The Hemoglobins of Sub-Antarctic Fishes of the Suborder Notothenioidei

Total Page:16

File Type:pdf, Size:1020Kb

The Hemoglobins of Sub-Antarctic Fishes of the Suborder Notothenioidei View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Polar Science 4 (2010) 295e308 http://ees.elsevier.com/polar/ The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei Daniela Coppola a, Daniela Giordano a, Alessandro Vergara b, Lelio Mazzarella b, Guido di Prisco a, Cinzia Verde a, Roberta Russo a,* a Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy b Department of Chemistry, University of Naples ‘Federico II’, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Received 16 December 2009; revised 19 April 2010; accepted 19 April 2010 Available online 12 May 2010 Abstract Fishes of the perciform suborder Notothenioidei provide an excellent opportunity for studying the evolution and functional importance of evolutionary adaptations to temperature. To understand the unique biochemical features of high-Antarctic noto- thenioids, it is important to improve our knowledge of these highly cold-adapted stenotherms with new information on their sub- Antarctic relatives. This paper focuses on the oxygen-transport system of two non-Antarctic species, Eleginops maclovinus and Bovichtus diac- anthus. Unlike most Antarctic notothenioids, the blood of E. maclovinus and B. diacanthus displays high hemoglobin (Hb) multiplicity. E. maclovinus, the sister group of Antarctic notothenioids, has one cathodal (Hb C) and two anodal components (Hb 1, Hb 2). B. diacanthus, one of the most northern notothenioids, has three major Hbs. The multiple Hbs may have been maintained as a response to temperature differences and fluctuations of temperate waters, much larger than in the Antarctic. Although non- Antarctic notothenioids have never developed cold adaptation, the amino-acid sequence reveals high identity with the globins of Antarctic notothenioids. Hbs of sub-Antarctic notothenioids are characterised by high oxygen affinity and Root effect. Phylogenetic analyses are consistent with the hypothesis that Bovichtidae and Eleginopidae diverged after they became established in more temperate waters north of the Antarctic Polar Front. Ó 2010 Elsevier B.V. and NIPR. All rights reserved. Keywords: Hemoglobin; Fish; Hemoglobin multiplicity; Root effect 1. Introduction of water, uniquely cold and thermally stable. The opening of the Drake Passage, occurred approximately The formation of the Southern Ocean, which 41 million years ago, and the formation of the Tas- surrounds Antarctica and includes the Weddell and manian Gateway few millions years after, are the two Ross Seas, was marked by the creation of a large mass key events (Scher and Martin, 2006). The separation of the southern landmasses led to the development of the * Corresponding author. Antarctic Circumpolar Current (ACC), and this in turn E-mail address: [email protected] (R. Russo). was at least partially responsible for cooling of 1873-9652/$ - see front matter Ó 2010 Elsevier B.V. and NIPR. All rights reserved. doi:10.1016/j.polar.2010.04.007 296 D. Coppola et al. / Polar Science 4 (2010) 295e308 Antarctic waters from w20 C to the present extreme AFGPs in non-Antarctic notothenioids from South values near À1.8 C(Clarke, 1983). Ocean changes America and New Zealand waters has been examined played a crucial role in establishing the thermal in several studies (Cheng et al., 2003; Cheng and conditions that have driven evolution of the Antarctic Detrich, 2007). The copy numbers of AFGP genes biota (Eastman, 1993). The cold and oxygen-rich and the numbers of AFGPs reflect the harshness of the waters south of the Antarctic Polar Front (APF; the freezing threat that Antarctic notothenioids have to northern boundary of the ACC, a well-defined roughly face, in comparison with temperate notothenioids, circular oceanic system, running between 50S and which reached temperate waters before the production 60S) serve as important effectors of evolution of the of the high levels of AFGPs found in current Antarctic Antarctic marine biota. The APF acts as a cold “wall” notothenioids (Cheng et al., 2003). that hinders mixing of the waters of the Southern In Notothenia angustata and Notothenia micro- Ocean with those of the Indian, Pacific and Atlantic lepidota, living in cool-temperate waters, the AFGP Oceans and limits migration of the fauna of the system is reduced, with very low blood AFGP temperate ocean to the south, and vice versa (Coppes concentration and only two to three genes showing and Somero, 2007). Because of this, the APF acts as some replacements in the functional repeat a barrier for gene flow, causing evolutionary processes ThreAlaeAla (Cheng et al., 2003). Dissostichus ele- to occur in isolation. ginoides, a non-Antarctic notothenioid of the family Diversification of the major group of Antarctic fishes Nototheniidae, appears to have no functional AFGP of the perciform suborder Notothenioidei, largely sequences, consistent with its non-Antarctic distribu- confined within Antarctic and sub-Antarctic waters, has tion. The hypothesis is that this species had the occurred in parallel with the climatic changes. This primordial AFGP genotype, lost or mutated following suborder comprises eight families and 122 species. Five its migration to non-Antarctic habitats (Cheng et al., families and 96 species are Antarctic, whereas three 2003). families and 26 species are non-Antarctic (Eastman, Another remarkable example of adaptation to 2005). Among the five notothenioid families, Notothe- extreme cold found in Antarctic notothenioid fishes is niidae, Harpagiferidae, Artedidraconidae, Bathy- the apparent loss of inducible heat-shock response draconidae and Channichthyidae, 15 species occur (HSR) at constantly cold temperatures (Hofmann et al., along the cool-temperate southern coast of South 2000). Interesting results showed that Bovichtus vari- America and New Zealand (Eastman and Eakin, 2000). egatus (family Bovichtidae) expresses heat-shock These cold-temperate species encounter water temper- proteins (hsp) in response to heat stress, whereas atures of approximately 5e15 C. Three small basal N. angustata, a non-Antarctic notothenioid living in families, 10 of 11 species in the family Bovichtidae, New Zealand waters, does not display the stress- monotypic Pseudaphritidae and Eleginopidae are non- inducible hsp synthesis at the protein-level (Hofmann Antarctic and presumably diverged during the Eocene et al., 2005). These results suggest that HSR, the up- and became established in waters around areas corre- regulation of heat-stress sensitive genes, was lost after sponding to New Zealand, Australia and high-latitude evolution in the subzero, stenothermic environment of South America. They essentially never experienced Antarctic waters during the divergence of Bovichtidae near-freezing water temperatures, and absence of from the other Antarctic notothenioid families. detectable antifreeze-glycoprotein (AFGP) coding Red-blooded high-Antarctic notothenioid families sequence in Bovichtidae, Pseudaphritidae and Ele- have evolved a suite of physiological and molecular ginopidae supports this scenario for the basal notothe- adaptations, accompanied by a decrease in Hb oxygen nioid lineages (Cheng et al., 2003). affinity and concentration (Verde et al., 2006b). Hb- To understand the unique biochemical features of less Channichthyidae represent the extreme of this high-Antarctic notothenioids, it is important to enrich trend (Ruud, 1954). our knowledge of these highly cold-adapted steno- This paper provides preliminary data on the oxygen- therms with new information on their sub-Antarctic transport system of two non-Antarctic species, Ele- relatives. ginops maclovinus and B. diacanthus. The survival of polar fish depends on the presence E. maclovinus, locally known as mullet or ro´balo, of AFGPs because they avoid freezing by binding is a notothenioid belonging to the family Ele- water to AFGPs, thus preventing growth of ice crystals ginopidae and is the only species of its genus. It is an in their blood and other body fluids (DeVries, 1988; important component of the ichthyofauna in the Cheng and DeVries, 1991). The occurrence of coastal temperate and sub-Antarctic waters of South D. Coppola et al. / Polar Science 4 (2010) 295e308 297 America; it is also found in coastal waters around the 2.3. Amino-acid sequencing Falkland Islands (Falkland Islands Government, 2003; Brickle et al., 2005). E. maclovinus is the sister group Globins of E. maclovinus and B. diacanthus were of Antarctic notothenioids that dominate the cold purified by reverse-phase HPLC on C4 Vydac shelf waters of Antarctica and it is of interest to (4.6 Â 250 mm) columns. Before loading, samples understand notothenioid diversification representing were incubated in a denaturating solution of 5% the “starting point” for the notothenioid radiation b-mercaptoethanol and 1% TFA at room temperature. (Eastman and Lannoo, 2008). The status of Eleginops Fractionation of tryptic peptides and subsequent as sister group of Antarctic notothenioids is supported amino-acid sequencing were carried out as previously by phylogenetic analyses employing both morpho- described (Verde et al., 2002). Nucleotide sequences logical (Balushkin, 2000) and molecular data, were established by cloning and sequence analysis of including partial (Bargelloni et al., 2000) and globin cDNAs: complete 16S rRNA (Near et al., 2004) mtDNA gene sequences. a) B. diacanthus: total RNA was isolated from the South
Recommended publications
  • Phylogeography of the Sub-Antarctic Notothenioid Wsh Eleginops Maclovinus: Evidence of Population Expansion
    Mar Biol (2012) 159:499–505 DOI 10.1007/s00227-011-1830-4 ORIGINAL PAPER Phylogeography of the sub-Antarctic notothenioid Wsh Eleginops maclovinus: evidence of population expansion Santiago Guillermo Ceballos · Enrique Pablo Lessa · Mariela Fernanda Victorio · Daniel Alfredo Fernández Received: 8 June 2011 / Accepted: 20 October 2011 / Published online: 16 November 2011 © Springer-Verlag 2011 Abstract Phylogeography studies add insights into the Introduction geographic and evolutionary processes that underline the genetic divergence of populations. This work examines the Eleginops maclovinus (Cuvier and Valenciennes 1830), geographic genetic structure of the Patagonian blennie, Ele- known as róbalo in Argentina and Chile, is a notothenioid ginops maclovinus, a notothenioid (Perciformes) endemic Wsh (Perciformes) of the monotypic family Eleginopidae. to South American temperate and sub-Antarctic waters, This marine Wsh is endemic to the coastal temperate and using mitochondrial DNA cytochrome b sequences. We sub-Antarctic waters of South America with a range along found 58 haplotypes in the analysis of 261 individual the Atlantic and PaciWc Patagonian coasts from Valparaiso, sequences of 833 base pairs in length. Among-population Chile (33°S) (Pequeño 1989) to San Matias Gulf, Argentina variance was very low (1.62%) and many haplotypes were (40°S) (Cousseau and Perrotta 2000). This eurithermic and shared between several populations across the species geo- euryhaline species that has been described as a protandrous graphic range. Genetic diVerentiation was not consistent hermaphrodite (Calvo et al. 1992; Brickle et al. 2005; with a simple model of isolation by distance, possibly sug- Licandeo et al. 2006) inhabits costal waters, river mouths gesting a lack of equilibrium between gene Xow and local and estuaries (Gosztonyi 1980).
    [Show full text]
  • Jan Jansen, Dipl.-Biol
    The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen, Dipl.-Biol. Under the supervision of Craig R. Johnson Nicole A. Hill Piers K. Dunstan and John McKinlay Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Quantitative Antarctic Science Institute for Marine and Antarctic Studies (IMAS), University of Tasmania May 2019 In loving memory of my dad, whose passion for adventure, sport and all of nature’s life and diversity inspired so many kids, including me, whose positive and generous attitude touched so many people’s lives, and whose love for the ocean has carried over to me. The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen Abstract Biodiversity is nature’s most valuable resource. The Southern Ocean contains significant levels of marine biodiversity as a result of its isolated history and a combination of exceptional environmental conditions. However, little is known about the spatial and temporal distribution of biodiversity on the Antarctic continental shelf, hindering informed marine spatial planning, policy development underpinning regulation of human activity, and predicting the response of Antarctic marine ecosystems to environmental change. In this thesis, I provide detailed insight into the spatial and temporal distribution of Antarctic benthic macrofaunal and demersal fish biodiversity. Using data from the George V shelf region in East Antarctica, I address some of the main issues currently hindering understanding of the functioning of the Antarctic ecosystem and the distribution of biodiversity at the seafloor. The focus is on spatial biodiversity prediction with particular consideration given to previously unavailable environmental factors that are integral in determining where species are able to live, and the poor relationships often found between species distributions and other environmental factors.
    [Show full text]
  • Age-Length Composition of Mackerel Icefish (Champsocephalus Gunnari, Perciformes, Notothenioidei, Channichthyidae) from Different Parts of the South Georgia Shelf
    CCAMLR Scieilce, Vol. 8 (2001): 133-146 AGE-LENGTH COMPOSITION OF MACKEREL ICEFISH (CHAMPSOCEPHALUS GUNNARI, PERCIFORMES, NOTOTHENIOIDEI, CHANNICHTHYIDAE) FROM DIFFERENT PARTS OF THE SOUTH GEORGIA SHELF G.A. Frolkina AtlantNIRO 5 Dmitry Donskoy Street Kaliningrad 236000, Russia Email - atlantQbaltnet.ru Abstract Biostatistical data obtained by Soviet research and commercial vessels from 1970 to 1991 have been used to determine tlne age-length composition of mackerel icefish (Chnnzpsoceplzalus g~~izllnrl)from different parts of the South Georgia area. An analysis of the spatial distribution of C. giirzrznri size and age groups over the eastern, northern, western and soutlnern parts of tlne shelf, and near Shag Rocks, revealed a similar age-leingtl~composition for young fish inhabiting areas to the west of the island and near Shag Rocks. Differences were observed between those t~7ogroups and the easterin group. The larger number of mature fish in the west is related to the migration of maturing individuals from the eastern and western parts of the area. It is implied that part of tlne western group migrates towards Shag Rocks at the age of 2-3 years. It has been found that, by number, recruits represent the largest part of tlne population, whether a fishery is operating or not. As a result of this, as well as the species' ability to live not only in off- bottom, but also in pelagic waters, an earlier age of sexual maturity compared to other nototheniids, and favourable oceanographic conditions, the C. g~lrliznrl stock could potentially recover quickly from declines in stock size and inay become abundant in the area, as has bee11 demonstrated on several occasions in the 1970s and 1980s.
    [Show full text]
  • Dietary Resilience Among Hunter-Gatherers of Tierra Del Fuego: Isotopic Evidence in a Diachronic Perspective
    RESEARCH ARTICLE Dietary resilience among hunter-gatherers of Tierra del Fuego: Isotopic evidence in a diachronic perspective Mary Anne Tafuri1☯*, Atilio Francisco Javier Zangrando2☯*, Augusto Tessone3, Sayuri Kochi3, Jacopo Moggi Cecchi4, Fabio Di Vincenzo1, Antonio Profico1, Giorgio Manzi1 1 Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy, 2 CADIC ± CONICET, Ushuaia, Argentina, 3 INGEIS-CONICET, PabelloÂn INGEIS, Buenos Aires, Argentina, 4 Dipartimento di Biologia, Università degli Studi di Firenze, Firenze, Italy a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (MAT); [email protected] (AFJZ) a1111111111 a1111111111 Abstract The native groups of Patagonia have relied on a hunter-gatherer economy well after the first Europeans and North Americans reached this part of the world. The large exploitation of OPEN ACCESS marine mammals (i.e., seals) by such allochthonous groups has had a strong impact on the Citation: Tafuri MA, Zangrando AFJ, Tessone A, Kochi S, Moggi Cecchi J, Di Vincenzo F, et al. local ecology in a way that might have forced the natives to adjust their subsistence strate- (2017) Dietary resilience among hunter-gatherers gies. Similarly, the introduction of new foods might have changed local diet. These are the of Tierra del Fuego: Isotopic evidence in a premises of our isotopic-based analysis. There is a large set of paleonutritional investiga- diachronic perspective. PLoS ONE 12(4): tions through isotopic analysis on Fuegians groups, however a systematic exploration of e0175594. https://doi.org/10.1371/journal. pone.0175594 food practices across time in relation to possible pre- and post-contact changes is still lack- ing.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Piscirickettsiosis and Piscirickettsia Salmonis in Fish: a Review
    Journal of Fish Diseases 2014, 37, 163–188 doi:10.1111/jfd.12211 Review Piscirickettsiosis and Piscirickettsia salmonis in fish: a review M Rozas1,2 and R Enrıquez3 1 Faculty of Veterinary Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile 2 Laboratory of Fish Pathology, Pathovet Ltd., Puerto Montt, Chile 3 Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile prevention of and treatment for piscirickettsiosis Abstract are discussed. The bacterium Piscirickettsia salmonis is the aetio- Keywords: control, epidemiology, pathogenesis, logical agent of piscirickettsiosis a severe disease pathology, Piscirickettsia salmonis, piscirickettsiosis, that has caused major economic losses in the transmission. aquaculture industry since its appearance in 1989. Recent reports of P. salmonis or P. salmonis-like organisms in new fish hosts and geographical regions have increased interest in the bacterium. Introduction Because this gram-negative bacterium is still poorly understood, many relevant aspects of its Piscirickettsia salmonis was the first rickettsia-like life cycle, virulence and pathogenesis must be bacterium to be known as a fish pathogen (Fryer investigated before prophylactic procedures can be et al. 1992). Since the first reports of pisciricketts- properly designed. The development of effective iosis in Chile at the end of the 1980s, Piscirickett- control strategies for the disease has been limited sia-like bacteria have been frequently recognized due to a lack of knowledge about the biology, in various fish species farmed in fresh water and intracellular growth, transmission and virulence of sea water and have significantly affected the pro- the organism. Piscirickettsiosis has been difficult ductivity of aquaculture worldwide (Mauel & to control; the failure of antibiotic treatment is Miller 2002).
    [Show full text]
  • Proximal Composition and Fatty Acid Profile of Hemigrapsus
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.231834 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Proximal composition and fatty acid profile ofHemigrapsus crenulatus (H. Milne Edwards, 1837) as one of the main foods of “patagonian blenny”Eleginops maclovinus (Cuvier, 1830) G. Figueroa-Muñoza,b,c , P. De los Ríos-Escalanted,e , P. Dantagnana,f , C. Toledog , R. Oyarzúnh , L. Vargas-Chacoffh , C. Essei and R. Vega-Aguayoa,f* aUniversidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Agropecuarias y Acuícolas, Temuco, Chile bIlustre Municipalidad de Cisnes, Puerto Cisnes, Chile cUniversidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Genomics in Ecology, Evolution and Conservation Laboratory – GEECLAB, Concepción, Chile dUniversidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Temuco, Chile eUniversidad Católica de Temuco, Núcleo de Estudios Ambientales, Temuco, Chile fUniversidad Católica de Temuco, Núcleo de Investigación en Producción Alimentaria, Temuco, Chile gUniversidad Católica de Temuco, Facultad de Recursos Naturales, Programa de Doctorado en Ciencias Agropecuarias, Temuco, Chile hUniversidad Austral de Chile, Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias- FONDAP, Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes-IDEAL, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile iUniversidad Autónoma de Chile, Facultad de Arquitectura y Construcción, Instituto de Estudios del Hábitat – IEH, Unidad de Cambio Climático y Medio Ambiente – UCCMA, Temuco, Chile *e-mail: [email protected] Received: December 05, 2019 - Accepted: April 07, 2020 - Distributed: August 31, 2021 Abstract The Patagonian blenny (Eleginops maclovinus) is species endemic to South America with physiological characteristics that would facilitate its incorporation into Chilean aquaculture.
    [Show full text]
  • A Biodiversity Survey of Scavenging Amphipods in a Proposed Marine Protected Area: the Filchner Area in the Weddell Sea, Antarctica
    Polar Biology https://doi.org/10.1007/s00300-018-2292-7 ORIGINAL PAPER A biodiversity survey of scavenging amphipods in a proposed marine protected area: the Filchner area in the Weddell Sea, Antarctica Charlotte Havermans1,2 · Meike Anna Seefeldt2,3 · Christoph Held2 Received: 17 October 2017 / Revised: 23 February 2018 / Accepted: 24 February 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract An integrative inventory of the amphipod scavenging fauna (Lysianassoidea), combining morphological identifcations with DNA barcoding, is provided here for the Filchner area situated in the south-eastern Weddell Sea. Over 4400 lysianassoids were investigated for species richness and relative abundances, covering 20 diferent stations and using diferent sampling devices, including the southernmost baited traps deployed so far (76°S). High species richness was observed: 29 morphos- pecies of which 5 were new to science. Molecular species delimitation methods were carried out with 109 cytochrome c oxidase I gene (COI) sequences obtained during this study as well as sequences from specimens sampled in other Antarctic regions. These distance-based analyses (trees and the Automatic Barcode Gap Discovery method) indicated the presence of 42 lineages; for 4 species, several (cryptic) lineages were found. More than 96% of the lysianassoids collected with baited traps belonged to the species Orchomenella pinguides s. l. The diversity of the amphipod scavenger guild in this ice-bound ecosystem of the Weddell Sea is discussed in the light of bottom–up selective forces. In this southernmost part of the Weddell Sea, harbouring spawning and nursery grounds for silverfsh and icefshes, abundant fsh and mammalian food falls are likely to represent the major food for scavengers.
    [Show full text]
  • Vascular Morphometry of the Retina in Antarctic Fishes Is Dependent Upon the Level of Hemoglobin in Circulation Jody M
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2006 Vascular Morphometry of the Retina in Antarctic Fishes is Dependent upon the Level of Hemoglobin in Circulation Jody M. Wujcik Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Oceanography Commons Recommended Citation Wujcik, Jody M., "Vascular Morphometry of the Retina in Antarctic Fishes is Dependent upon the Level of Hemoglobin in Circulation" (2006). Electronic Theses and Dissertations. 135. http://digitalcommons.library.umaine.edu/etd/135 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. VASCULAR MORPHOMETRY OF THE RETINA IN ANTARCTIC FISHES IS DEPENDENT UPON THE LEVEL OF HEMOGLOBIN IN CIRCULATION BY Jody M. Wujcik B.S. East Stroudsburg University, 2004 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine August, 2006 Advisory Committee: Bruce D. Sidell, Professor of Marine Sciences, Advisor Harold B. Dowse, Professor of Biological Sciences Seth Tyler, Professor of Zoology and Cooperating Professor of Marine Sciences VASCULAR MORPHOMETRY OF THE RETINA IN ANTARCTIC FISHES IS DEPENDENT UPON THE LEVEL OF HEMOGLOBIN IN CIRCULATION By Jody M. Wujcik Thesis Advisor: Dr. Bruce D. Side11 An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) August, 2006 Antarctic notothenioids express the circulating oxygen-binding protein hemoglobin (Hb) over a broad range of blood concentrations.
    [Show full text]
  • Climate Change Direct Effects on Antarctic Fish and Indirect Effects on Ecosystems and Fisheries Management
    PCAS 15 (2012/2013) Supervised Project Report (ANTA604) Climate change direct effects on Antarctic fish and indirect effects on ecosystems and fisheries management Beth Vanderhaven Student ID:42236339 Word count:4816 Abstract/executive summary (ca. 200 words): Climate change has direct effects on the physiology of Antarctic fish. These polar fish, predominantly from Notothenioidei, are well adapted for the stable, cold environmental conditions of the Southern Ocean. Physiological adaptations include antifreeze glycogen proteins (AFGP) and a narrow tolerance to temperature change. Climate change does not impact evenly around Antarctica, in areas of warming there are predicted negative effects on fish stock and survivability, habitats and indirectly ecosystems. In turn fisheries and their management must also take into account the direct impacts on the Antarctic fish they harvest. This critical review identifies specific areas of weakness of fish species, habitats and the Antarctic marine ecosystem. Whilst also identifying current fisheries issues that need to be addressed due to the direct influences on the Antarctic fish. Table of contents Introduction ……….………………………………………………………………………………………………page 3 Climate change………….…………………………………………………………………………………….…page 3-4 Antarctic fish…………………………………………………………………………………………………...…page 4-6 Direct effects on fish…………………………….………………………………………………………..….page 6-7 Ecosystem effects……………………………………………..………..…………………………..………...page 7-8 Management and Fisheries……….…………………………………………………………………….….page 8 Discussion and Conclusion…………………………………………………………………………………..page 9-10 References…………………………………………..…………………………………………..………………...page 10-13 Page nos. 1-13 Word count. 4816 Introduction Fisheries in the Southern Ocean are the longest continuous human activity in Antarctica and have had the greatest effect on the ecosystem up to this point (Croxall & Nicol, 2004). Now we are seeing the effects climate change is having on its ecosystem and fish, identifying it now as the current and future threat to them.
    [Show full text]
  • Mitochondrial DNA, Morphology, and the Phylogenetic Relationships of Antarctic Icefishes
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 28 (2003) 87–98 www.elsevier.com/locate/ympev Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae) Thomas J. Near,a,* James J. Pesavento,b and Chi-Hing C. Chengb a Center for Population Biology, One Shields Avenue, University of California, Davis, CA 95616, USA b Department of Animal Biology, 515 Morrill Hall, University of Illinois, Urbana, IL 61801, USA Received 10 July 2002; revised 4 November 2002 Abstract The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence be- tween existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony- based version of the Shimodaira–Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylo- genetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis.
    [Show full text]
  • Of RV Upolarsternu in 1998 Edited by Wolf E. Arntz And
    The Expedition ANTARKTIS W3(EASIZ 11) of RV uPolarsternuin 1998 Edited by Wolf E. Arntz and Julian Gutt with contributions of the participants Ber. Polarforsch. 301 (1999) ISSN 0176 - 5027 Contents 1 Page INTRODUCTION........................................................................................................... 1 Objectives of the Cruise ................................................................................................l Summary Review of Results .........................................................................................2 Itinerary .....................................................................................................................10 Meteorological Conditions .........................................................................................12 RESULTS ...................................................................................................................15 Benthic Resilience: Effect of Iceberg Scouring On Benthos and Fish .........................15 Study On Benthic Resilience of the Macro- and Megabenthos by Imaging Methods .............................................................................................17 Effects of Iceberg Scouring On the Fish Community and the Role of Trematomus spp as Predator on the Benthic Community in Early Successional Stages ...............22 Effect of Iceberg Scouring on the Infauna and other Macrobenthos ..........................26 Begin of a Long-Term Experiment of Benthic Colonisation and Succession On the High Antarctic
    [Show full text]