The Spatio-Temporal Dynamic Pattern of Rural Residential Land in China in the 1990S Using Landsat TM Images and GIS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gu Yuxuan, Shijiazhuang Foreign Language School Shijiazhuang, Hebei Province, China China, Factor 6: Sustainable Agriculture
Gu Yuxuan, Shijiazhuang Foreign Language School Shijiazhuang, HeBei Province, China China, Factor 6: Sustainable Agriculture China: Sustainable Land Use on Sanjiang Plain Located in the northeast corner of China, Sanjiang Plain is in the administrative divisions of Heilongjiang Province. Amur River, Ussuri River and Songhua River joining together, with their waves impacting the soil, formed this flat and fertile alluvial plain whose total area is 108,900 square kilometers. The surface is wet and always has surplus water because of the broad and flat terrain. The cold and wet climate condition causes heavy precipitations in summer and autumn. Rivers run slowly with sudden flood peak periods. Seasonal freezing-thawing soil covers the whole plain. All those account for large areas of swamp water and vegetation which involves 2.4 million hectares of swamp and marsh soil, ranking China’s largest swamp area. Ten wetland nature reserves were set up, attracting many international ecological and environmental protection organizations. The region, which is covered with 10 to 15 cm of water and the total quantity is 18.764 billion cubic meters, is home to many first-class national protected animals. For instance, the red-crowned cranes in the IUCN (World Conservation Union) red list, the Chinese merganser and the Siberian tiger all find their habit in this plain. Sod layer soils are thick, generally 30 to 40 cm. In the area lies the most fertile black earth in China, and it’s one of the three black earth terrains in the world. High in organic matter, the organic matter is 3% to 10%. -
New Insight Into the Phylogeographic Pattern Of
New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east–west lineage split and genetic mixture within western subtropical China Aihong Yang, Yongda Zhong, Shujuan Liu, Lipan Liu, Tengyun Liu, Yanqiang Li and Faxin Yu The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China ABSTRACT Background: Subtropical China is a global center of biodiversity and one of the most important refugia worldwide. Mountains play an important role in conserving the genetic resources of species. Liriodendron chinense is a Tertiary relict tree largely endemic to subtropical China. In this study, we aimed to achieve a better understanding of the phylogeographical pattern of L. chinense andtoexploretheroleofmountainsintheconservationofL. chinense genetic resources. Methods: Three chloroplast regions (psbJ-petA, rpl32-ndhF, and trnK5’-matK) were sequenced in 40 populations of L. chinense for phylogeographical analyses. Relationships among chloroplast DNA (cpDNA) haplotypes were determined using median-joining networks, and genetic structure was examined by spatial analysis of molecular variance (SAMOVA). The ancestral area of the species was reconstructed using the Bayesian binary Markov Chain Monte Carlo (BBM) method according to its geographic distribution and a maximum parsimony (MP) tree based on Bayesian methods. Results: Obvious phylogeographic structure was found in L. chinense. SAMOVA Submitted 13 September 2018 revealed seven groups matching the major landscape features of the L. chinense Accepted 26 December 2018 Published 1 February 2019 distribution area. The haplotype network showed three clades distributed in the eastern, southwestern, and northwestern regions. Separate northern and southern Corresponding author Faxin Yu, [email protected] refugia were found in the Wu Mountains and Yungui Plateau, with genetic admixture in the Dalou Mountains and Wuling Mountains. -
China's Special Poor Areas and Their Geographical Conditions
sustainability Article China’s Special Poor Areas and Their Geographical Conditions Xin Xu 1,2, Chengjin Wang 1,2,*, Shiping Ma 1,2 and Wenzhong Zhang 1,2 1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (X.X.); [email protected] (S.M.); [email protected] (W.Z.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Abstract: Special functional areas and poor areas tend to spatially overlap, and poverty is a common feature of both. Special poor areas, taken as a kind of “policy space,” have attracted the interest of researchers and policymakers around the world. This study proposes a basic concept of special poor areas and uses this concept to develop a method to identify them. Poor counties in China are taken as the basic research unit and overlaps in spatial attributes including old revolutionary bases, borders, ecological degradation, and ethnic minorities, are used to identify special poor areas. The authors then analyze their basic quantitative structure and pattern of distribution to determine the geographical bases’ formation and development. The results show that 304 counties in China, covering a vast territory of 12 contiguous areas that contain a small population, are lagging behind the rest of the country. These areas are characterized by rich energy and resource endowments, important ecological functions, special historical status, and concentrated poverty. They are considered “special poor” for geographical reasons such as a relatively harsh natural geographical environment, remote location, deteriorating ecological environment, and an inadequate infrastructure network and public service system. -
(Leech, 1890) (Lepidoptera: Hesperiidae) with Description of Female Genitalia and Taxonomic Notes
© Entomologica Fennica. 31 August 2016 Distribution of Onryza maga (Leech, 1890) (Lepidoptera: Hesperiidae) with description of female genitalia and taxonomic notes Guoxi Xue, Yufei Li, Zihao Liu, Meng Li & Yingdang Ren Xue, G. X., Li, Y.F., Liu, Z. H., Li, M. & Ren, Y.D. 2016: Distribution of Onryza maga (Leech, 1890) (Lepidoptera: Hesperiidae) with description of female geni- talia and taxonomic notes. — Entomol. Fennica 27: 70–76. For more than twenty years, Hainan, Vietnam, Myanmar, Thailand, Malaysia, Singapore and Indonesia have been erroneously reported in Chinese literature as belonging to the distribution range of Onryza maga (Leech 1890). Based upon a careful survey of specimens and relevant literature, these regions are omitted from the known range of this species. Onryza maga maga is found from northeast Guizhou, south Henan and Qinling-Daba Mountains in Shaanxi of China, its oc- currence in Hunan is confirmed. The adults are redescribed and the variability of wing patterns is discussed. Female genitalia are illustrated and described for the first time. Some biological information and an updated distribution map of the species are provided. G. X. Xue & M. Li, School of Food and Bioengineering, Zhengzhou University of Light Industry, No. 5 Dongfeng Road, Zhengzhou, Henan, 450002, P. R. China; Corresponding author’s e-mail: [email protected] Y. F. Li, School of Medicine, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an, Shaanxi, 710061, P. R. China Z. H. Liu, School of Physics, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China Y. D. -
Study on the Coniferous Characters of Pinus Yunnanensis and Its Clustering Analysis
Journal of Polymer Science and Engineering (2017) Original Research Article Study on the Coniferous Characters of Pinus yunnanensis and Its Clustering Analysis Zongwei Zhou,Mingyu Wang,Haikun Zhao Huangshan Institute of Botany, Anhui Province, China ABSTRACT Pine is a relatively easy genus for intermediate hybridization. It has been widely believed that there should be a natural hybrid population in the distribution of Pinus massoniona Lamb. and Pinus hangshuanensis Hsia, that is, the excessive type of external form between Pinus massoniana and Pinus taiwanensis exist. This paper mainly discusses the traits and clustering analysis of coniferous lozeng in Huangshan scenic area. This study will provide a theoretical basis for the classification of long and outstanding Huangshan Song and so on. At the same time, it will provide reference for the phenomenon of gene seepage between the two species. KEYWORDS: Pinus taiwanensis Pinus massoniana coniferous seepage clustering Citation: Zhou ZW, Wang MY, ZhaoHK, et al. Study on the Coniferous Characters of Pinus yunnanensis and Its Clustering Analysis, Gene Science and Engineering (2017); 1(1): 19–27. *Correspondence to: Haikun Zhao, Huangshan Institute of Botany, Anhui Province, China, [email protected]. 1. Introduction 1.1. Research background Huangshan Song distribution in eastern China’s subtropical high mountains, more than 700m above sea level. Masson pine is widely distributed in the subtropical regions of China, at the lower reaches of the Yangtze River, vertically distributed below 700m above sea level, the upper reaches of the Yangtze River area, the vertical height of up to 1200 - 1500m or so. In the area of Huangshan Song and Pinus massoniana, an overlapping area of Huangshan Song and Pinus massoniana was formed between 700 - 1000m above sea level. -
Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility -
Assessment and Analysis of Groundwater Overexploitation in China
E3S Web of Conferences 228, 01008 (2021) https://doi.org/10.1051/e3sconf/202122801008 CCGEES 2020 Assessment and analysis of groundwater overexploitation in China Zepeng Li1, Xin He1, *, Chuiyu Lu1 1China Institute of Water Resources and Hydropower Research, Beijing 100038, China Abstract: As an important water resource, groundwater has been unreasonably developed for a long time in our country, causing a lot of problems. This paper combines the data from the national groundwater monitoring stations and the groundwater depth data collected locally to statistics and analysis of groundwater overexploitation across the country. Especially in key plains, through the water level variation method. The research results are compared and verified with national authoritative data such as Groundwater Dynamics Monthly Report and predecessors' records in the literature, revealing the current key areas of groundwater overexploitation, and clarifying the importance and urgency of groundwater governance in the future. This study also put forward some suggestions of groundwater overexploitation. groundwater monitoring data recorded in the China 1 Introduction Geological Environment Monitoring Groundwater Yearbook (hereinafter referred to as the yearbook) in 2006 Groundwater resources play an indispensable role in and 2016[6]. The groundwater monitoring wells in the social and economic development, food security, and Yearbook are spatially uneven in terms of regional drinking water safety. In China water resources are distribution. This spatial distribution is directly related to unevenly distributed in the north and south, and the total the utilization of groundwater in the local area: Areas amount of water resources is deficient seriously. As a where groundwater is used frequently are also densely reliable source of water supply, groundwater plays an distributed with observation wells. -
Decoupling of Surface and Subsurface Sutures in the Dabie Orogen and a Continent-Collisional Lithospheric-Wedging Model: Sr-Nd-P
FORUMS Chinese Science Bulletin 2003 Vol. 48 No.8 831 838 Keywords: Dabie orogen, post-collisional tectonics, Mesozoic mafic igneous rocks in eastern China, Sr-Nd-Pb isotopic geochemistry. Decoupling of surface and DOI: 10.1360/01wd0554 subsurface sutures in the Based on the distribution of UHPM rocks on the surface in Sulu terrane, the surface suture between the Dabie orogen and a NCB and SCB should be located along the Wulian fault (see Fig. 1, S1). However, based on the aeromagnetic data continent-collisional of eastern China, Li[1] first indicated that the subsurface lithospheric-wedging model: suture between the NCB and SCB in the region east of the Tan-Lu fault should be located to the east of Nanjing City Sr-Nd-Pb isotopic evidences of (see Fig. 1, S2), which south displaced about 400 km from the surface suture. This is contradictory with the north- Mesozoic igneous rocks in ward subduction of the continental crust of the SCB. Li[1] proposed a crust detachment model for suturing to inter- eastern China pret such decoupling between the surface suture and sub- surface suture. LI Shuguang & YANG Wei In a geochemical study of Cenozoic basalts in School of Earth and Space Sciences, University of Science and Technol- eastern China, Chung observed that the Sr-Nd-Pb isotopic ogy of China, Hefei 230026, China features of Cenozoic basalts in the Liuhe area north of the Nanjing (see Fig. 1) are similar to those of Cenozoic ba- Abstract There are significant differences of Nd and Pb [2] isotopic compositions between Mesozoic mafic igneous rocks salts in the NCB, but different from those in the SCB . -
People's Republic of China: Preparing the Jilin Urban Infrastructure Project
Technical Assistance Report Project Number: 40050 June 2006 People’s Republic of China: Preparing the Jilin Urban Infrastructure Project CURRENCY EQUIVALENTS (as of 30 May 2006) Currency Unit – yuan (CNY) CNY1.00 = $0.124 $1.00 = CNY8.08 ABBREVIATIONS ADB – Asian Development Bank CMG – Changchun municipal government EIA – environmental impact assessment EMP – environmental management plan FSR – feasibility study report IA – implementing agency JPG – Jilin provincial government JUIP – Jilin Urban Infrastructure Project JWSSD – Jilin Water Supply and Sewerage Development m3 – cubic meter mg – milligram PMO – project management office PRC – People’s Republic of China RP – resettlement plan SEIA – summary environmental impact assessment SRB – Songhua River Basin TA – technical assistance YMG – Yanji municipal government TECHNICAL ASSISTANCE CLASSIFICATION Targeting Classification – Targeted intervention Sectors – Water supply, sanitation, and waste management Subsector – Water supply and sanitation Themes – Sustainable economic growth, inclusive social development, environmental sustainability Subthemes – Human development, urban environmental improvement NOTE In this report, "$" refers to US dollars. Vice President C. Lawrence Greenwood, Jr., Operations Group 2 Director General H. Satish Rao, East Asia Department (EARD) Director R. Wihtol, Social Sectors Division, EARD Team leader S. Penjor, Principal Financial Specialist, EARD Map 1 118 o 00'E 130o 00'E JILIN URBAN INFRASTRUCTURE PROJECT IN THE PEOPLE'S REPUBLIC OF CHINA N 0 100 200 300 400 Kilometers Songhua River Basin (water pollution affected areas) National Capital Provincial Capital City/Town H e i l River o n g Watershed Boundary o R o 52 00'N i 52 00'N v e Provincial Boundary X r Yilehuli Mountain I A International Boundary O S Boundaries are not necessarily authoritative. -
Collision Leading to Multiple-Stage Large-Scale Extrusion in the Qinling Orogen: Insights from the Mianlue Suture ⁎ Sanzhong Li A, , Timothy M
http://www.paper.edu.cn Gondwana Research 12 (2007) 121–143 Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture ⁎ Sanzhong Li a, , Timothy M. Kusky b, Lu Wang c, Guowei Zhang d, Shaocong Lai d, Xiaochun Liu e, Shuwen Dong e, Guochun Zhao f a Department of Marine Geology, College of Marine Geoscience, Ocean University of China, No. 238, Songling Road, 266100, Qingdao, China b Department of Earth and Atmospheric Sciences, St. Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA c College of Marine Geoscience, Ocean University of China, Qingdao, China d Department of Geology, Northwest University, Xi'an, China e Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China f Department of Earth Science, The University of Hong Kong, Hong Kong, China Received 1 March 2006; received in revised form 13 November 2006; accepted 13 November 2006 Available online 16 December 2006 Abstract The geologic framework of the Phanerozoic Qinling–Dabie orogen was built up through two major suturing events of three blocks. From north to south these include the North China craton (including the north Qinling block), the Qinling–Dabie microblock, and the South China craton (including the Bikou block), separated by the Shangdan and Mianlue sutures. The Mianlue suture zone contains evidence for Mesozoic extrusion tectonics in the form of major strike–slip border faults surrounding basement blocks, a Late Paleozoic ophiolite and a ca. 240–200 Ma thrust belt that reformed by 200–150 Ma thrusts during A-type (intracontinental) subduction. The regional map pattern shows that the blocks are surrounded by complexly deformed Devonian to Early Triassic metasandstones and metapelites, forming a regional-scale block-in-matrix mélange fabric. -
Flow Regimes for Major Topographic Obstacles of China
CHINESE JOURNAL OF GEOPHYSICS Vol.49, No.4, 2006, pp: 866∼877 FLOW REGIMES FOR MAJOR TOPOGRAPHIC OBSTACLES OF CHINA WANG Qi-Wei1,2 TAN Zhe-Min1,2 1 Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China 2 Key Laboratory of Mesoscale Severe Weather (LMSWE), Ministry of Education (MOE), China Abstract Major topographic obstacles in China are taken into account as a whole and approximate scales of these topographies are dynamically idealized according to the theoretical results of mountain flow dynamics. For the typical west-east and north-south upstream flow, the questions are focused on the different flow regimes, such as flow-over/flow-around and quasi-geostrophic balanced or not. The results show that main topographies in China can be classified as three types, one is over-flow dominated and quasi-geostrophic balanced, the second is over-flow dominated but quasi-geostrophic unbalanced, and the third is around-flow dominated and quasi- geostrophic unbalanced. In fact, the primary flow characteristics are determined by not only the scales of the topographies but also their shapes and the upstream flow direction. The rationality of the regimes is validated through qualitative analysis of the flow over the Dabie Mountains and Taiwan Mountains which are numerically simulated using a mesoscale model. Key words Major topographies of China, Flow over mountains, Flow regimes, Flow over, Flow around, Quasi- geostrophic dynamics 1 INTRODUCTION In recent tens of years, the dynamics of topography-induced disturbance has been focused as an interesting scientific question in the atmospheric dynamics[1∼7]. When air stream passes through a mountain, the flow, especially the lower-level flow, will be mainly characterized by flow over or around the mountain. -
China (Mainland)
Important Bird Areas in Asia – Mainland China ■ CHINA MAINLAND CHINA LAND AREA 9,574,000 km2 HUMAN POPULATION 1,276,300,000 (133 per km2) NUMBER OF IBAs 445 TOTAL AREA OF IBAs 1,134,546 km2 STATUS OF IBAs 247 protected; 64 partially protected; 134 unprotected The subtropical forests in Fanjing Shan Nature Reserve (IBA 241), Guizhou, support several threatened and restricted-range species, including both Elliot’s Pheasant Syrmaticus ellioti and Reeves’s Pheasant S. reevesii. (PHOTO: MIKE CROSBY/BIRDLIFE) KEY HABITATS AND BIRDS important breeding and passage areas for many waterbirds, including the threatened Relict Gull Larus relictus. • Much of north-east China was formerly forested (Biome AS02: • Most of the natural habitats on the plains of northern and Boreal forest – Taiga and Biome AS03: North-east Asian central China (between the steppes and the Yangtze basin) have temperate forest), but large areas were cleared by commercial long been modified because of thousands of years of human logging and for agriculture during the second half of the settlement. Many species were able to co-exist with man until twentieth century. However, logging is now banned there, and agricultural intensification linked to human population growth a few important forest areas remain with populations of in the late ninetieth and early twentieth centuries disrupted the threatened species including Scaly-sided Merganser Mergus old balance. Agrochemicals and firearms became widely used squamatus and Rufous-backed Bunting Emberiza jankowskii (a and greatly reduced the diversity and numbers of birds in bird of the transitional zone between forest and steppe which agricultural areas, for example the threatened Crested Ibis may now be confined to north-east China).