Adaptations and Lifestyle in Polar Marine Environments: a Biological Challenge for the Study of Fish Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Adaptations and Lifestyle in Polar Marine Environments: a Biological Challenge for the Study of Fish Evolution Adaptations and lifestyle in polar marine environments: a biological challenge for the study of fi sh evolution Cinzia Verde, Ennio Cocca, Donatella de Pascale, Elio Parisi & Guido di Prisco The climatic features of Antarctic waters are more extreme and constant than in the Arctic. The Antarctic has been isolated and cold longer than the Arctic. The polar ichthyofaunas differ in age, endemism, taxonomy, zoogeographic distinctiveness and physiological tolerance to environmen- tal parameters. The Arctic is the connection between the Antarctic and the temperate–tropical systems. Paradigmatic comparisons of the path- ways of adaptive evolution of fi sh from both poles address the oxygen- transport system and the antifreezes of northern and southern species. (i) Haemoglobin evolution has included adaptations at the biochemical, physiological and molecular levels. Within the study of the molecular bases of fi sh cold adaptation, and taking advantage of the information on haemoglobin amino acid sequence, we analysed the evolutionary history of the α and β globins of Antarctic, Arctic and temperate haemoglobins as a basis for reconstructing phylogenetic relationships. In the trees, the constant physico-chemical conditions of the Antarctic waters are matched by clear grouping of globin sequences, whereas the variability typical of the Arctic ecosystem corresponds to high sequence variation, refl ected by scattered intermediate positions between the Antarctic and non-Ant- arctic clades. (ii) Antifreeze (glyco)proteins and peptides allow polar fi sh to survive at sub-zero temperatures. In Antarctic Notothenioidei the anti- freeze gene evolved from a trypsinogen-like serine protease gene. In the Arctic polar cod the genome contains genes which encode nearly identi- cal proteins, but have evolved from a different genomic locus—a case of convergent evolution. C. Verde, E. Cocca, D. de Pascale, E. Parisi & G. di Prisco, Institute of Protein Biochemistry, CNR, Via Marconi 12, I-80125 Naples, Italy, [email protected]. Although high latitudes and cold climates are The colonized terrestrial portions are extensive; common to both the Antarctic and the Arctic, in they are directly linked to temperate areas, great- many respects the two regions are more dissimi- ly facilitating adaptation and redistribution of ter- lar than similar. Due to the Antarctic Polar Front restrial organisms on one hand and, on the other, (APF), an oceanographic system producing a bar- producing wide and complex terrestrial mecha- rier responsible for the isolation of marine organ- nisms of feedback to the climate, which add to isms, the climatic features of the Antarctic waters those originating from ocean and atmosphere cir- are more extreme and constant than those of the culation. In addition, the anthropogenic impact Arctic. In the Arctic isolation is less pronounced, is greater. Tectonic and oceanographic events and the range of temperature variations is wider. played a key role in delimiting the two polar eco- Verde et al. 2004: Polar Research 23(1), 3–10 3 systems and in infl uencing the evolution of their Recent studies address the evolution of AFGP faunas, whose composition and diversity are genes in Antarctic Notothenioidei. The AFGP strongly linked to geological history. The Ant- gene evolved from a functionally unrelated pan- arctic has been isolated and cold longer than the creatic trypsinogen-like serine protease gene, Arctic, with ice sheet development preceding that through a molecular mechanism by which the in the Arctic by at least 10 My. The modern polar ancestral gene provided the front and tail of the faunas differ in age, endemism, zoogeographic emerging AFGP gene (Chen et al. 1997a). The distinctiveness, taxonomy and physiological tol- fi nding in the notothenioid genome of a chimer- erance to various environmental parameters. ic AFGP-protease gene intermediate, a protease The differences in the two polar environ- gene still bearing the incipient coding element, ments are refl ected in global changes. Accord- and independent AFGP genes, reveals a fascinat- ingly, studies of ecosystems are likely to provide ing case of “evolution in action” (Cheng & Chen answers to different questions, often complemen- 1999). It was deduced that the conversion of the tary to one another. In summary, the Arctic is the ancestral gene to the fi rst AFGP gene occurred connection between the more extreme, simpler 5 - 14 Mya. This value agrees well with the gen- Antarctic system and the more complex temper- erally accepted time frame (10 - 14 Mya) in which ate and tropical systems. the Antarctic water reached the present freezing “Evolution is the major unifying principle of conditions. biology, and evidence of evolutionary processes Analysis of AFGP in the polar cod (Boreo- pervades all levels of biological organisation from gadus saida, family Gadidae) showed that the molecules to ecosystems” (Eastman 2000: 276). genome of this species (phylogenetically unre- In studying evolution, the comparative approach lated to notothenioids, which belong to differ- permits examination of convergent and parallel ent superorder and order) contains genes which evolutionary trends at levels ranging from mol- encode nearly identical proteins. This would sug- ecules to organisms. gest a common ancestry. However the genes of Key aspects of evolution comprise molecu- the two fi sh groups are not homologous, hence lar, physiological and behavioural mechanisms have not followed the same evolutionary pathway. of adaptation by which organisms are enabled to Assuming an endogenous, yet unknown genetic survive, grow and reproduce. Current investiga- origin, the cod AFGP genes have evolved from a tions are increasingly exploring links between different, certainly not trypsinogen-like, genomic evolutionary processes, lifestyle and molecular/ locus (Chen et al. 1997b). An example of conver- organ system adaptations. gent evolution has thus been discovered. Two paradigmatic topics have been selected for this article, namely antifreeze compounds and haemoglobin, including loss of expression of The haemoglobin system globin genes and systematics. Genes coding iden- tical antifreeze compounds in northern cods and The Antarctic suborder Notothenioidei comprises southern Notothenioidei have different evolution- eight families. Ninety-six of the 213 (45 %) spe- ary histories; recent studies show that Arctic fi sh cies of the continental shelf, and 122 (including globins diverge from those of notothenioids and non-Antarctic species) of the 313 (39 %) Southern display paralogous relationships. Ocean species described to date are notothenio- ids (Gon & Heemstra 1990; Eastman 1993, 2000). The dominance of a single taxonomic group of Antifreeze compounds in Antarctic fi sh is unparalled in any other oceanic ecosys- and Arctic fi sh tem. The coastal Antarctic waters are cold and The biosynthesis of antifreeze (glyco)proteins oxygen-rich. The metabolic demand of fi sh for and peptides (AFGPs, AFPs), which allows polar oxygen is low, the solubility of oxygen in their fi sh to survive at sub-zero temperatures, is one plasma is high, and the energetic cost associated of the most intriguing evolutionary adaptations with blood circulation is large. With the selective (reviewed in Cheng & DeVries 1991) and meets pressure for erythrocytes and haemoglobin (Hb) the criteria for a “key innovation” (Eastman relaxed and with the cells posing a rheological 2000). disadvantage in the temperature-driven increase 4 Adaptations and lifestyle in polar marine environments: fi sh evolution Fig. 1. Abrogation of Hb synthesis as a result of a single, large-scale deletional event that removed all globin genes with the exception of the 3′ end of the α1-globin gene of adult Hb 1. The latter gene of N. coriiceps is represented in the upper part. in blood viscosity, over evolutionary time noto- tively, loss of Hb production may have occurred thenioids have developed reduced haematocrits independently of the trend as a nonadaptive, yet (Hct), Hb concentration/multiplicity and oxygen non-lethal mutation in the oxygen-rich Antarctic affi nity. waters. In this regard, one of the most unusual pheno- types of vertebrates was reported by Ruud (1954): Globin genes in notothenioids; evolutionary the colourless blood of the “icefi sh” species of the loss of expression in icefi sh family Channichthyidae, the most phyletically derived notothenioids, was devoid of Hb. Icefi shes The globin-gene organization in red-blooded noto- maintain normal metabolic function by deliver- thenioids has been characterized, the status of ing oxygen physically dissolved in the blood to globin genes in channichthyid genomes has been tissues. Hct reduction to near zero appears selec- studied, and potential evolutionary mechanisms tively advantageous because it diminishes the leading to the Hb-less phenotype have been eval- energetic cost associated with circulation of a uated (Cocca et al. 1995, 1997, 2000; Zhao et al. highly viscous, corpuscular blood fl uid (Wells 1998; di Prisco et al. 2002). It was found that ice- et al. 1990; di Prisco et al. 1991; Eastman 1993). fi sh retain genomic DNA sequences closely relat- The remaining seven notothenioid families are ed to the adult α-globin gene(s) of its red-blood- red-blooded. ed notothenioid ancestors and contemporaries, Channichthyids diverged from other notothen- whereas its ancestral β-globin-gene sequences ioids approximately 7 - 15 Mya, but the radiation have either been deleted or have diverged beyond of species within the icefi
Recommended publications
  • Jan Jansen, Dipl.-Biol
    The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen, Dipl.-Biol. Under the supervision of Craig R. Johnson Nicole A. Hill Piers K. Dunstan and John McKinlay Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Quantitative Antarctic Science Institute for Marine and Antarctic Studies (IMAS), University of Tasmania May 2019 In loving memory of my dad, whose passion for adventure, sport and all of nature’s life and diversity inspired so many kids, including me, whose positive and generous attitude touched so many people’s lives, and whose love for the ocean has carried over to me. The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen Abstract Biodiversity is nature’s most valuable resource. The Southern Ocean contains significant levels of marine biodiversity as a result of its isolated history and a combination of exceptional environmental conditions. However, little is known about the spatial and temporal distribution of biodiversity on the Antarctic continental shelf, hindering informed marine spatial planning, policy development underpinning regulation of human activity, and predicting the response of Antarctic marine ecosystems to environmental change. In this thesis, I provide detailed insight into the spatial and temporal distribution of Antarctic benthic macrofaunal and demersal fish biodiversity. Using data from the George V shelf region in East Antarctica, I address some of the main issues currently hindering understanding of the functioning of the Antarctic ecosystem and the distribution of biodiversity at the seafloor. The focus is on spatial biodiversity prediction with particular consideration given to previously unavailable environmental factors that are integral in determining where species are able to live, and the poor relationships often found between species distributions and other environmental factors.
    [Show full text]
  • Mitochondrial DNA, Morphology, and the Phylogenetic Relationships of Antarctic Icefishes
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 28 (2003) 87–98 www.elsevier.com/locate/ympev Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae) Thomas J. Near,a,* James J. Pesavento,b and Chi-Hing C. Chengb a Center for Population Biology, One Shields Avenue, University of California, Davis, CA 95616, USA b Department of Animal Biology, 515 Morrill Hall, University of Illinois, Urbana, IL 61801, USA Received 10 July 2002; revised 4 November 2002 Abstract The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence be- tween existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony- based version of the Shimodaira–Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylo- genetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis.
    [Show full text]
  • Of RV Upolarsternu in 1998 Edited by Wolf E. Arntz And
    The Expedition ANTARKTIS W3(EASIZ 11) of RV uPolarsternuin 1998 Edited by Wolf E. Arntz and Julian Gutt with contributions of the participants Ber. Polarforsch. 301 (1999) ISSN 0176 - 5027 Contents 1 Page INTRODUCTION........................................................................................................... 1 Objectives of the Cruise ................................................................................................l Summary Review of Results .........................................................................................2 Itinerary .....................................................................................................................10 Meteorological Conditions .........................................................................................12 RESULTS ...................................................................................................................15 Benthic Resilience: Effect of Iceberg Scouring On Benthos and Fish .........................15 Study On Benthic Resilience of the Macro- and Megabenthos by Imaging Methods .............................................................................................17 Effects of Iceberg Scouring On the Fish Community and the Role of Trematomus spp as Predator on the Benthic Community in Early Successional Stages ...............22 Effect of Iceberg Scouring on the Infauna and other Macrobenthos ..........................26 Begin of a Long-Term Experiment of Benthic Colonisation and Succession On the High Antarctic
    [Show full text]
  • The Hemoglobins of Sub-Antarctic Fishes of the Suborder Notothenioidei
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Polar Science 4 (2010) 295e308 http://ees.elsevier.com/polar/ The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei Daniela Coppola a, Daniela Giordano a, Alessandro Vergara b, Lelio Mazzarella b, Guido di Prisco a, Cinzia Verde a, Roberta Russo a,* a Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy b Department of Chemistry, University of Naples ‘Federico II’, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Received 16 December 2009; revised 19 April 2010; accepted 19 April 2010 Available online 12 May 2010 Abstract Fishes of the perciform suborder Notothenioidei provide an excellent opportunity for studying the evolution and functional importance of evolutionary adaptations to temperature. To understand the unique biochemical features of high-Antarctic noto- thenioids, it is important to improve our knowledge of these highly cold-adapted stenotherms with new information on their sub- Antarctic relatives. This paper focuses on the oxygen-transport system of two non-Antarctic species, Eleginops maclovinus and Bovichtus diac- anthus. Unlike most Antarctic notothenioids, the blood of E. maclovinus and B. diacanthus displays high hemoglobin (Hb) multiplicity. E. maclovinus, the sister group of Antarctic notothenioids, has one cathodal (Hb C) and two anodal components (Hb 1, Hb 2). B. diacanthus, one of the most northern notothenioids, has three major Hbs. The multiple Hbs may have been maintained as a response to temperature differences and fluctuations of temperate waters, much larger than in the Antarctic.
    [Show full text]
  • 2008-2009 Field Season Report Chapter 9 Antarctic Marine Living Resources Program NOAA-TM-NMFS-SWFSC-445
    2008-2009 Field Season Report Chapter 9 Antarctic Marine Living Resources Program NOAA-TM-NMFS-SWFSC-445 Demersal Finfi sh Survey of the South Orkney Islands Christopher Jones, Malte Damerau, Kim Deitrich, Ryan Driscoll, Karl-Hermann Kock, Kristen Kuhn, Jon Moore, Tina Morgan, Tom Near, Jillian Pennington, and Susanne Schöling Abstract A random, depth-stratifi ed bottom trawl survey of the South Orkney Islands (CCAMLR Subarea 48.2) fi nfi sh populations was completed as part of Leg II of the 2008/09 AMLR Survey. Data collection included abundance, spatial distribution, species and size composition, demographic structure and diet composition of fi nfi sh species within the 500 m isobath of the South Orkney Islands. Additional slope stations were sampled off the shelf of the South Orkney Islands and in the northern Antarctic Peninsula region (Subarea 48.1). During the 2008/09 AMLR Survey: • Seventy-fi ve stations were completed on the South Orkney Island shelf and slope area (63-764 m); • Th ree stations were completed on the northern Antarctic Peninsula slope (623-759 m); • A total of 7,693 kg (31,844 individuals) was processed from 65 fi nfi sh species; • Spatial distribution of standardized fi nfi sh densities demonstrated substantial contrast across the South Orkney Islands shelf area; • Th e highest densities of pooled fi nfi sh biomass occurred on the northwest shelf of the South Orkney Islands, at sta- tions north of Inaccessible and Coronation Islands, and the highest mean densities occurred within the 150-250 m depth stratum; • Th e greatest species diversity of fi nfi sh occurred at deeper stations on the southern shelf region; • Additional data collection of environmental and ecological features of the South Orkney Islands was conducted in order to further investigate Antarctic fi nfi sh in an ecosystem context.
    [Show full text]
  • Biogeographic Atlas of the Southern Ocean
    Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 7. BIOGEOGRAPHIC PATTERNS OF FISH. Duhamel G., Hulley P.-A, Causse R., Koubbi P., Vacchi M., Pruvost P., Vigetta S., Irisson J.-O., Mormède S., Belchier M., Dettai A., Detrich H.W., Gutt J., Jones C.D., Kock K.-H., Lopez Abellan L.J., Van de Putte A.P., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 328-362. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute
    [Show full text]
  • The Molecular Evolution of Rhodopsin in Marine-Derived
    THE MOLECULAR EVOLUTION OF RHODOPSIN IN MARINE-DERIVED AND OTHER FRESHWATER FISHES by Alexander Van Nynatten A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Alexander Van Nynatten (2019) THE MOLECULAR EVOLUTION OF RHODOPSIN IN MARINE-DERIVED AND OTHER FRESHWATER FISHES A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Alexander Van Nynatten (2019) ABSTRACT Visual system evolution can be influenced by the spectral properties of light available in the environment. Variation in the dim-light specialized visual pigment rhodopsin is thought to result in functional shifts that optimize its sensitivity in relation to ambient spectral environments. Marine and freshwater environments have been shown to be characterized by different spectral properties and might be expected to place the spectral sensitivity of rhodopsin under different selection pressures. In Chapter two, I show that the rate ratio of non- synonymous to synonymous substitutions is significantly elevated in the rhodopsin gene of a South American clade of freshwater anchovies with marine ancestry. This signature of positive selection is not observed in the rhodopsin gene of the marine sister clade or in non-visual genes. ii In Chapter three I functionally characterize the effects of positively selected substitutions occurring on another independent invasion of freshwater made by ancestrally marine croakers. In vitro spectroscopic assays on ancestrally resurrected rhodopsin pigments reveal a red-shift in peak spectral sensitivity along the transitional branch, consistent with the wavelengths of light illuminating freshwater environments.
    [Show full text]
  • The Role of Notothenioid Fish in the Food Web of the Ross Sea Shelf Waters
    Polar Biol (2004) 27: 321–338 DOI 10.1007/s00300-004-0599-z REVIEW M. La Mesa Æ J. T. Eastman Æ M. Vacchi The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review Received: 27 June 2003 / Accepted: 23 January 2004 / Published online: 12 March 2004 Ó Springer-Verlag 2004 Abstract The Ross Sea, a large, high-latitude (72–78°S) are benthic predators on fish while smaller species feed embayment of the Antarctic continental shelf, averages mainly on benthic crustaceans. Channichthyids are less 500 m deep, with troughs to 1,200 m and the shelf break dependent on the bottom for food than other notothe- at 700 m. It is covered by pack ice for 9 months of the nioids. Some species combine benthic and pelagic life year. The fish fauna of about 80 species includes pri- styles; others are predominantly pelagic and all consume marily 4 families and 53 species of the endemic perci- euphausiids and/or fish. South polar skuas, Antarctic form suborder Notothenioidei. This review focuses on petrels, Ade´lie and emperor penguins, Weddell seals and the diet and role in the food web of notothenioids and minke and killer whales are the higher vertebrate com- top-level bird and mammal predators, and also includes ponents of the food web, and all prey on notothenioids new information on the diets of artedidraconids and to some extent. Based on the frequency of occurrence of bathydraconids. Although principally a benthic group, prey items in the stomachs of fish, bird and mammal notothenioids have diversified to form an adaptive predators, P.
    [Show full text]
  • Phylogenetic Analysis of Antarctic Notothenioids Illuminates the Utility of 7 Radseq for Resolving Cenozoic Adaptive Radiations
    0ROHFXODU3K\ORJHQHWLFVDQG(YROXWLRQ ² Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic analysis of Antarctic notothenioids illuminates the utility of 7 RADseq for resolving Cenozoic adaptive radiations Thomas J. Neara,b,⁎, Daniel J. MacGuigana, Elyse Parkera, Carl D. Struthersc, Christopher D. Jonesd, Alex Dornburge a Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA b Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA c Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand d Antarctic Ecosystem Research Division, NOAA Southwest Fisheries Science Center, La Jolla, CA 92037, USA e North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA ARTICLE INFO ABSTRACT Keywords: Notothenioids are a clade of ∼120 species of marine fishes distributed in extreme southern hemisphere tem- Notothenioidei perate near-shore habitats and in the Southern Ocean surrounding Antarctica. Over the past 25 years, molecular Phylogenomics and morphological approaches have redefined hypotheses of relationships among notothenioid lineages as well Phylogenetic informativeness as their relationships among major lineages of percomorph teleosts. These phylogenies provide a basis for in- Signal noise vestigation of mechanisms of evolutionary diversification within the clade and have enhanced our understanding Icefishes of the notothenioid adaptive radiation. Despite extensive efforts, there remain several questions concerning the phylogeny of notothenioids. In this study, we deploy DNA sequences of ∼100,000 loci obtained using RADseq to investigate the phylogenetic relationships of notothenioids and to assess the utility of RADseq loci for lineages that exhibit divergence times ranging from the Paleogene to the Quaternary.
    [Show full text]
  • Blood Physiology and Ecological Consequences in Weddell Sea Fishes (Antarctica)
    Blood Physiology and Ecological Consequences in Weddell Sea Fishes (Antarctica) Blutphysiologie und ökologisch Konsequenzen von Fischen des Weddellmeeres (Antarktis) Andreas Kunzmann Ber. Polarforsch. 91 (1991) ISSN 0176 - 5027 Andreas Kunzmann Institut füPolarökologie Christian-Albrechts-Universitä zu Kiel, Olshausenstraß40-60, D-2300 Kiel 1, Bundesrepublik Deutschland Printed version of a Ph. D. Thesis of the mathematisch-naturwissenschaftlicheFakultä of the University of Kiel Druckfassung einer Dissertation füdie mathematisch-naturwissenschaftliche Fakultä der Christian-Albrechts-Universitäzu Kiel Summary ..................................................... l Zusammenfassung ............................................. 3 Introduction ................................................... 5 BLOOD FWNCTIONS ........................................ 5 FISHBLOOD .............................................. 5 Haematological adaptations ............................... 6 Multiple components .................................... 7 Haemoglobin structure and function .......................... 7 ANTARCTIC FISHES AND THEIR ENVIRONMENT ................. 10 Present knowledge in respiratory physiology .................... 12 HYPOTHESES ............................................. 14 Materials and Methods ..........................................15 COLLECTION OF FISHES ....................................15 ANALYSIS OF BLOOD SAMPLES .............................. 16 STRUCTURAL STUDIES .....................................24 FWNCTIONAL STUDIES
    [Show full text]
  • Identification Key an Talogue O Larval Antarctic Fishe Dited by Adolf Kellerrnann
    Identification Key an talogue o Larval Antarctic Fishe dited by Adolf Kellerrnann Prepared and published with the support of the Alfred-Wegener-Institut füPolar- und Meeresforschung, SCAR (Scientific Committee on Antarctic Research) and CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) Ber. Polarforsch. 67 (1990) ISSN 0176-5027. This volurne will also be oublished in the BIOMASS Scientific Series, Vol. 10 Dr. Adolf Kellermann Alfred-Wegener-Institute for Polar and Marine Research 2850 Bremerhaven FRG present address: University of Hawaii Oceanic Biology, MSB R622 1000 Pope Road Honolulu, Hl 96822 USA Mr. Anthony W. North British Antarctic Survey Madingley Road Cambridge CB3 OET UK .. - 111 - CONTENTS Key to the early stages of Antarctic fish (A.W. North and A. Kellermann) .........................................................................1 Catalogue of early life stages of Antarctic notothenioid fishes (A. Kellermann) .....................................................................................................45 Preface This booklet has two parts which are cornplementary to each other: an identification key which atternpts to include larvae from all fish families occurring in the Southern Ocean, and a catalogue which considers only the early Stages of the most abundant bottorn dwel- ling fishes, the percomorph notothenioid fishes. The original idea conceived in 1985 was to produce a synopsis of what was known about the larval development and ecology of notothenioid fishes as the peculiar element of the Antarctic fish fauna. Later On, when ichthyologists had become aware that difficulties still existed in identifying these larvae, it was suggested during the BIOMASS Post-SIBEX Fish Data Evaluation Workshop held at Carnbridge, 1986, to have both, a key and a catalogue in one volume, with the key to be produced in collaboration with Tony North of the British Antarctic Survey.
    [Show full text]
  • Parasite Fauna of the Antarctic Dragonfish Parachaenichthys Charcoti
    Münster et al. Parasites & Vectors (2017) 10:235 DOI 10.1186/s13071-017-2176-7 RESEARCH Open Access Parasite fauna of the Antarctic dragonfish Parachaenichthys charcoti (Perciformes: Bathydraconidae) and closely related Bathydraconidae from the Antarctic Peninsula, Southern Ocean Julian Münster*, Judith Kochmann, Juline Grigat, Sven Klimpel and Thomas Kuhn Abstract Background: As members of the Notothenioidei - the dominant fish taxon in Antarctic waters - the family Bathydraconidae includes 12 genera and 17 species. The knowledge of these species inhabiting an isolated environment is rather fragmentary, including their parasite fauna. Studies on fish hosts and their associated parasites can help gain insights into even remote ecosystems and be used to infer ecological roles in food webs; however, ecological studies on the Bathydraconidae are scarce. Results: In this study, stomach contents and parasite fauna of the Antarctic dragonfish species Parachaenichthys charcoti (n =47specimens)aswellasofGerlachea australis (n =5),Gymnodraco acuticeps (n =9)andRacovitzia glacialis (n =6) were examined. The parasite fauna of P. charcoti consisted of eight genera represented by 11 species, with three of them being new host records. Overall, 24 parasite genera and 26 species were found in the sampled fish, including eleven new host records. Conclusion: Analyses revealed that the majority of the parasite species found in the different fish hosts are endemic to Antarctic waters and are characterized by a broad host range. These findings are evidence
    [Show full text]