesthestepresponseofthegeneratorterminalvoltageshallbeasfollows: responseisnonoscillating, risetimefrom0to90%ofthechangeis0.20.3sincaseofstaticexciter,orincaseof brushlessexciter:0.20.5satastepupwards,0.20.8satastepdownwards, overshootislessthan15%ofthechange. PSS,PowerSystemStabiliser PSSshallbeincludedineachgenerator.ThePSSshallbetunedtoimprovethedampingofthe oscillationsofgeneratorandpowersystem,especiallythedampingoflowfrequency(0.21.0 Hz)interareaoscillations. AdditionalVoltageControlEquipment Currentlimiters(forgeneratorrotorandstator)shallhaveinverttimecharacteristicstoutilise thegeneratorovercurrentcapabilitytoagoodextentforvariousnetworkconditions. VoltageControlPriority Thenormalwayofoperationisautomaticcontrolofgeneratorvoltagewiththeeffectsof reactivecurrentdroop.Incaseofneedsfordifferenttypecontrol,likecontrolaccordingto powerfactororreactiveoutput,theseadditionalcontrolsshallaffectatlowerprioritythanthe regulationofvoltage. IslandOperation Incaseofveryserious(andexceptional)disturbances,wherethepowersystemisseparated intosmallergrids,theunitsshallalsoinitiallybecapableofperformingtheabovementioned powerchanges(upwardsordownwards),andthenachievingstableoperationandnormal powercontrolcapabilityaccordingtoSection3.3.3.

3.2.6 Verification Tothelargestpossibleextentthespecificationsshouldbeverifiedbyfullscaletest.Thistest shouldbemadebytheowneratcommissioninganduponrequestfromtheTSO.Recordingsof datafromactualoperationshouldbereviewedregularlyinordertoprovecompliancewiththe specification. VerificationduringCommissioning Thisverificationshallinclude: Fulloutputpower Minimumload Overloadcapacity Startingtime Loadfollowing Powerresponserateincludingrange Powerstepchange Deepvoltagetransientsbyshortcircuit(ifpossible) Changeovertohouseloadoperation Houseloadoperationfor1h Stepresponseofgeneratorvoltage PSStest

15January2007 167 NORDIC GRID CODE (CONNECTION CODE)

3.3 Operational performance specifications for thermal power units > 100 MW

3.3.1 Operational characteristics MinimumOutput Theminimumoutputpowershallbeaslowaspossible.Asapracticalguideline,theminimum outputpowershouldbe40%offulloutputpowerinfiredunits,20%offulloutputpower inoilfiredunits,and20%offulloutputpowerinnuclearunits. OverloadCapacity Fossilfiredunitsshouldbepreparedforoverloadcapacitiesonlytotheextentthatitis intrinsicallyavailable.Forasteamturbineunitthiscouldbethebypassingofhighpressure preheaters. Theoverloadcapacitiesshouldonlybeutilisedtoacertainlimitonly,becauseofreductionsin theefficiencyand/orthelifetimeoftheunit. Theunitincludingauxiliaryequipmentshouldbedesignedtoutilisetheseoverloadcapacities upto2h/dayandupto500h/year.Nooverloadcapacityisspecifiedfornuclearpowerunits. StartingTime Foralltypesofthermalpowerunits,thestartingtimeshallbedefinedaccordingtoplanned utilisation.Inaddition,thefollowingguidelinesshallapplytogasturbinesforemergencyand peakloadgeneration,fromrollinguptofulloutputpower: gasturbinesofjetenginetype3to3.5minutes industrialgasturbines10to15minutes. HouseLoadOperation Houseloadoperationistheunitoperatingwithitsownauxiliarysupplyastheonlyload.

3.3.2 Power control equipment characteristics OperationalModes Thechangeofoutputpowerofathermalpowerunitattheratesandwithintheranges specified,duringnormalcontrolandduringdisturbancescontrol,isnormallyactivatedas follows: Bymanualoperation Bytheunitcontroller Theunitcontrollershallhaveanadjustablefrequencysetpointintherangefrom49.9Hzto 50.1Hz.Thesetpointresolutionshallbe50mHzorbetter. Thedroopsetpointshallbeadjustableintherangefrom2%to8%.Thenormaloperationis generallywithsettingintherangefrom4%to6%. Anadjustablefrequencydeadbandoftheunitcontrollerwithinthesettingrangeof 050mHzisacceptable.Itshallbepossibletodisengagethisdeadband.

15January2007 168 NORDIC GRID CODE (CONNECTION CODE)

PowerStepChangeLimiter Theunitsshallbeequippedwithadjustabledevicesforlimitingthemagnitudeandrateofthe powerchange,sothatitwillbepossibletosetthesesetpointsatanyvaluesfromzerouptothe maximumspecified,bothfornormalconditionsandfordisturbanceconditions. PowerControlNormalOperationandDisturbances Therequiredpoweroutputduringnormaloperationisthemanuallypresetpoweroutput, modifiedbyafrequencysensingunitcontroller(orturbinegovernor)andthispoweroutput shallmeetthespecificationsinSection3.3.3(Powerresponsecapabilityduringnormal operationofthepowersystem). Theneedfordisturbancecontrolshallbegovernedbyfrequencysensingequipment(e.g. consistingofafrequencyrelaysetatacertainvaluebelownormalfrequency).Thepower outputshallmeetthespecificationin3.3.4(Powerresponsecapabilityduringpowersystem disturbances)whentheunitisoperatedundertheseconditions.

3.3.3 Power response capability during normal operation of the power system LoadFollowing Allcondensingunitsshallbedesignedsothattheycanbeusedfordailyandweeklyload followingduringcertainperiodsoftheyear,usingtheratesofloadchangespecifiedinthe following. Theunitsshallalsobedesignedsothat,ifnecessary,theycanparticipateinfollowingthe occasionallyvaryingloadsthatcausefrequencyvariationsontheinterconnectedpowersystem. Thisimpliesthattheunitsshallbecapableofaccommodatingpowerchangeswithoutintervals byplusorminus2%offulloutputwithinperiodsof30sec.Theunitsshallbecapableof performingthesechangeswithintherangesspecified.Powerchangesfornuclearunitsmaybe agreedwiththegridoperatortobelessthanplusorminus2%. PowerResponseRateandRangeOilandGas Oilfiredandgasfiredunitsshallbedesignedforapowerresponserateofatleast8%offull powerperminute.Theabovepowerresponserateofchangeshallbeapplicabletoanyrangeof 30%between40%and100%offullpoweraccordingtotheloadschedule.Thepower responseratemaybelimitedtothemaximumpowerresponseratepermissiblefortheturbines orthesteamboilersintherangebelow40%andabove90%. PowerResponseRateandRangeCoal Coalfiredunitsshallbedesignedforapowerresponserateofatleastplusorminus4%offull powerperminute.Theabovepowerresponserateofchangeshallbeapplicabletoanyrangeof 30%between40%and100%offullpoweraccordingtotheloadschedule.Thisrangemay berestrictedto20%incertaincases.Thepowerresponseratemaybelimitedtothemaximum powerresponseratepermissiblefortheturbinesorthesteamboilersintherangebelow60% andabove90%. PowerResponseRateandRangePWRNuclear PWRnuclearpowerunitsshallbedesignedforapowerresponserateofatleastplusorminus 5%offullpowerperminutewithintheoutputrangeof60%to100%offullpower.At outputsbelow60%,thepowerresponseratemaybelimitedtothemaximumpowerresponse ratepermissiblefortheturbines.

15January2007 169 NORDIC GRID CODE (CONNECTION CODE)

PowerResponseRateandRangeBWRNuclear BWRnuclearpowerunitsshallbedesignedforapowerresponserateperminuteofatleast plusorminus10%oftheinitialoutputvalue.Thisshallbemaintainedthroughoutallthe outputrangewithinwhichthepowercanbecontrolledbythespeedofthemaincirculation pumps.Thisoutputrangeshallbeatleast30%oftheinitialoutputpower.Intheremainderof thepowerrangebetweenminimumloadandfullload,thepowerresponserateshallbeatleast 1%offullpowerperminute. Commentonrequirementsfornuclearpowerunits:Thepowerresponseratesoftheunits equippedwithstandardversionsoflightwaterreactorsareusuallysufficient.However,it shouldbenotedthatthepowerresponserateissubjecttosomerestrictionsatthepresenttime, duetothecurrentdesignoffuelelements.Itisexpectedthattheseproblemswillbesolved,and theunitsshouldthereforebedesignedtoconformtotherecommendedpowerresponserates. However,inordertolimitthestressesimposed,thepowerchangesduringnormaldailyand weeklyloadfollowingshouldbecarriedoutgraduallyoveraperiodofabouttwohours.

3.3.4 Power response capability during power system disturbances InstantaneousPowerResponse Thedemandfromthepowersystemisthattheinstantaneouspowerresponseshallbeavailable within30secafterasuddenfrequencydropto49.5Hz.Halfofthatpowerresponseshallbe availablewithin5secafterthefrequencydrop. PowerStepChangeFossilFuel Fossilfiledthermalunitsshallbedesignedwithanoperatingmodeallowinganinstantaneous stepchangeinoutputpowerofatleast5%offulloutputwithintherangeof5090%when requested.Halfofthatpowershallbeavailablewithin5secafterthefrequencydrop.Units withoutorwithonlyonereheatershallbedesignedinsuchamannerthatthispowerstepwill beaccommodatedwithin30sec.Ifaunitincludesmorethanonereheater,afurtherdelay correspondingtothetimeconstantsofsuchadditionalreheatersisacceptable. PowerStepChangeNuclear PWRnuclearpowerunitstowhichthepowerchangesignalisapplieddirectlytoadjustthe turbinecontrolvalveshallbedesignedsothatapowerstepof10%offullpowercanbe accommodatedwithin30%ofthepowerrange.BWRnuclearpowerunitsoperatingon pressurecontrolshallbedesignedsothat,withintherangeofpumpcontrol,theywillbe capableofaccommodatingapowerchangeof10%oftheinitialvaluewithin30sec. SubsequentPowerResponseRate Afterthepowerstepchangesspecifiedabove,thermalpowerunitsshallalsobecapableof accommodatingaloadchangeattheratesspecifiedin3.3.3(Powerresponsecapabilityduring normaloperationofthepowersystem).However,thetotalchangeinloadmaythenbelimited tothevaluesalsospecifiedin3.3.3. SpinningDisturbanceReserve Allunitsofthecondensingtypeshallbemadesothattheyattimescanbeusedasspinning disturbancereservesandthenperformtheabovementionedpowervariations,ifserious disturbancesoccuronthegrid.

15January2007 170 NORDIC GRID CODE (CONNECTION CODE)

3.3.5 House load operation DesignCharacteristics Allpowerunitsshallbedesignedtochangeoversafelytohouseloadoperationfrom conditionsasspecifiedin3.2.3(Frequencyrange51Hzto53HzandFrequencybelow47.5 Hz),andin3.2.4(Largevoltagedisturbances). OperatingTime Thermalpowerunitsshallbedesignedsothattheycanoperateinhouseloadoperationforat least1h.Nuclearpowerunitsshallbecapableofoperatinginhouseloadoperationfora durationdeterminedbythenuclearsafetyconditions.

3.4 Specifications for thermal power units < 100 MW Below100MWandabove25MW Minimum output: Allthesmallpowerstationsshallfulfiltheregulationgivenin3.3.1 irrespectiveofthetypeofprimaryfuel. Overload capacity :Effortsshouldbemadetoobservethisregulation,butobservanceisnot demanded. Starting time :Regulationgivenin3.3.1shallbefulfilled. Operational modes and Power step change limiter :Regulationgivenin3.3.2shallbefulfilled. Power control - normal operation and disturbances: Isnotrequiredtoobserveaccordingtothe abovementionedconsiderations. Load following and Power response rate and range: Regulationgivenin3.3.3shallbe fulfilled. Instantaneous power response and Power step change for fossil fuel :Regulationgivenin3.3.4 shallbefulfilled. Power step change for nuclear, subsequent power response rate, Spinning disturbance reserve and Island operation: Arenotrelevanttosmallpowerstations. Tolerance to frequency variations: AvoltageprofileasshowninFigure2,inthetransmission networkorintheregionaldistributionnetworkshouldnotcausetrippingofpower stations. DeviationsoffrequencyandvoltagewithinthehatchedareaonFigure1shouldnot causetrippingofpowerstations.Areductionoftheactiveproductionbyupto20%is acceptable.Thepowerstationsshouldbeabletotoleratefrequenciesupto53Hz. Tolerance to voltage variations: Isnotrequiredtoobserveaccordingtotheabovementioned considerations.Aquickstartupaftertrippingisdesirablebutisnotdemanded generally.Regardingthestartingtimesthefollowingdirectionscanbegiven: Afterrelease 30min Afteranoutagetimeof10h 90min Afteranoutagetimeof30to50h 120min Asforunmannedplantsanother120minutesmaypassbeforethepersonnelcanarrive atthepowerstation.Itshouldbepossibletostartupandfullyloadgasturbineplants within30minutesevenafteralongoutagetime.Itshouldbementionedthatthepower thatisatdisposalafter15minutesinthenationalsystemscanbecalculatedaspartof thefastreserve. Generator and voltage regulator characteristics, House load operation and Verification :Are notrequired

15January2007 171 NORDIC GRID CODE (CONNECTION CODE)

Below25MW Totheseplantsitappliesthattherequirementsthatitisreasonabletodemandcompliedwith dependonthemodeofoperation,manningandtypeoffuel. Plantsintherange1MW25MW Minimum output: Allthepowerstationsshallfufilltheregulationgivenin3.3.1irrespectiveof thetypeoffuel. Overload capacity: Effortsshouldbemadetoobservethisregulation,butobservanceisnot demanded. Starting time: Regulationgivenin3.3.1shallbefulfilled.. Operational modes and Power step change limiter: Regulationgivenin3.3.2shallbefulfilled. forpowerplantsintherange1025MW(Incaseofsolidfuelfiredplantsobservance maybedifficult.Nodemandsonplantsintherange110MW.) Power control - normal operation and disturbances: Isnotrequiredobserved. Load following and Power response rate and range: Regulationgivenin3.3.3shallbe fulfilled.forpowerplantsintherange1025MW.(Nodemandsonplantsintherange 110MW) Instantaneous power response and Power step change for fossil fuel: Regulationgivenin3.3.4 shallbefulfilled. Power step change for nuclear, subsequent power response rate, Spinning disturbance reserve and Island operation: Arenotrelevanttosmallpowerstations. Tolerance to frequency variations: AvoltageprofileasshowninFigure2,inthetransmission networkorintheregionaldistributionnetworkshouldnotbeallowedtocausetripping ofpowerstations. DeviationsoffrequencyandvoltagewithinthehatchedareaonFigure1shouldnotbeallowed tocausetrippingofpowerstations.Areductionoftheactiveproductionbyupto20% isacceptable.Forsolidfuelfiredplantsofthe2ndcategoryitmaybedifficultto complywiththerequirementintherangefrom47.549Hz.Thepowerstationsshould beabletotoleratefrequenciesupto53Hz. Tolerance to voltage variations: Isnotrequiredobserved.Butaquickstartupaftertrippingis desirable.Gasturbineplantsshouldbeabletostartautomaticallywiththealternativeof remoteoperationwhenthevoltageisstableafteranetworkfaultcausingtrippingofthe plant.Forsolidfuelfiredplantsofthe2ndcategorynorequirementsaremade. Generator and voltage regulator characteristics, House load operation and Verification: Are notrequired. Plants<1MW Localconditionedrequirementsareusuallymade.However,thepowerstationsshouldbe capableforshortperiodsoftimeoftoleratingfrequenciesintherangefrom47.5Hzto53Hz.

3.5 Special requirements for hydropower NationalrulesapplytohydropowerplantsthatarenotcoveredbytheConnectionCode.In Norwaytherearenationalrequirementsforhydropowerplants.InFinlandGeneral requirementstobemetbythermalpowerandhydropowerareused.

15January2007 172 NORDIC GRID CODE (CONNECTION CODE)

NORDEL CONNECTION CODE WIND TURBINES

1 Introduction TheNordicConnectionCodeforwindturbinesisapartoftheNordicGridCode.TheNordic GridCodeshallprovidethecommonframeworkfortheTSO’s(TransmissionSystem Operator)andtheactors,whoareoperatingfacilitiesconnectedtotheNordicelectricity system. TheNordicConnectionCodeoutlinestheminimumtechnicalrequirementsthatnewwind turbinestogetherwiththeirsupplementalinstallationshavetofulfilattheconnectionpointto thetransmissionnetworkinordertoprovideforadequatesafeoperationandreliabilityofthe interconnectedNordicPowerSystem.TheNordicTSO’smaypublishconnectioncodesforthe electricitysystemwithintheirresponsibilityhavingadditionalrequirements. Itmustalsobeemphasized,thatallcapabilitieswillnotbeexploitedinallwindturbinesatall times.Connectioncodesshallprovidethecapabilitiesandcharacteristicsofsystem componentsareavailablewheneverneededforsafeandreliablesystemoperation.The exploitationofthedifferentsystemcomponentsandtheircapabilitiesisregulatedbysystem operationcodes.

2 Definitions Connection point :Pointinthetransmissionnetwork,towhichthe wind turbine or wind plant istobeconnected.ThispointisdefinedbytheTSO. Wind turbine :Completesystemtotransformwindenergyintoelectricityandtotransmitthe electricitytothe connection point . Wind plant 1:Morethanone wind turbine connectedtothesame connection point ,possible sharingconnectioncable/lineandotherequipment. AllotherdefinitionsareaccordingtoIECstandard.

3 Scope of the connection code Therequirementsmustbemetbyall wind plants connectedtotheNordicPowersystem 2. Allrequirementsaretobemetatthe connection point .

4 Active power control Itmustbepossibletocontroltheactivepowerproductionfromthe wind plant .Thefollowing controlfunctionsmustbeavailable

1WindPlantisasynonymtothecommonlyusedWindFarm.

2TheTSOdecidesineachcasewhetherwindplantssmallerthan100MWhastofulfilallrequirementsorthey maybereleasedtosomeextentaccordingtotherelatedimpacttotheinterconnectedNordicsystemoperation andsecurity.

15January2007 173 NORDIC GRID CODE (CONNECTION CODE)

• Anadjustableupperlimittotheactivepowerproductionfromthewindplantshallbe availablewheneverthewindplantisinoperation.Theupperlimitshallcontrolthatthe activepowerproduction,measuredasa10minuteaveragevalue,doesnotexceeda specifiedlevelandthelimitshallbeadjustablebyremotesignals.Itmustbepossibletoset thelimittoanyvaluewithanaccuracyof±5%,intherangefrom20%to100%ofthewind plantratedpower. • Rampingcontrolofactivepowerproductionmustbepossible.Itmustbepossibletolimit therampingspeedofactivepowerproductionfromthe wind turbine inupwardsdirection (increasedproductionduetoincreasedwindspeedorduetochangedmaximumpower outputlimit)to10%ofratedpowerperminute.Thereisnorequirementtodownramping duetofastwindspeeddecays,butitmustbepossibletolimitthedownrampingspeedto 10%ofratedpowerperminute,whenthemaximumpoweroutputlimitisreducedbya controlaction. • Fastdownregulation.Itmustbepossibletoregulatetheactivepowerfromthe wind turbine downfrom100%to20%ofratedpowerinlessthan5seconds.Thisfunctionality isrequiredforsystemprotectionschemes.Somesystemprotectionschemesimplemented forstabilitypurposesrequiretheactivepowertoberestoredwithinshorttimeafterdown regulation.Forthatreasondisconnectionofanumberofwindturbineswithinawindplant cannotbeusedtofulfilthisrequirement 3. • Frequencycontrol.Automaticcontrolofthe wind turbine activeproductionasafunction ofthesystemfrequencymustbepossible.Thecontrolfunctionmustbeproportionalto frequencydeviationsandmustbeprovidedwithadeadband.Thedetailedsettingswillbe providedbytheTSO.

5 Reactive power capacity The wind plant musthaveadequatereactivecapacity 4tobeabletobeoperatedwithzero reactiveexchangewiththenetworkmeasuredattheconnectionpoint,whenthevoltageandthe frequencyarewithinnormaloperationlimits.SeeareaAinfigure1,chapter7.

6 Reactive power control Thereactiveoutputofthe wind plant mustbecontrollableinoneofthetwofollowingcontrol modesaccordingtoTSOspecifications: 1. The wind plant shallbeabletocontrolthereactiveexchangewiththesystem.Thecontrol shalloperateautomaticallyandonacontinuousbasis.Thewindplantshallbeableto maintainacceptablesmall 5exchangeofreactivepoweratallactivepowerproduction levels.

3Inasystemhavingalimitednumberofwindturbinesthisisnotavitalproblem.Butwindturbinesaredesigned tostayinoperationfor20yearsormore,andtheinternationaltrendis,thatwindturbinesinsomeperiodswill produceanincreasingpartofthetotalpowerproduction.Itwilleventualbeaproblemifnotaddressedin propertime.

4Thereactivecapabilityneednottobeinstalledinsideeachwindturbine,butmaybeinstalledinoneormore separatedevicesconnectedtothesystematthesameconnectionpointasthewindturbines.

5TheTSOdefinestheacceptablelimitaccordingtolocalsystemconditions

15January2007 174 NORDIC GRID CODE (CONNECTION CODE)

2. The wind plant mustbeabletoautomaticallycontrolitsreactivepoweroutputasa functionofthevoltageintheconnectionpointwiththepurposeofcontrollingthevoltage. Thedetailedsettingsofthereactivepowercontrolsystemwillbeprovidedbytheresponsible TSO

7 Dimensioning voltage and frequency Thesystemoperatingconditionsthatthe wind plant mustbeabletomeetareoutlinedinthe followingfigure: Grid Frequency [Hz]

53,0 F

51,0 E 50,3 D A C 49,7

49,0 B

47,5 Grid Voltage [p.u.]

0,85 0,90 0,95 1,05 1,10 Figure 1. Performance requirements in relation to voltage and frequency. The reference for p.u.value shall be defined by TSO . Whenthevoltagesandfrequenciesarewithintherectangularareasshowninthefigure,the followingrequirementsapplies: A:Normalcontinuouslyoperation.Noreductioninactiveorreactivecapabilityisalloweddue tosystemvoltageandfrequency. B:Uninterruptedoperationinminimum30minutesshallbepossible.Theactiveoutputis alloweddecreasedasalinearfunctionofthefrequencyfromzeroreductionat49.0Hzto15% reductionat47.5Hz. C:Uninterruptedoperationinminimum60minutesshallbepossible.Theactiveoutputmaybe reduced10%. D:Uninterruptedoperationinminimum60minutesshallbepossible.Theactiveoutputmaybe reduced10%.

15January2007 175 NORDIC GRID CODE (CONNECTION CODE)

E:Uninterruptedoperationinminimum30minutesshallbepossible.Thepossibleactive outputisallowedtobeslightlyreduced.(Thetotaldurationoftheseoperatingconditionsis normallynotmorethan10hoursperyear). F:Uninterruptedoperationinminimum3minutesshallbepossible.Theactiveoutputmaybe reducedtoanylevel,buttheturbinesmuststayconnectedtothesystem.

8 Operational characteristics during grid disturbances The wind plant mustbeabletocontinueoperationduringandafterdisturbancesinthe transmissionnetwork.Thisrequirementappliesunderthefollowingconditions: • The wind plant andthe wind turbines inthe wind plant mustbeabletostayconnectedto thesystemandtomaintainoperationduringandafterdimensioningfaultsinthecommon Nordictransmissionsystem.Ineacharea,theTSOdefineswhichpartsofhissystemare includedintheNordictransmissionsystem.(Itisnormallydefinedbyvoltageleveland dependsonparalleloperationwiththehighestvoltagelevels.Itisalwaysabove100kV) • The wind plant maydisconnectfromthesystem,ifthevoltageintheconnectionpoint duringorafterasystemdisturbancedofallbelowthelevelsshowninthefollowingfigure 26. Thefaultduration,wherethevoltageintheconnectionpointmaybezero,is250milliseconds. Thevoltageatthewindturbinegeneratorterminalswillbehigherduetotransformerand networkimpedance. Grid voltage [p.u.]

1,1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,25 0,2 0,1 Time [sec.] 0,0 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 Figure 2. Voltage dip profile due to fault in the high voltage connection point which the wind plant must tolerate without disconnecting from the grid. The 1 p.u. value is the voltage before the disturbance.

6Therisetimeofthevoltageishighlydependentonthelocalsystemcharacteristics,i.e.shortcircuitcapacity. TheTSOmaydecidetouseadifferentcurveinhisownareatoensureadequatesystemsecurity.

15January2007 176 NORDIC GRID CODE (CONNECTION CODE)

9 Start and stop Itisrecommended,thatthe wind plant isdesignedsothatthe wind turbines withinthe wind plant doesnotstopsimultaneouslyduetohighwindspeeds.

10 Remote control and measurements Wind plants mustbecontrollablefromremotelocationsbytelecommunication.Control functionsandoperationalmeasurementsmustbemadeavailabletotheTSOonrequest. TheTSOineachareaspecifiestherequiredmeasurementsandothernecessaryinformationto betransmittedfromthewindplant.

11 Test requirements Priortotheinstallationofa wind turbine ora wind plant ,aspecifictestprogrammemustbe agreedwiththeTSOinthearea.Thetestprogrammeshallbethedocumentationofthe capabilityofthe wind turbine or wind plant tomeettherequirementsinthisconnectioncode. Asapartofthetestprogramme,asimulationmodelofthe wind turbine or wind plant must beprovidedtotheTSO.ThemodelshallbeprovidedinaformatgivenbytheTSO,andthe modelshallshowthecharacteristicsofthe wind turbine orwind plant inbothstatic simulations(loadflow)anddynamicsimulations(timesimulations).Themodelshallbeused infeasibilitystudiespriortotheinstallationofthe wind turbine or wind plant andthe commissioningtestsforthe wind turbine orthe wind plant shallincludeaverificationofthe model.

15January2007 177 NORDIC GRID CODE (DATA EXCHANGE CODE)

The following documents have been included in this chapter: Document Status Data exchange agreement between the Nordic Binding agreement transmission system operators (TSOs) 2006 The following national documents deal with the Data Code: Document Status

______ TheTSOsintheNordiccountrieshaveenteredintoadataexchangeagreement,Dataexchange agreementbetweentheNordicTSOs.Thedataexchangeagreementcontainsabasisanddata foragridmodelandjointoperationmodel,whichwasdrawnupjointlybytheTSOs.The agreementisreproducedinthissection.

15January2007 178 NORDIC GRID CODE (DATA EXCHANGE CODE)

DATA EXCHANGE AGREEMENT BETWEEN THE NORDIC TRANSMISSION SYSTEM OPERATORS (TSOS)...... 180

1 INTRODUCTION ...... 180 2 PARTIES ...... 180 3 SCOPE ...... 180 4 RULESOFCONFIDENTIALITY ...... 181 5 INTERNALUSEANDUSEWITHIN NORDEL ...... 181 6 USEOFCONSULTANTS ...... 181 7 EQUIVALENTS ...... 182 8 ANONYMISEDCOMPLETEMODEL ...... 182 9 TRANSFERANDRENEGOTIATIONOFAGREEMENT ...... 182 10 THEAGREEMENTISACCESSIBLETOMARKETACTORS ...... 182 11 BREACH ...... 182 12 VALIDITYPERIODANDNOTICEOFTERMINATIONOFTHEAGREEMENT ...... 183 13 FILINGOFTHEAGREEMENT ...... 183 SCOPE OF DATA FOR THE COMPLETE NORDIC GRID MODEL ...... 184

SCOPE OF DATA FOR THE MULTI AREA POWER MARKET SIMULATOR...... 185

DRAFT AGREEMENT – POWER SYSTEM DATA – USE OF CONSULTANT ASSISTANCE...... 187

PROCEDURE FOR THE MAINTENANCE AND USE OF THE NORDEL DATA SET ...... 188

15January2007 179 NORDIC GRID CODE (DATA EXCHANGE CODE)

DATA EXCHANGE AGREEMENT BETWEEN THE NORDIC TRANSMISSION SYSTEM OPERATORS (TSOS)

Framework for the exchange, use and distribution of power system data

1 Introduction TheliberalisationoftheenergysectorinEuropehasmadeitnecessarytoreevaluateanumber ofoldcooperativerelationships.However,operationalreliabilityforanindividualcountryis stilldependentonthereliabilityofthecompositesystem. TheprimarypurposeofformalisedNordiccooperationinthefieldofpowersystemdataisto createthebestpossiblebasisforsystemanalysesoftheinterconnectedNordicpowersystem fordealingwithbalanceandcapacityproblemsandforsecureexploitationoftheadvantagesof interconnectedsystems,aswellastoachieve savingsintermsoftimeandresources. Afurtherimportantaimistocontrolthedistributionofthemodelsthatareusedtoanalysethe Nordicpowersystem,i.e.thecompleteNordicgridmodelandthemultiareapowermarket simulator. Certaindataaresubjecttopreparednessrelatedrestrictionsintheindividualcountriesorareof commercialinterest.Dataconcerningproductionplantsshouldbeconsideredcommercial,and mustthereforebetreatedasconfidential;forfurtherinformationsee§4. Thisdocumentsetsouttheframeworkthatshallcontrolfutureactivity,primarilytheexchange, useanddistributionofpowersystemdataforandintheformofthegridmodelandthemulti areapowermarketsimulator,aswellasaccesstoanalysisresults.

2 Parties ThepartiestotheagreementaretheNordicTSOs,Energinet.dk(cvrno28980671,Denmark)., FingridOyj(BusinessID10728943,Finland),StatnettSF(NO962986633MVA,Norway), Affärsverketsvenskakraftnät(Org.no.:2021004284,Sweden)andLandsnet(Registrationno. 5808042410,Iceland). Itisapreconditionthatthepartiestakepartinthecooperationbyvirtueoftheirfunctionas TSOs.ThePlanningCommitteeofNordeladministerstheagreements.

3 Scope Thedataexchangeagreementappliestothebasisofanddataforthegridmodelandmultiarea powermarketsimulatorestablishedjointlybetweentheTSOsinNordel. Grid model Theterm grid model referstothepowersystemdatathatareneededinordertocarryoutload flowanddynamicstudiesonallorpartsoftheNordicpowersystemincludingthenon synchronisedpowersystemonJutland.Iftheneedarises,dataforanequivalentofthe completeNordicgridmodelandfaultcurrentstudiescanbeincludedintheworkofthe workinggroup.

15January2007 180 NORDIC GRID CODE (DATA EXCHANGE CODE)

Thescopeoftheterm“completeNordicgridmodel”isspecifiedinAppendix1. Multi area power market simulator Theterm multi area power market simulator referstothepowersystemdataneededtocalculatethe powerandenergybalancesoftheentireNordicpowersystem,includingassessmentoftheplants’ expectedoperationinthemarket. Thescopeoftheterm“completeNordicmultiareapowermarketsimulator”isspecifiedinAppendix2. Procedure TheprocedurefortheuseandmaintenanceoftheNordeldatasetisdescribedinAppendix4. TheprocedurecanbealteredbyunanimousdecisionofthePlanningCommittee.

4 Rules of confidentiality Ifthedatathatthepartiesexchangewitheachotherhasnotbeenpublishedinthecountryto whichitrefers,thepartiesareobligedtotreatthedataconfidentiallyasfaraspossiblein accordancewiththelegislationinforceintherespectivecountry.

5 Internal use and use within Nordel Thegridmodelandthemultiareapowermarketsimulatormaybefreelyusedforstudiesby thepartiestotheagreementsorforstudiesthatexclusivelyinvolvethepartiestothe agreements,eitherbilaterallyorwithseveralpartiesinvolved. Allresultsfrominternaluseofthemodelsareregardedasthepropertyoftheparties participatinginthestudy.Inthecaseofanalyseswhoseresultsareofsignificanceforanother partytotheagreement,thatpartywillbekeptregularlyinformed. ThegridmodelandthemultiareapowermarketsimulatormaybefreelyusedinNordel’s studies.

6 Use of consultants Incaseswhereoneofthepartiestothisagreementusesaconsultantforadviceonastudyorto carryitout,andtheconsultantrepresentsapartytothisagreementinhisname,thegridmodel orthemultiareapowermarketsimulatorortheanonymisedmodelmaybepassedtothe consultantsubjecttohissignaturetotheagreementthatgovernstherelationship,confirming thattheconsultantwilltreattheinformationinstrictconfidence,andwillobeythesamerules ofconfidentialityasapplytotherelationshipbetweenthepartiesfortheparticulardatainthe countrywherethisdatawasproduced;seeAppendix3. Theconsultancyagreementisenteredintosolelybythepartiesofthatassignment.Resultsand backgroundmaterialarethepropertyoftheclient(theparty/ies).Theotherpartiesofthisdata exchangeagreementaretobeinformedofsuchconsultantagreements.Theinformationis governedbytheprocedureinAppendix4. Agreementsforconsultantassistancemayonlybeenteredintowithconsultantswhoare acceptedbythepartiestothisagreement.Theconsultant’snameandapresentationofthe consultantmustbesenttotheotherpartiesforapprovalwithintwoweeks.Accepted consultantscanonlyusethemodelsforstudiescarriedoutforoneormoreofthepartiesofthis dataexchangeagreement.

15January2007 181 NORDIC GRID CODE (DATA EXCHANGE CODE)

Agreementswithconsultantsmuststatethattheydonotobtainrightsofuseorownershipof resultsproducedwiththeaidofdatainaccordancewiththisagreement;seeAppendix3.

7 Equivalents EquivalentsoftheNordicpowersystemcanbesuppliedtoandusedbythirdpartiesfortheir studies.Insuchcases,studiesmaybedonebyathirdparty.Thecompletegridmodelorthe completemultiareapowermarketsimulatormaybeusedbythepartiestotheagreementto createsuchequivalents. AnequivalentisasimplifiedversionofthecompleteNordicmodels(seeAppendix1and Appendix2).Theaimisthatthecharacteristicsoftheequivalentattheconnectionpoints shouldbethesameasthoseofthecompletemodel(intermsofloaddistribution,impedances anddynamicresponse,forexample).Itmustnotbepossibletoidentifyintheequivalentthe internalrelationshipsinthemodel.

8 Anonymised complete model AnanonymisedcompletemodeloftheNordicpowersystemcanbesuppliedtoandusedby thirdpartiesfortheirstudies.Insuchcases,studiesmaybedonebyathirdparty.An anonymisedcompletemodelisaspecialcaseofanequivalent.Ananonymisedcompletemodel mayonlybesuppliedafterspecificprocessingandconsensusinthePlanningCommittee(see Appendix3). Resultsofstudies(seedefinitioninAppendix3)aretobegiventoallpartiesinaccordance withprocedure.

9 Transfer and renegotiation of agreement Ifrestructuringtakesplaceinoneofthecountriesinvolvedinthecollaboration,agreements andinformationconcerningthismattermaybetransferredtotheorganisationthatisgiven responsibilityforthesysteminthecountryinquestion. Ifoneoftheabovementionedpartieswishestorenegotiatetheagreement,thisprocessmust startnotlaterthansixmonthsfromtherequesttodoso.Onceenteredinto,anagreement remainsvaliduntilanewagreementcomesintoforce.

10 The agreement is accessible to market actors TocreateconfidencethattheTSOsarefulfillingtheirobligations,thisagreementwillbemade accessibletothemarketactors,whoarerequiredtosupplydata.Thiscanbedone,forexample, byplacingtheagreementsonNordel’swebsite,andbythepartiestotheagreementplacing linkstoNordel’swebsiteontheirownwebsites.

11 Breach Insofarasapartyisinbreachoftheprovisionsoftheagreement,thatpartyisobliged,within onemonthofbeingrequiredtodosoinwritingbytheotherpartiestotheagreement,tocease usingdata,andtheagreementisthereafterterminatedasregardsthepartyinbreach.During thatmonth,nodatamaybecopiedordistributed.

15January2007 182 NORDIC GRID CODE (DATA EXCHANGE CODE)

12 Validity period and notice of termination of the agreement Bysigningofthisagreementthepreviousdataexchangeagreementof27.June2002will expire. Theagreementisvaliduntilfurthernoticeandceasesafterunanimousagreementbetweenthe parties.Threemonths’noticeofterminationoftheagreementmaybegiveninwritingbyone ofthepartiestotheagreement,withtheeffectthatthepartywhogavenoticewithdrawsfrom theagreement.Thepartygivingnoticeundertakestoceaseusingalldata,modelsand informationaboutthesystemsoftheotherpartiestotheagreementthat,throughtheagreement, isinthepossessionofthatpartywithinoneweekofnoticetoterminatetheagreement. Afternoticeofterminationoftheagreementhasbeengiven,nodatamaybecopiedor otherwisetransferredordistributed.

13 Filing of the agreement Theagreementisdrawnupinonecopy,whichisfiledbytheactivesecretariatofNordel.Each partymustbeprovidedwithaduplicateoftheagreement. Helsinki 7.th. March 2006 Statnett,ØivindRue SvenskaKraftnät,BoKrantz FingridOyj,PerttiKuronen FingridOyj,JussiJyrinsalo Energinet.dk,PeterJørgensen Landsnet,EymundurSigurdsson,

15January2007 183 NORDIC GRID CODE (DATA EXCHANGE CODE) Appendix 1

SCOPE OF DATA FOR THE COMPLETE NORDIC GRID MODEL TheNordicgridmodelisdatafortheNordicpowersystemformattedontheformatofthe analysissoftwareusedinthemodelinaccordancewiththeprocedure,butthetermalsoapplies tothesamedataformattedforthe formatofotheranalysissoftwares. Theterm“powersystemdata”comprises: • Allinformationstatedinthedefinitionofthedataformatoftheanalysissoftwareusedfor studieswithsynchronous(positivesequence),inverse(negativesequence)andzero(zero sequence)systemdatafor400kVto70kV,possiblyincludingequivalentsforthe connectionofproductionandcompensationinstallationsatalowervoltagelevelandfor thedynamicstudiesbelow: Dataforexistingandfutureproduction,transmissionandcompensation installationsincludingdynamicmodels. Recordedorforecastdataforactiveandreactiveconsumptionindifferentoperating situations,forinstancehighloadandlowload. Productiondataforexistingandfutureproductionplantsindifferentoperating situations. Informationaboutoperationalconnectionindifferentoperatingsituations. • Modelsandutilitysoftwaresdevelopedand/orownedbythepartiestotheagreementand usedinthestudies • Mapmaterialanddrawingdatathatdescribe,orareusedtodescribe,thegeographicalor electricalcharacteristicsofthepowersystem • Writtenandelectronicbackgroundmaterialforcreatinganddocumentingthegridmodel

15January2007 184 NORDIC GRID CODE (DATA EXCHANGE CODE) Appendix 2

SCOPE OF DATA FOR THE MULTI AREA POWER MARKET SIMULATOR TheNordicmultiareapowermarketsimulatorcomprisesdataforanalysisofthepower balance,e.g.thepowerandenergybalancefortheNordicpowersystem.Therearethreemain typesofdata: Production data: Productiondataisstatedforthedifferenttypesofproductionplant.Thesetypesmay,for example,besubdividedinto • Hydropower • Thermalpowercondensing • Thermalpowerwithdrawal • Thermalpower,backpressure–districtheating • Thermalpower,backpressure–industry • Windpower Inaddition,theplantsaredistributedgeographicallyinaccordancewiththesubdivisionsinthe transmissionmodels;seebelow. Technicaldataincludes: • Efficiencies • Capacities • Fueltype • Availability • Environmentalconditions • Inaddition,forwindpowertheenergyconditionsarestatedintheformoftimeseries suitablebrokendownbytime;seebelow. • Forhydropower,thereservoirvolume,drawdownlimitations,andforcertainanalyses therelevantwindconditions,shouldbestated. Financialdataincludes: • Operatingandmaintenancecosts Furtherdata:mayincludereserves(instantaneous,rapid),etc. Consumption data: • Annualconsumptionforelectricpowerandforheating,whenconnectedtoaCHPplant • Distributionoftheconsumptionovertheyear–brokendownbytime,forexample weeksandwithintheweekinto3to8loadsections • Additionalmaterialdescribingthemaximumloadsituation • Geographicallydistributedinaccordancewiththebreakdownsinthegridmodels;see below

15January2007 185 NORDIC GRID CODE (DATA EXCHANGE CODE) Appendix 2

Grid and transmission data:

Transmissiondataismaintainedontwolevelsofdetail: • Forbasicenergybalances:hereaDCapproximationisneeded,withtheNordelarea subdividedintoamodestnumberofareaswithtransmissionbetweenthem.Data comprisestransmissioncapacities,losses,availability,gridtariffs. • Forfurtherassessments,e.g.tobeabletoassesstheplausibilityofthesubdivisionin theDCapproximation,theremustbeamoredetaileddescription.Subdivisioninto areasanddesignofthegridmodelmustbecoordinatedwiththeNordelGridGroup.

15January2007 186 NORDIC GRID CODE (DATA EXCHANGE CODE) Appendix 3

DRAFT AGREEMENT – POWER SYSTEM DATA – USE OF CONSULTANT ASSISTANCE Agreement on the handling of power system data from TSO(s) to consultancy companies for use in the study “Study” Theconsultancycompanyisreferredtobelowastherecipient. Thetransferofpowersystemdataissubjecttothefollowingprovisions: 1. Allpowersystemdatareceivedmustbetreatedasconfidentialinformation,andthe recipientmustsignadeclarationofconfidentialitywhichcontains,amongothers,thesame clauseasin§4oftheagreement. 2. AllpowersystemdatasuppliedbyTSOsmayonlybeusedfortheabovementionedstudy. 3. Whentherecipienthascompletedtheabovementionedstudy,thereceivedpowersystem datamustbedeletedfromthemediaonwhichitwasstored(paper,magnetictape,hard disk,backupetc).Thismustbeconfirmednotlaterthantwomonthsaftercompletionofthe study.Powersystemdatamustnotbestoredonmedia,wherebackuproutinesmakethe saiddeletionimpossible. 4. Therecipientwillappointonepersonwhoisresponsibleforthereceivedinformation/ powersystemdataandwhowillensurethatthecontentofthisagreementisrespectedand compliedwith. 5. Individualsattherecipient’scompanywhoaregivenaccesstothesuppliedpowersystem datainordertocarryoutthestudymustbeinformedofthecontentofthisagreement. 6. Therecipientshallensurethattheircomputerandnetworksecurityissufficient(i.e. conformstothedefactostandardofthesector). 7. Partiestotheagreementmayapproachthesoftwaresupplieraboutsoftwarerelatedand modelrelatedquestionsandinconnectionwiththisattachadatamodel.Inthiscontext,the softwaresupplierhasthestatusofaconsultant.Iftheanswerisofgeneralinterest,the partiestotheagreementmustbeinformed. 8. Resultsandbackgroundmaterialfromthestudyarethepropertyoftheclient. 9. Thecontentandscopeoftheterm“powersystemdata”aredefinedinAppendix1. 10. ThepartiestothedataexchangeagreementbetweentheTSOsareentitledtoinformation aboutthecontentandresultsoftheabovementionedstudy. Sections1to10ofthisappendixapplytostudiescarriedoutwiththecompletemodel(see Appendices1and2)andwiththeanonymisedmodel(see§8oftheagreement).Sections2 and4to10applytostudiescarriedoutwithanequivalent(see§7oftheagreement).

15January2007 187 NORDIC GRID CODE (DATA EXCHANGE CODE) Appendix 4

PROCEDURE FOR THE MAINTENANCE AND USE OF THE NORDEL DATA SET Thisappendixdescribedtheprocedureforthemaintenanceanduseofthegridmodelandmulti areapowermarketsimulatoratthedateofsigningoftheagreement. Adistinctionismadebetweenoperationalstudiesandplanningstudies. Operationalstudiesarecarriedoutbythepartieswhennecessary. Atthestartofaplanningstudy,iftheresultconcernsmorethantwoparties,thepartiestothe agreementareinformedoftheaimsandtimetableofthestudynotlaterthanthefirstmeeting ofthePlanningCommitteeofNordel.Theresultsofsuchajointlycarriedoutplanningstudy willbegiventoallpartiestotheagreement. ThechairmanofthePlanningCommitteeortheOperationsCommittee(asappropriate)must stresstoanynewmembersofthecommitteesthateveryonewhoisgivenaccesstothedata mustbeawareofthecontentofthedataexchangeagreement. Use of consultants EachTSOchoosesitsownconsultants. TheNordicTSOsagreeonlytouseconsultantswhosestrategicinterestsarebeyondquestion. AnydoubtsmustberaisedwiththeTSOconcernedbeforethedatasetishandedover. Grid model data set Thegridmodeldatasetincludesadatasetforexpansionplanningtobeusedby,amongothers, theGridGroup,andadatasetforoperationalplanning,tobeusedby,amongothers,the AnalysisGroupoftheOperationsCommittee. Datasetsmustbeestablishedandsuppliedintheformatforthelatestversionofajointly chosenanalysissoftware.AtthesigningoftheagreementthisistheanalysissoftwarePSS/E version30(fromthecompanySiemensPTI). AcompanyisresponsibleforthefunctionalityandupdatingoftheNordicdynamicgridmodel foraperiodofthreeyears.Thegridmodelmustbeamodelforperformingloadflowand dynamicanalysesfortheNordicinterconnectedoperationpowersystem.Sincethemajorpart ofthemodel,namelythedynamicdata,iscommontooperationsandplanning,themodelis commontotheGridGroupandtheAnalysisGroup. SvenskaKraftnätisresponsiblefrom2005to2007inclusive. Thepartiestothedataexchangeagreementundertaketoprovidethebestpossiblebasis availablefortheworkonthecommongridmodel. Inadditiontothenecessarydataitincludesresourcesformakingthemultiareapowermarket simulatorworkandreflectthephysicalsituationandtoensurethatthecontentofthemodelis documentedbothtechnicallyandclearly.

15January2007 188 NORDIC GRID CODE (DATA EXCHANGE CODE) Appendix 4

AnyrevisionofthegridmodelandthepreconditionsforanewmodelwillbedecidedonbytheGrid Group.Theneedforrevisionorforthecreationofanewmodelisnormallyassessedyearly.In addition,allthepartiestotheagreementmustprovideinformationaboutimportantchangesthatmaybe significantforthemultiareapowermarketsimulator,asquicklyaspossible. Multi area power market simulator data set ThemembersoftheBalanceGroupmustregularlygatherandmaintaindataonproduction systems,transmissionsystemsandelectricityconsumptionintherespectivecountry,forthe workofthegroup. Datasetsmustbeestablishedandsuppliedintheformatforthelatestversionofajointly chosenanalysissoftware.Atthesigningoftheagreementthisistheanalysissoftwares “Samkjøringsmodel”( multi area power market simulator )(fromSINTEFofNorway)and “Samlastmodel”(multiareapowermarketsimulator)(fromPowelofNorway). Updating and filing procedure Theprocedureisupdatedasnecessaryinaccordancewith§3oftheagreement,andis approvedbyunanimousdecisionofthePlanningCommittee. ThechairmanofthePlanningCommitteeisresponsibleforensuringthatthecurrentlyvalid procedureisfiledattheNordelsecretariat.

15January2007 189