Lycopodium: Growth Form, Morphology, and Sustainability of a Non-Timber Forest Product

Total Page:16

File Type:pdf, Size:1020Kb

Lycopodium: Growth Form, Morphology, and Sustainability of a Non-Timber Forest Product NTFP Conference Proceedings Lycopodium: Growth Form, Morphology, and Sustainability of a Non-timber Forest Product Elizabeth A. Nauertz1 and John C. Zasada2 Abstract.—Several species of Lycopodium or clubmoss belong in the category of non-timber forest products and are often gathered for a variety of traditional uses. It is important to evaluate baseline infor- mation for these species, such as abundance and frequency of occur- rence, before making any management decision. In addition, under- standing the biology of the Lycopodium group as a whole, including growth form and morphology, may enable us to make better decisions about forest management practices used and harvesting quotas allowed for sustaining these species. INTRODUCTION SPECIES DESCRIPTIONS AND USES Several Lycopodium or clubmoss species are Following is a brief description of each of the extensively collected as non-timber forest six Lycopodium species discussed in this paper. products and are marketed to industries for The descriptions are compiled from personal production of seasonal and traditional decora- observations, as well as information referenced tions and for floral and horticulture uses. In from the literature (Cody and Britton 1989; addition, medicinal (Aboriginal and homeo- Flora of North America 1993; Johnson et al. pathic), native folklore, and theatrical uses 1995; Lellinger 1985; Meeker et al. 1993; exist for various Lycopodium species (Johnson Primack 1973; Turner et al. 1983; Ullman et al. 1995; Shakhashiri 1983; Ullman 1992, 1992, 1997). 1997). Lycopodium species are considered to be fern-allies. In temperate forests they are vascu- Lycopodium species vary in growth form and lar, terrestrial, evergreen, perennial, rhizoma- morphology. The mature aerial stems of a plant tous, and clonal in nature. This group of photosynthesize. They may be either non- species has been around a long time, with branching or treelike in form. When mature, ancestors that date back to the Tertiary period the aerial stems often have cones (strobili) or (Lellinger 1985). Few studies have been done to sporangia that produce the spores necessary determine how these species can be regener- for sexual reproduction. Spores mature and are ated and how fast they recover after harvesting released in the late fall, even as late as Novem- (Matula 1995, Primack 1973). Although some ber. In general, Lycopodium aerial stems reach of the Lycopodium species are common in maturity and begin to produce spores at from 4 northern hardwood forests, the impacts of to 6 years of age, depending on the species and forest management practices on populations of local growing conditions. Lycopodium species these species are not well understood. have either aboveground or belowground running rhizomes or lateral branches. The 1Ecologist, U.S. Department of Agriculture, rhizomes have the ability to produce adventi- Forest Service, North Central Research Station, tious roots and are used for photosynthate, 410 MacInnes Drive, Houghton, Michigan 49931, water, and nutrient transport. The rhizomatous USA; Phone: 906-482-6303; e-mail: nature of these species may add to the photo- [email protected]. synthesis capacity of the plant as a whole and 2Project Leader and Research Forester, U.S. may affect the plant’s ability to get around Department of Agriculture, Forest Service, North vegetatively. A typical Lycopodium patch can Central Research Station, 1831 Highway 169 E., have multiple-aged lateral branches or rhi- Grand Rapids, Minnesota 55744, USA; Phone: zomes, and each rhizome may have ramets that 218-326-7109; e-mail: [email protected]. vary in age from 1 to 6 years. In general, the 110 bigger and more branching the patch, the older the same manner as the ground cedar. Tradi- it is. tional Aboriginal and homeopathic remedies are concocted from the dried plant parts of this The aerial stems of Lycopodium dendroideum species. L. clavatum has forking, non-branch- and L. obscurum are frequently harvested and ing aerial stems that typically bear one to two used for decorative greens. Although commonly cones when mature. The aerial stems are often found in aspen-birch forests, these two species tightly packed along the aboveground running are also found in moist rich woods and along rhizomes. In Canada, Aboriginal peoples on edges of bogs. The branching aerial stems Vancouver Island, located in British Columbia, resemble small pine trees: hence the common believed the plant should be left alone. It is said name of princess pine or ground pine. Only the that clubmoss should be left because it is individual mature aerial stems should be “something that gets you confused in the harvested, and this should be done after prime woods” or “confused and uncertain about spore release in late fall. The spores of these orientation” (Turner et al. 1983). Perhaps this two species are flammable when mature and belief stemmed from the random pattern of have been used historically for theatrical and branching that is common for this species. pyrotechnical purposes. In addition, the ground pines have belowground rhizomes Lycopodium annotinum or stiff clubmoss is not running between 2 and 6 inches below the soil traditionally gathered or harvested. Although surface (Nauertz and Zasada, personal observa- considered evergreen, this species tends to dry tions); consequently, a new aerial stem may not out quickly and does not remain green and appear above the soil surface until sometime in pliable, as do the other species harvested for the second year of growth. decorative greens. Lycopodium annotinum has forking, non-branching aerial stems that Lycopodium complanatum, also known as produce a single strobilus, or cone, when ground cedar, is most commonly found in pine mature. The stems are typically densely packed forest communities, typically grows in clumps, along aboveground running rhizomes. and can cover large areas. It has tree-like, branching aerial stems with adpressed and Shining clubmoss or Lycopodium lucidulum is tightly packed microphylls or leaves that most common to northern mesic forests domi- strongly resemble cedar boughs. When mature, nated by sugar maple, preferring the embedded the aerial stems host a “candelabra” of cones acid, wet woods or rocky areas. Native Ameri- for spore production. This species of Lycopo- cans traditionally gathered it for use as pad- dium differs from the ground pines L. ding for cradleboards. L. lucidulum does have dendroideum and L. obscurum, in that it has some features that are unique to this group of aboveground running rhizomes growing clubmoss species. It has forking, non-branch- through the litter layer on the forest floor. ing aerial stems that, when mature at around 6 Lycopodium complanatum is also harvested for years of age, produce sporangia that contain decorative greens and has some homeopathic spores in the leaf axils. In addition, gemmae or and Aboriginal medicinal uses. Harvesting for bulblets may be produced in the upper leaf greens is different for this plant in that the axils. They mature usually in late summer or entire aboveground runner, or rhizome, is early fall, and when bumped will catapult off yanked from the surface of the soil; hence, the the aerial stem and, upon landing in proper entire plant or section of a clone is harvested, growing media and conditions, have the poten- rather than just the mature aerial stems as tial for growing into a new, genetically identical done for the ground pines. Optimal lateral plant. This is a means of vegetatively increasing extention or growth for each rhizome has been plant frequency, but not genetic variation. recorded to occur in year 1 (most recent year Lycopodium lucidulum does not technically growing tip) to year 6, with maximum extension form rhizomes; instead the aerial stems tend to reaching 400 to 600 cm. Greatest aerial stem layer, and then branch and fork. Each fall the mass was recorded in years 3 to 6, with peak leaf litter from the overstory canopy falls, weights reaching 13 to 25 grams (Nauertz and anchoring the layered aerial stems to the Zasada, unpublished data). surface of the forest floor. Adventitious roots for water and nutrient uptake will form along the Running clubmoss, Wolf’s paw, or Lycopodium layered aerial stems. clavatum also has aboveground running rhi- zomes and is harvested for decorative greens in 111 NTFP Conference Proceedings LYCOPODIUM REPRODUCTIVE be very dense and vast, or it may be thin and CHARACTERISTICS sparse. Patches of Lycopodium may be located near each other and occur frequently within an Reproduction method, both sexual and area, or there may be large areas where no asexual, may help explain the frequency and Lycopodium occurs at all. cover patterns of individual Lycopodium spe- cies. All ferns and fern-allies produce spores Lycopodium, especially ground pine, is often and experience an alternation in generations, found in northern hardwood forests in which is a means of dividing, segregating, and Michigan’s Upper Peninsula. Nauertz (1999) re-combining chromosomes. This allows for conducted a study in these forests to gain genetic variability to occur and for evolution to insight on the species biology and presence in proceed (Lellinger 1985). Spores vary in where managed and unmanaged forests. In addition, they germinate within the soil surface layers as part of a larger study (USDA, FS, NCRS, NC- and were found to germinate at deeper depths 4153-94-03), basal area was measured and as well as on the soil surface (Cobb 1963, recorded in all of these stands in 1995-1996. Freeberg 1962). The spores produced by fern- Four forest types were studied: (1) Unmanaged allies such as Lycopodium may remain viable old-growth forest with trees as old as 250+ for many years and could take up to 7 or more years that have not been disturbed by logging. years to develop into a gametophyte (Cobb Basal area was 23 - 47 m2/ha. (2) Unmanaged 1963). Gametophytes may remain alive from second-growth forest that was clearcut in the only a few weeks or months (Lellinger 1985) to 1910s and now remains unmanaged with trees as long as 10 or more years (Cobb 1963).
Recommended publications
  • Lycopodium (Spp) L. Ground Pine
    Kasey Hartz Natural Area Reference Sheet Lycopodium (spp) L. Ground pine. Lycopodiaceae (Club-moss Family) Blooming season: Not a flowering plant. Spores produced in July-September. Plant: Tree like in form, 10-25 cm tall. Horizontal stem, not a true rhizome; grows at one end only, and the opposite end dies, resulting in the plant slowly moving forward year by year (Billington 1952). Leaves: Evergreen, scale like. Flower: None, spores are produced on strobilus cones. Fruit: None, but what is formed are strobilus cones which are sessile, having no stalks. Usually 1-3 cones, 1.5-5.5 cm long, maturing July-September. Spores are sulphur yellow with a high oil content. Can be confused with: Many species of Lycopodium can be confused and hybrids may also be found. Geographic range: Type specimen location: State: Throughout. Regional: Newfoundland - Alaska, south to North Carolina and Indiana. Habitat: Local: Riparian. Regional: Moist woods. Common local companions: Pine, ferns, maples, and beech Kasey Hartz Natural Area Reference Sheet Lycopodium obscurum L. 2 Ground Pine Usages: Human: Because of the spores have a high oil content and are quite flammable, they were used as flash powder for the first photographic cameras(Harris 2003); for fireworks (Billington 1952); and to imitate lightning flashes for theatrical performances (Millspaugh 1892, 1974). Their oil content led to them being used by pharmacists in boxes of pills to prevent them sticking together (possibly a different species of Lycopodium). Medicinal uses in the past included treatments for gout, menstrual disorders, nervous disorders, fevers, and as a styptic and an emetic.
    [Show full text]
  • RI Equisetopsida and Lycopodiopsida.Indd
    IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants.
    [Show full text]
  • Effects of Lycopodium Clavatum and Equisetum Arvense Extracts from Western Romania
    Romanian Biotechnological Letters Vol. , No. x, Copyright © 2016 University of Bucharest Printed in Romania. All rights reserved ORIGINAL PAPER Effects of Lycopodium clavatum and equisetum arvense extracts from western Romania Received for publication, July, 07, 2014 Accepted, October, 13, 2015 MARIA SUCIU1, FELIX AUREL MIC1, LUCIAN BARBU-TUDORAN2, VASILE MUNTEAN2, ALEXANDRA TEODORA GRUIA3,* 1University of Medicine and Pharmacy “Victor Babes”, Department of Functional Sciences, Timisoara, 2, Eftimie Murgu Sq., Timisoara, 300041, Timis County, Romania 2Babes-Bolyai University, Biology and Geology Department, 5-7 Clinicilor Str., Cluj-Napoca, 400084, Cluj County, Romania. 3Emergency Clinical County Hospital Timisoara, Regional Centre for Transplant Immunology Department, 10, Iosif Bulbuca Blvd., Timisoara, 300736, Timis County, Romania. *Address for correspondence to: [email protected], 10, Iosif Bulbuca Blvd., Timisoara, 300736, Timis County, Romania. Abbreviations: ALT–alanin transaminases, AST–aspartate transaminases, GC-MS–gas chromatograph coupled with mass spectrometry. Abstract Plants have always excited interest because of their active principles that could be a source of healing in various affections. The aim of this study was to demonstrate that the hepatoprotective and antimicrobial effects of Lycopodium clavatum and Equisetum arvense from the Western parts of Romania (Arad County) are not as pronounced as described in literature, against xenobiotic intoxication or microbial infection. To identify the plants active compounds,
    [Show full text]
  • Notes on Some Species of Diphasiastrum
    Preslia, Praha, 47: 232 - 240, 1975 Notes on some species of Diphasiastrum Poznamky k n~kterym druhum rodu Dipha11iaatrum Josef Holub HOLUB J. (1975): Notes on some species of Diphasiastrum. - Preslia, Praha, 47: 232- 240. Taxonomic and nomenclatural problems of some species of Diphasiastrum HOLUB are discussed. A special attention is pa.id to the interspecies D. / X / issleri and D. / x / zei­ leri. Original plants of D. / x / issleri correspond to the combination D. alpinum - D. complanatum. Plants corresponding to the combination D. alpinum - D. tristachyum have been collected in the ~umava Mts. Some taxa described from the subarctic regions of Europe and North America are shown to belong most probably to the neglected interspecies D. / x / zeileri. Botanical I nstitute, Czechoslovak Academy of Sciences, 25~ 43 Prithonice, Czecho.,lovakia. INTRODUCTION This is a second part of my study of the new genus Diphasiastrum (HOLUB 1975), which could not be published in this journal in its entirety. Notes on taxonomy and nomenclature are selected from materials gathered originally for my "Catalogue of Czechoslovak vascular plants". With regard to the character of that work the present observations summarize the results of my own studies and suggests problems to be studied in the future. OBSERVATIONS f!.iphasiastrum alpinum (L.) HOLUB Two varieties have been described in this species (both under the name Lycopodium alpi­ nttm L.): var. thellungii HERTER from Switzerland and var. planiramulosum TAKEDA from Japan. Both these taxa, especially the first one, require a taxonomic revision; the possibility cannot be exclu<led that they are conspecific with D. / x / issleri.
    [Show full text]
  • Ecophysiology of Four Co-Occurring Lycophyte Species: an Investigation of Functional Convergence
    Research Article Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence Jacqlynn Zier, Bryce Belanger, Genevieve Trahan and James E. Watkins* Department of Biology, Colgate University, Hamilton, NY 13346, USA Received: 22 June 2015; Accepted: 7 November 2015; Published: 24 November 2015 Associate Editor: Tim J. Brodribb Citation: Zier J, Belanger B, Trahan G, Watkins JE. 2015. Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence. AoB PLANTS 7: plv137; doi:10.1093/aobpla/plv137 Abstract. Lycophytes are the most early divergent extant lineage of vascular land plants. The group has a broad global distribution ranging from tundra to tropical forests and can make up an important component of temperate northeast US forests. We know very little about the in situ ecophysiology of this group and apparently no study has eval- uated if lycophytes conform to functional patterns expected by the leaf economics spectrum hypothesis. To determine factors influencing photosynthetic capacity (Amax), we analysed several physiological traits related to photosynthesis to include stomatal, nutrient, vascular traits, and patterns of biomass distribution in four coexisting temperate lycophyte species: Lycopodium clavatum, Spinulum annotinum, Diphasiastrum digitatum and Dendrolycopodium dendroi- deum. We found no difference in maximum photosynthetic rates across species, yet wide variation in other traits. We also found that Amax was not related to leaf nitrogen concentration and is more tied to stomatal conductance, suggestive of a fundamentally different sets of constraints on photosynthesis in these lycophyte taxa compared with ferns and seed plants. These findings complement the hydropassive model of stomatal control in lycophytes and may reflect canaliza- tion of function in this group.
    [Show full text]
  • Conservation Assessment for Groundcedar and Stiff Clubmoss In
    United States Department of Agriculture Conservation Assessment Forest Service for Groundcedar and Stiff Rocky Mountain Region Clubmoss in the Black Black Hills National Forest Hills National Forest South Custer, South Dakota Dakota and Wyoming March 2003 J.Hope Hornbeck, Deanna J. Reyher, Carolyn Sieg and Reed W. Crook Species Assessment of Groundcedar and Stiff Clubmoss in the Black Hills National Forest, South Dakota and Wyoming J. Hope Hornbeck, Deanna J. Reyher, Carolyn Hull Sieg and Reed W. Crook J. Hope Hornbeck is a Botanist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. in Environmental Biology at The University of Montana and a M.S. in Plant Biology at the University of Minnesota. Deanna J. Reyher is an Ecologist/Soil Scientist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. degree in Agronomy from the University of Nebraska. Carolyn Hull Sieg is a Research Plant Ecologist with the Rocky Mountain Research Station in Flagstaff, Arizona. She completed a B.S. in Wildlife Biology and M.S. in Range Science from Colorado State University and a Ph.D. in Range and Wildlife Management at Texas Tech University. Reed W. Crook is a Botanist with the Black Hills National Forest in Custer, South Dakota. He completed a B.S. in Botany at Brigham Young University, and a M.S. in Plant Morphology and Ph.D. in Plant Systematics at the University of Georgia. EXECUTIVE SUMMARY Stiff clubmoss (Lycopodium annotinum L.) and groundcedar (Lycopodium complanatum L.; synonym = Diphasiastrum complanatum [L.] Holub.) (Lycopodiaceae) are circumboreal clubmoss species that are widely distributed in North American boreal habitats.
    [Show full text]
  • The Genus Huperzia (Lycopodiaceae) in the Azores and Madeira
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital do IPB Botanical Journal of the Linnean Society, 2008, 158, 522–533. With 15 figures The genus Huperzia (Lycopodiaceae) in the Azores and Madeira JOSÉ ANTONIO FERNÁNDEZ PRIETO1*, CARLOS AGUIAR2, EDUARDO DIAS3, MARÍA DE LOS ÁNGELES FERNÁNDEZ CASADO1 and JUAN HOMET1 1Área de Botánica, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, 33006 Oviedo, Spain 2Área de Biologia, Escola Superior Agrária de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal 3Departamento de Ciências Agrárias, Universidade dos Açores, Campus de Angra, Terra-Chã, 9701-851 Angra do Heroísmo, Açores, Portugal Received 16 February 2005; accepted for publication 15 May 2008 The taxonomy and nomenclature of the genus Huperzia Bernh. in the Azores and Madeira have been reviewed. Plants collected in the Azores and Madeira were characterized morphologically. The independence between two endemic species common to Madeira and the Azores Islands – Huperzia suberecta (Lowe) Tardieu and Huperzia dentata (Herter) Holub – is clearly shown. A clear-cut morphological separation between these taxa and Huperzia selago (L.) Bernh. ex Schrank & Mart. of continental Europe is established. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158, 522–533. ADDITIONAL KEYWORDS: bulbil – Huperzia dentata – Huperzia selago – Huperzia suberecta – nomen- clature – spore – stoma – taxonomy. INTRODUCTION Most authors have accepted this systematic treat- ment of Lycopodiaceae in Europe, including the Lycopodiaceae P.Beauv. ex Mirb. sensu lato is a genera Huperzia, Lycopodium, Diphasiastrum and family with a cosmopolitan distribution, consisting of Lycopodiella (Rothmaler, 1964, 1993; Villar, 1986).
    [Show full text]
  • Lycopodiaceae Clubmoss Family
    Lycopodiaceae Page | 46 clubmoss family Upwards of 15 genera comprise this ancient family. Perennial herbs, they somewhat resemble coarse mosses. The solitary sporangia are borne either in a terminal strobilus or are axillary with leaves. Spores are of equal size. In Nova Scotia we have four genera. A. Rhizomes absent; upright stems clustered; axillary sporangia; spores pitted. Huperzia aa. Rhizomes present; upright shoots alternate; sporangia aggregated into B terminal strobili, spores with netlike pattern. B. Strobili on leafy peduncles; mainly of wetland habitats. Lycopodiella bb. Strobili sessile or on peduncles with remote scant leaves; mainly of C dry upland places. C. Tips of stems 5–12mm in diameter; leaves in 6 ranks or Lycopodium more; leaves bristly, free for most of their length, not scalelike. cc. Distal shoots 2–6mm in diameter; leaves in 4–6 ranks, Diphasiastrum strongly overlapping (scalelike) and appressed along the stem with only tips free. Diphasiastrum Holub There are 15–20 species worldwide; numerous hybrids are possible. Generally these clubmosses are northern or subarctic in distribution. Nova Scotia has four species. Rhizomes bear sparse leaves that are reduced to scales, rooting from the lower surfaces. Upright stems are flattened or angled, with 2–5 branches. Leaves are arranged in four ranks and of two sizes. Sporophylls are smaller than unspecialized leaves. 1-7 Lycopodiaceae Key to species A. Plants < 12 cm tall; strobili sessile. Diphasiastrum sitchense Page | 47 aa. Stems 8–50cm; strobili on peduncles. B B. Branches square or angled, bluish. D. tristachyum bb. Branches flat; green. C C. Lateral branches irregular, annual winter bud constrictions D.
    [Show full text]
  • Exploring Lycopodiaceae Endophytes, Dendrolycopodium
    EXPLORING LYCOPODIACEAE ENDOPHYTES, DENDROLYCOPODIUM SYSTEMATICS, AND THE FUTURE OF FERN MODEL SYSTEMS A Thesis Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science By Alaina Rousseau Petlewski May 2020 ©2020 Alaina Rousseau Petlewski i ABSTRACT This thesis consists of three chapters addressing disparate topics in seed-free plant biology. Firstly, I begin to describe the endophyte communities of lycophytes by identifying the culturable endophytes of five Lycopodiaceae species. Microbial endophytes are integral factors in plant evolution, ecology, and physiology. However, the endophyte communities of all major groups of land plants have yet to be characterized. Secondly, I begin to re-evaluate the systematics of a historically perplexing genus, Dendrolycopodium (Lycopodiaceae). Lastly, I assess the status of developing fern model systems and discuss possible future directions for this work. ii BIOGRAPHICAL SKETCH Alaina was born in 1995 near Dallas, TX, but was largely raised in central California. In high school, she developed a love of plants and chemistry. She graduated summa cum laude from Humboldt State University in 2017 with a B.S. in botany and minor in chemistry. After graduating from Cornell, she plans to move back to the West Coast. She aspires to find a way to combine her love of plants and admiration for the arts, have a garden, be kind, share her knowledge, and raise poodles with her partner. iii ACKNOWLEDGEMENTS I would like to thank my advisor Fay-Wei Li and committee members Chelsea Specht and Robert Raguso, for their advisement on this work and for supporting me beyond my research pursuits by helping me to discover and act on what is right for me.
    [Show full text]
  • New Combinations in the Vascular Flora of Finland, in the Genera Spinulum, Oxybasis and Potentilla
    36Memoranda Soc. Fauna Flora Fennica 95:Kurtto 36–39. & Uotila 2019 • Memoranda Soc. Fauna FloraISSN Fennica 0373-6873 95, (print) 2019 Helsinki 19 February 2019 ISSN 1796-9816 (online) New combinations in the vascular flora of Finland, in the genera Spinulum, Oxybasis and Potentilla Arto Kurtto & Pertti Uotila Kurtto, A., Botanical Museum, Finnish Museum of Natural History, P.O.Box 7, FI­00014 University of Helsinki. E­mail [email protected] Uotila, P., Botanical Museum, Finnish Museum of Natural History, P.O.Box 7, FI­00014 University of Helsinki. E­mail [email protected] In the course of compiling an updated checklist of vascular plants of Finland, a few cases were revealed where nomenclatural changes proved necessary. Four new nomenclatural combinations are proposed: Spinulum annotinum (L.) A. Haines subsp. alpestre (Hartm.) Uotila (Lycopodiace- ae), Oxybasis salina (Standl.) Uotila (Chenopodiaceae), Potentilla neglecta Baumg. var. acutifida (Markl.) Kurtto (Rosaceae) and Potentilla neglecta var. decora (Markl.) Kurtto (Rosaceae). Introduction Spinulum annotinum A checklist of the vascular plants of Finland was Recently, an attempt at a consensus classifica- published over 30 years ago (Kurtto & Lahti tion of lycophytes and ferns down to genus lev- 1987). Later it was updated to some extent (in- el has been proposed by The Pteridophyte Phy- digenous plants, established aliens and most com- logeny Group (2016). This classification will be mon casuals) in the Field Flora of Finland (most followed in the new checklist of Finnish plants. recent, 4th edition, Hämet-Ahti & al. 1998) and In the new classification a narrower generic its updates (Hämet-Ahti & al.
    [Show full text]
  • Habitats of North Carolina Ferns
    North Carolina Ferns and “Fern Allies”: a survey Ferns of North Carolina • 122 species, in 46 genera, in 22 families • from sea level to tops of Mount Mitchell • in nearly all habitats (under water and dry sands and rocks) Lycopodiaceae • 14 species Selaginellaceae • 6 species (2 aliens) Isoetaceae • 9 species – more on the way Psilotaceae • 1 species (alien?, new to NC) Equisetaceae • 3 species (1 alien, newly documented for NC) Azollaceae • 1 species Salviniaceae • 1 species (alien) Marsileaceae • 1 species (alien) Hymenophyllaceae • Filmy ferns (Trichomanes petersii) Ophioglossaceae • 16 species New Yorker cartoon by Charles Saxon, Sept. 12, 1983 Osmundaceae • 3 species Dennstaedtiaceae • 3 species Pteridaceae • 8 species Aspleniaceae • 12 species Dryopteridaceae • 24 species (1 alien) Thelypteridaceae • 6 species Blechnaceae • 2 species Polypodiaceae • 3 species Schizaeaceae • 1 species Lygodiaceae • 2 species (1 alien) Grammitidaceae • 1 species Vittariaceae • 1 species Changes -- 1 • New systematics – monographs, revisions, studies using traditional approaches – cladistic approaches – molecular systematics • New nomenclature – continued “nontaxonomic” changes in nomenclature Changes -- 2 • New discoveries – new natives are found to be (and to have been) in the Carolinas – new aliens become established in the Carolinas • differing criteria for inclusion in floras Changes -- 4 • Additions to the flora – by description (new circumscription) [+250] – re-elevation from synonymy [net +250] • New discoveries and new arrivals – “finds” (natives new to the flora area) [+250] – naturalization [+250] • Rearrangements of lower taxa [plenty] • New nomenclature [plenty] New species and infrataxa • Gymnocarpium appalachianum Pryer & Haufler • Huperzia appalachiana Beitel & Mickel • Hymenophyllum tayloriae Farrar & Raine • Isoetes appalachiana Brunton & Britton • Isoetes hyemalis Brunton • Lycopodium hickeyi W.H. Wagner, Beitel, & R.C.
    [Show full text]
  • CRANESVILLE SWAMP PRESERVE, GARRETT COUNTY, MD This List Records Plants Seen During a Field Trip the Craneville Swamp Preserve on September 29, 2007
    Maryland Native Plant Society Plant Lists We offer these lists to individuals and groups to enhance the enjoyment and study of plants of different locations in Maryland and nearby states. Their accuracy has not been verified by Maryland Native Plant Society. CRANESVILLE SWAMP PRESERVE, GARRETT COUNTY, MD This list records plants seen during a field trip the Craneville Swamp Preserve on September 29, 2007. Field trips led by Cris Fleming. List by Cris Fleming. Nomenclature follows the USDA Plant Database at http://plants.usda.gov (January 2011). Synonyms are footnoted for some species. Bartonia virginica Yellow bartonia Gentianaceae Carex crinita Drooping sedge Cyperaceae Carex folliculata Sedge Cyperaceae Doellingeria umbellata1 Flat-topped aster Asteraceae Drosera rotundifolia Round-leaved sundew Droseraceae Dryopteris carthusiana Spinulose wood fern Dryopteridaceae Epigaea repens Trailing arbutus Ericaceae Eriophorum virginicum Cottongrass Cyperaceae Euthamia graminifolia2 Grass-leaved goldenrod Asteraceae Gaultheria procumbens Wintergreen Ericaceae Gaylussacia frondosa Dangleberry Ericaceae Gentiana linearis Slender-leaved gentian Gentianaceae Hypericum canadense Canada St. Johnswort Clusiaceae Hypericum densiflorum Glade St. Johnswort Clusiaceae Kalmia latifolia Mountain laurel Ericaceae Larix laricina American larch Pinaceae Lycopodium clavatum Common clubmoss Lycopodiaceae Lycopodium digitatum3 Ground cedar Lycopodiaceae Lycopodium obscurum4 Tree clubmoss Lycopodiaceae Lycopodium tristachyum5 Slender clubmoss Lycopodiaceae Lyonia
    [Show full text]