Rev Iss Web Mec 13823 25-20 5203..5211

Total Page:16

File Type:pdf, Size:1020Kb

Rev Iss Web Mec 13823 25-20 5203..5211 UC Santa Cruz UC Santa Cruz Previously Published Works Title Spatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms. Permalink https://escholarship.org/uc/item/3009m2hq Journal Molecular ecology, 25(20) ISSN 0962-1083 Authors Beldade, Ricardo Holbrook, Sally J Schmitt, Russell J et al. Publication Date 2016-10-01 DOI 10.1111/mec.13823 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Molecular Ecology (2016) 25, 5203–5211 doi: 10.1111/mec.13823 Spatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms RICARDO BELDADE,*†‡ SALLY J. HOLBROOK,§ RUSSELL J. SCHMITT,§ SERGE PLANES*† and GIACOMO BERNARDI¶ *EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia, †Laboratoire d’excellence “CORAIL”, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia, ‡MARE – Marine and Environmental Sciences Centre, Faculdade de Ci^encias da, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal, §Coastal Research Center, Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA, ¶Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060, USA Abstract Oceanographic features influence the transport and delivery of marine larvae, and physical retention mechanisms, such as eddies, can enhance self-recruitment (i.e. the return of larvae to their natal population). Knowledge of exact locations of hatching (origin) and settlement (arrival) of larvae of reef animals provides a means to compare observed patterns of self-recruitment ‘connectivity’ with those expected from water cir- culation patterns. Using parentage inference based on multiple sampling years in Moorea, French Polynesia, we describe spatial and temporal variation in self-recruit- ment of the anemonefish Amphiprion chrysopterus, evaluate the consistency of net dis- persal distances of self-recruits against the null expectation of passive particle dispersal and test the hypothesis that larvae originating in certain reef habitats (lagoons and passes) would be retained and thus more likely to self-recruit than those originating on the outer (fore) reef. Estimates of known self-recruitment were consis- tent across the sampling years (~25–27% of sampled recruits). For most (88%) of these self-recruits, the net distance between hatching and settlement locations was within the maximum dispersal distance expected for a neutrally buoyant passive particle based on the longest duration of the larval dispersive phase and the average direction and speed of current flow around Moorea. Furthermore, a parent of a given body size on the outer (fore) reef of Moorea was less likely to produce self-recruits than those in passes. Our findings show that even a simple dispersal model based on net average flow and direction of alongshore currents can provide insight into landscape-scale retention patterns of reef fishes. Keywords: connectivity, coral reef fish, oceanography, parentage analysis, retention, self- recruitment, tropical island Received 19 May 2016; revision received 11 August 2016; accepted 22 August 2016 populations are connected primarily via dispersal of lar- Introduction vae. Attributes of dispersal and settlement of marine Knowledge of animal and plant dispersal is fundamen- larvae can be influenced by the oceanographic condi- tal for understanding both the dynamics of populations tions they experience (Schmitt & Holbrook 2002; Cowen and evolution of species (Clobert et al. 2001; Ronce et al. 2007; Pineda et al. 2007) and their behaviour (Sto- 2007). For most marine reef fish, spatially separated butzki & Bellwood 1997; Kingsford et al. 2002; Paris & Cowan 2004; Paris et al. 2007). Generally, the probability Correspondence: Ricardo Beldade, Fax: +351217500009; E-mail: of successful larval dispersal diminishes with distance [email protected] from the hatching site (Pinsky et al. 2010; Buston et al. © 2016 John Wiley & Sons Ltd 5204 R. BELDADE ET AL. 2012), and a growing number of studies have shown water flows on the leeward side of tropical islands that net dispersal distances (shortest in-water distance (Swearer et al. 1999), may also favour the retention of between hatching and settlement sites) of successful fish larvae and thus influence dispersal. However, there is settlers can be short (~1 km scale). Examples of coral limited empirical support that spatial patterns of self- reef fishes that have displayed such short dispersal dis- recruitment for reef fishes are influenced by physical tances include Chaetodon vagabundus, Amphiprion percula, retention features. Given impracticalities in following A. polymnus, Plectropomus maculatus, Stegastes partitus, individual larvae throughout their entire pelagic disper- and Elacatinus lori (Almany et al. 2007; Buston et al. sal stages (Leis 1991), one approach to this issue has 2012; Harrison et al. 2012; Hogan et al. 2012; Saenz-Agu- been to use parentage inference to identify larvae that delo et al. 2012; D’Aloia et al. 2015), while others have recruit into their population of origin (e.g. Jones et al. been shown to disperse over much larger distances 2005; Almany et al. 2007; Beldade et al. 2012) and to (Planes et al. 2009; Berumen et al. 2012; Puebla et al. map the precise locations of hatching (origin) and of 2012; Simpson et al. 2014). settlement (arrival) of individual self-recruiting larvae. A long-standing issue has been the extent to which In this study, we first describe spatial and temporal locally vs. externally produced larvae replenish local variation in self-recruitment of a coral reef fish (the populations of reef organisms, with estimates of self- orange-fin anemonefish, Amphiprion chrysopterus), on recruitment varying from none to the majority of colo- Moorea, French Polynesia, over 5 years. Here, we define nists for reef fishes (D’Aloia et al. 2015; Steinberg et al. a self-recruit as a post-settlement juvenile on Moorea 2016). While high numbers of self-recruits need not that was produced by an adult on the island, and ‘self- imply that a high proportion of the locally produced recruitment connectivity’ as the spatial topology larvae have been retained (Botsford et al. 2009; Berumen between locations of origin and subsequent settlement et al. 2012; Burgess et al. 2014; Lett et al. 2015), the of self-recruits around Moorea. This enabled us to eval- degree of self-replenishment of populations has vast uate the consistency of putative dispersal trajectories of ecological and management implications. The retention self-recruits to a minimalistic passive particle dispersal of the dispersive stages of fish near suitable habitats model to assess how much of the connectivity in self- can both occur actively due to larval behaviours and recruitment could be accounted for by a simple physical passively through transport promoted by water move- transport model. Moreover, considering water flow pat- ment patterns (Paris & Cowan 2004). Coral reef fish lar- terns, we tested the hypothesis that larvae originating vae have a suite of sensorial and swimming abilities in different reef habitats (lagoon, pass, fore reef), which that steer them during the dispersal phase towards their implies being more or less exposed to certain water cir- settlement habitats. For example, hearing and smell culation regimes, vary in the degree of self-recruitment. have been shown to guide reef fish larvae during dis- Finally, we explore whether self-recruits and exogenous persal (Kingsford et al. 2002; Simpson et al. 2005; Ger- recruits (i.e. not produced by adults on Moorea) differ lach et al. 2007). Larvae from the same cohort can use in the reef habitats to which they settle. behaviour to remain together while dispersing (Paris & Cowan 2004), which can result in them settling concur- Methods rently to the same microhabitat (Bernardi et al. 2012). While fish larvae can use behaviours to enhance reten- Study site and model species tion (Paris et al. 2007), several water circulation features also can act to retain larvae, which may lend insight Field work was conducted on Moorea (17°300S, into spatial patterns of self-recruitment (Swearer et al. 149°500W), French Polynesia. The island is encircled by 1999). a barrier reef that forms a system of lagoons that are For islands encircled by a barrier reef, breaking 0.8–1.3 km wide and 5–7 m deep and are connected to waves create more or less a unidirectional flow of water the ocean by several passes. The offshore reef slopes over the reef crest into the lagoon, which later returns steeply to >500 m depth within about 1 km of the reef to the open ocean through one or more passes (open- crest. Several aspects of Moorea’s water circulation that ings in the reef) (Hench et al. 2008; Edmunds et al. 2010; are pertinent to transport and retention of larvae have Leichter et al. 2013). At smaller scales, within the been described in Leichter et al. (2013). An alongshore lagoon, varying degrees of turbulent mixing are forced flow just offshore of the barrier reef follows a net coun- by different coral species/morphologies (Monismith terclockwise direction (CCW) that may contribute to the 2007; Hench & Rosman 2013); longer water residence retention of larvae near the island (Leichter et al. 2013). time also could contribute to the retention
Recommended publications
  • One Smart Fish Free
    FREE ONE SMART FISH PDF Christopher Wormell | 32 pages | 06 Jan 2011 | Random House Children's Publishers UK | 9781862306523 | English | London, United Kingdom One Smart Fish by Chris Wormell Hardcover | eBay Now a day people who Living in the era exactly where everything reachable by interact with the internet and the resources inside can be true or not require people to be aware of each information they get. How a lot more to be smart in One Smart Fish any information nowadays? Of course the solution is reading a book. Looking at a book can help folks out of this uncertainty Information particularly this One Smart Fish Smart Fish Rookie Reader Rhyme book as this book offers you rich info and knowledge. Of course the details in this book hundred percent guarantees there is no doubt in it you may already know. You can get a lot of help after read this book. This specific book exist new know-how the information that exist in this reserve represented the condition of the world now. That is important to yo7u to find out how the improvement of the world. This kind of book will bring you throughout new era of the globalization. You can read the e-book on your own smart phone, so you can read that anywhere you want. A lot of people always spent their free time to vacation One Smart Fish well as go to the outside with them loved ones or their friend. Did you know? Many a lot of people spent these people free One Smart Fish just watching TV, or even playing video games all day long.
    [Show full text]
  • Recruitment in Anemonefishes
    Interspecific, Spatial and Temporal Variability of Self- Recruitment in Anemonefishes Hawis H. Madduppa1*, Janne Timm2, Marc Kochzius3 1 Marine Science and Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University (IPB), Bogor, Indonesia, 2 Biotechnology and Molecular Genetics, University of Bremen, Bremen, Germany, 3 Marine Biology, Vrije Universiteit Brussel, Brussels, Belgium Abstract Polymorphic microsatellite DNA parentage analysis was used to investigate the spatio-temporal variability of self- recruitment in populations of two anemonefishes: Amphiprion ocellaris and A. perideraion. Tissue samples of A. ocellaris (n = 364) and A. perideraion (n = 105) were collected from fringing reefs around two small islands (Barrang Lompo and Samalona) in Spermonde Archipelago, Indonesia. Specimens were genotyped based on seven microsatellite loci for A. ocellaris and five microsatellite loci for A. perideraion, and parentage assignment as well as site fidelity were calculated. Both species showed high levels of self-recruitment: 65.2% of juvenile A. ocellaris in Samalona were the progeny of parents from the same island, while on Barrang Lompo 47.4% of A. ocellaris and 46.9% of A. perideraion juveniles had parents from that island. Self-recruitment of A. ocellaris in Barrang Lompo varied from 44% to 52% between the two sampling periods. The site fidelity of A. ocellaris juveniles that returned to their reef site in Barang Lompo was up to 44%, while for A. perideraion up to 19%. In Samalona, the percentage of juveniles that returned to their natal reef site ranged from 8% to 11%. Exchange of progeny between the two study islands, located 7.5 km apart, was also detected via parentage assignments.
    [Show full text]
  • Seed Production and Culture of Marine Ornamental Fishes G
    Course Manual Seed Production and Culture of Marine Ornamental Fishes G. Gopakumar, A. K. Abdul Nazar and R. Jayakumar Mandapam Regional Centre of CMFRI Mandapam Camp - 623 520, Tamil Nadu, India Introduction The marine ornamental fish trade has been expanding in recent years and has grown into a multimillion dollar enterprise. The ornamental animals are the highest valued products that are mostly harvested from coral reef environments. The global marine ornamental trade is estimated at US$ 200-330 million. The trade is operated throughout the tropics. Philippines, Indonesia, Solomon Islands, Sri Lanka, Australia, Fiji, Maldives and Palau supplied more than 98% of the total number of marine ornamental fish exported in recent years. It is a multi-stakeholder industry ranging from specimen collectors, culturists, wholesalers, transhippers, retailers, and hobbyists to researchers, government resource managers and conservators and hence involves a series of issues to be addressed and policies to be formulated for developing and expanding a sustainable trade. It is well understood that a long term sustainable trade of marine ornamental fishes can be developed only through the development and commercialization of hatchery production technologies for the species which are in high demand in the trade. Global scenario In recent years it has been reported that nearly 1500 species of marine ornamental fishes are traded globally and most of these are associated with coral reefs. Nearly 98% of the marine ornamental fishes marketed are wild collected from coral reefs of tropical countries. Among the most commercially traded families of reef fishes, family Pomacentridae dominate, accounting for nearly 43% of all fish traded.
    [Show full text]
  • Marine Protected Area Restricts Demographic Connectivity: Dissimilarity in a Marine Environment Can Function As a Biological Barrier
    Received: 2 July 2017 | Accepted: 15 July 2017 DOI: 10.1002/ece3.3318 ORIGINAL RESEARCH Marine protected area restricts demographic connectivity: Dissimilarity in a marine environment can function as a biological barrier Masaaki Sato1 | Kentaro Honda2 | Wilfredo H. Uy3 | Darwin I. Baslot3 | Tom G. Genovia3 | Yohei Nakamura4 | Lawrence Patrick C. Bernardo5 | Hiroyuki Kurokochi6 | Allyn Duvin S. Pantallano3,4 | Chunlan Lian6 | Kazuo Nadaoka5 | Masahiro Nakaoka2 1Graduate School of Environmental Science, Hokkaido University, Akkeshi-cho, Hokkaido, Japan 2Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi-cho, Hokkaido, Japan 3Institute of Fisheries Research and Development, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines 4Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan 5Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan 6Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo, Japan Correspondence Masaaki Sato, Graduate School of Abstract Environmental Science, Hokkaido University, The establishment of marine protected areas (MPAs) can often lead to environmental Akkeshi-cho, Hokkaido, Japan. Email: [email protected] differences between MPAs and fishing zones. To determine the effects on marine dispersal of environmental dissimilarity between an MPA and fishing zone, we exam- Present addresses Masaaki Sato, National Research Institute ined the abundance and recruitment patterns of two anemonefishes (Amphiprion fre- of Fisheries Engineering, Japan Fisheries natus and A. perideraion) that inhabit sea anemones in different management zones Research and Education Agency, Hasaki, Kamisu-shi, Ibaraki, Japan (i.e., an MPA and two fishing zones) by performing a field survey and a genetic parent- Kentaro Honda, Hokkaido National Fisheries age analysis.
    [Show full text]
  • Report on Roving Collectors: Case Studies from Indonesia and the Philippines” November 2006
    i MAMTI Technical Paper: “Report on Roving Collectors: Case Studies from Indonesia and the Philippines” November 2006 ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means, or otherwise circulated in any form, binding or cover, other than the form, binding and cover in which it was published, without prior written permission of the Marine Aquarium Council, on behalf ot Reef Check and Conservation and Community Investment Forum and the International Finance Corporation, Global Environment Facility, Conservation International and United States Agency for International Development (USAID). Marine Aquarium Council 6th Floor Salustiana D. Ty Tower 104 Paseo de Roxas, Legaspi Village Makati City Tel : +632-813-1308 www.aquariumcouncil.org Disclaimer This report was prepared by Marine Aquarium Council, Reef Check and the Conservation and Community Investment Forum. The judgments expressed do not necessarily reflect the views of the Marine Aquarium Council, Reef Check and Conservation and Community Investment Forum, the funding agencies: the International Finance Corporation, Global Environment Facility, Conservation International and United States Agency for International Development (USAID). While every effort has been made to ensure accuracy of the information contained in this technical paper, this is not guaranteed. Accordingly, neither the Marine Aquarium Council, Reef Check and Conservation and Community Investment Forum nor the International Finance Corporation, Global Environment Facility, Conservation International and United States Agency for International Development (USAID) accepts any liability for actions taken based on this material. Printed: November 2006 ii Table of Contents LIST OF TABLES AND FIGURES .................................................................................. IV INTRODUCTION ..........................................................................................................
    [Show full text]
  • Hatchery Production of the Clownfish Amphiprion Nigripes at Agatti Island, Lakshadweep, India
    623 © 2012 Triveni Enterprises J. Environ. Biol. Vikas Nagar, Lucknow, INDIA 33, 623-628 (2012) [email protected] ISSN: 0254-8704 Full paper available on: www.jeb.co.in CODEN: JEBIDP Hatchery production of the clownfish Amphiprion nigripes at Agatti island, Lakshadweep, India Author Details T.T. Ajith Kumar Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India (Corresponding author ) e-mail : [email protected] M. Gopi Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India K.V. Dhaneesh Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India R. Vinoth Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India S. Ghosh Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India T. Balasubramanian Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India T. Shunmugaraj Centre for Marine Living Resources and Ecology - Field Research Station, Agatti Island - 682 553, Lakshadweep, India Abstract Healthy individuals of matured clownfish, Amphiprion nigripes and sea anemone, Heteractis magnifica were Publication Data collected from the Agatti island lagoon by snorkeling. During ‘conditioning’ for 3 months, pair formation occurred and the same were transferred to rectangular fiber glass spawning tanks of 1000 l capacity. Suitable water Paper received: quality parameters were maintained. The fishes were fed with tuna eggs, boiled clam meat, squid, octopus and 11 November 2010 trash fish thrice in a day. Reproductive behaviour and embryonic development were documented.
    [Show full text]
  • An Analysis of Microsatellite DNA Variation in Amphiprion Percula
    Molecular Ecology (2007) 16, 3671–3678 doi: 10.1111/j.1365-294X.2007.03421.x AreBlackwell Publishing Ltd clownfish groups composed of close relatives? An analysis of microsatellite DNA variation in Amphiprion percula PETER M. BUSTON,* STEVEN M. BOGDANOWICZ,† ALEX WONG‡ and RICHARD G. HARRISON† *Estación Biológica de Doñana, C.S.I.C., Avenida de Maria Luisa s/n Pabellón del Perú, 41013 Sevilla, Spain, †Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY 14853, USA, ‡Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA Abstract A central question of evolutionary ecology is: why do animals live in groups? Answering this question requires that the costs and benefits of group living are measured from the perspective of each individual in the group. This, in turn, requires that the group’s genetic structure is elucidated, because genetic relatedness can modulate the individuals’ costs and benefits. The clown anemonefish, Amphiprion percula, lives in groups composed of a breeding pair and zero to four nonbreeders. Both breeders and nonbreeders stand to gain by associating with relatives: breeders might prefer to tolerate nonbreeders that are relatives because there is little chance that relatives will survive to breed elsewhere; nonbreeders might prefer to associate with breeders that are relatives because of the potential to accrue indirect genetic benefits by enhancing anemone and, consequently, breeder fitness. Given the potential benefits of associating with relatives, we use microsatellite loci to investigate whether or not individuals within groups of A. percula are related. We develop seven polymorphic microsatellite loci, with a number of alleles (range 2–24) and an observed level of heterozygosity (mean = 0.5936) sufficient to assess fine-scale genetic structure.
    [Show full text]
  • Cash Flow Projections Were Made for a Small Clownbsh Hatchery and Grow
    FINAL REPORT - CULTL'ItE OF M/dtINE AQUARIUM FISHES Objective 5: Regulatoryconstraints were investigatedby personalcommutucations with Gerry Davis, FisheriesSupervisor at the Division of Aquatic and Wildlife Resources DAWR!, Guam Departmentof Agriculture. Robert Meyer formerly with the DAWR!, and RichardPyle Bishop Museum.Hono1ulu. HI!, Objective 6: Methods of mariculture certification were investigatedby personal communicationswith GerryDavis of the DAWRand by reviewof the literatureand other maricultureoperations. Objective7: Cashflow projections were made for a smallclownBsh hatchery and grow- out facility, RESULTS: Objectivel. A few hatcheriesare known to be currentlyproducing marine aquarium fish commercially.The largesthatchery is C-Quest,Inc. in PeurtoRico. Anotheris Reef Propagations,a smallbasetjneat hatchery in Chicago.A third companyis DesertFisheries in Utah. A fourthhatchery believed to be the Tropica1Marine Centre Ltd.! is 1ocatedin England.'Hzee other hatcheries are presently operating at a researchand development or pilot stageand are supplymg small numl:mrs of tank-raised6sh to the marmeaquarium market.These include a hatcheryowned by RedSea Fish pHarm, Ltd. in Israel andtwo closedsystem hatcheries in the UmtedStates owned by SeaPhiz.Four commercial hatcheriesformerly produced maim' aquatiiim 5sh, but are no longerin operation.These includeAqualife Research Corporation in theBahamas, D!esty MarmeAssociates in the FloridaKeys, Aquaculture Development Ar'S in Denmark,and Instant Ocean Hatchery in central Florida, C-Quest.Inc. completed construction of a 15,000ft marine6sh hatchery in 1991.The hatcherycontams twelve hundred 40 gallonaquariums used for broodstock.larval rearing, andresearch. The f'acilitieshave since been exgeaded to includefour hundred300 gallon outdoorlarval rearing and grow-outtanks, nearly doubling the sizeof the original hatchery.In addition,there are four 25.000gallon concrete ponds used for large-scale cultureof microalgaeand grow-out of brineshrimp.
    [Show full text]
  • Informational Issue of Eurasian Regional Association of Zoos and Aquariums
    GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 MOSCOW 2009 GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 _________________ MOSCOW - 2009 - Information Issue of Eurasian Regional Association of Zoos and Aquariums. Issue 28. – 2009. - 424 p. ISBN 978-5-904012-10-6 The current issue comprises information on EARAZA member zoos and other zoological institutions. The first part of the publication includes collection inventories and data on breeding in all zoological collections. The second part of the issue contains information on the meetings, workshops, trips and conferences which were held both in our country and abroad, as well as reports on the EARAZA activities. Chief executive editor Vladimir Spitsin General Director of Moscow Zoo Compiling Editors: Т. Andreeva M. Goretskaya N. Karpov V. Ostapenko V. Sheveleva T. Vershinina Translators: T. Arzhanova M. Proutkina A. Simonova УДК [597.6/599:639.1.04]:59.006 ISBN 978-5-904012-10-6 © 2009 Moscow Zoo Eurasian Regional Association of Zoos and Aquariums Dear Colleagues, (EARAZA) We offer you the 28th volume of the “Informational Issue of the Eurasian Regional Association of Zoos and Aquariums”. It has been prepared by the EARAZA Zoo 123242 Russia, Moscow, Bolshaya Gruzinskaya 1. Informational Center (ZIC), based on the results of the analysis of the data provided by Telephone/fax: (499) 255-63-64 the zoological institutions of the region. E-mail: [email protected], [email protected], [email protected].
    [Show full text]
  • How to Breed Marine Fish for Profit Or
    Contents How To Breed Marine Fish In Your Saltwater Aquarium ...................................... 3 Introduction to marine fish breeding........................................................................ 3 What are the advantages of captive bred fish? ....................................................... 4 Here is a list of marine fish that have now been successfully bred in aquariums ... 5 Breeding different fish in captivity ......................................................................... 17 How fish breed ...................................................................................................... 18 How can you breed fish? ...................................................................................... 18 How do you get marine fish to breed? .................................................................. 19 Critical keys for marine fish breeding success ...................................................... 20 General keys for marine fish breeding success .................................................... 21 How do you induce your marine fish to spawn? ................................................... 22 Opportunistic spawning in your aquarium ............................................................. 23 How marine fish actually spawn ........................................................................... 24 Housing fish larvae; the rearing tank .................................................................... 24 Moving eggs or larvae to the rearing tank is not ideal..........................................
    [Show full text]
  • CBD Fifth National Report
    THAILAND Fifth National Report รายงานแหงชาติอนุสัญญาวาดวยความหลากหลายทางชีว ภาพ ฉบับที่ 555 1 Chapter 1 Value and Importance of Biodiversity to Economic and Society of Thailand Thai people has exploited biodiversity for subsisting basic needs in life such as four requisites and as resources for well being livelihood since prehistoric era. In Thai culture, even in present day, there is a phrase usually use for describing wealthy of biodiversity resources as “in waters (there was) plenty of fish and in paddy field plenty of rice”. Locating on the felicitous geography, Thailand is noticed as one of the world’s bounties on natural biodiversity resources and being rank as the first twentieth country those posses the world’s most abundant on biodiversity. Thai people has subsisted on and derived their tradition as well as culture with local biodiversity. It might be said that from being delivered to buried, Thai people would be associated with biodiversity. Biodiversity is important to Thai people for several dimensions such as food, herbal medicine, part of worship or ritual ceremony, main sector for national income and part of basement knowledge for development of science and technology. Furthermore, biodiversity also be important part of beautiful scenario which is the most important component of country tourism industry. Biodiversity is important to Thailand as follows: Important of biodiversity as food resources As rice is main carbohydrate source for Thai people, thence Thailand presume to a nation that retain excellent knowledge base about rice such as culture techniques, breeding and strain selection, geographical proper varieties, postharvest technology such as storage technique and also processing technologies for example.
    [Show full text]
  • De Vertebrados De Moçambique Checklist of Vertebrates of Mozambique
    ‘Checklist’ de Vertebrados de Moçambique Checklist of Vertebrates of Mozambique Michael F. Schneider*, Victorino A. Buramuge, Luís Aliasse & Filipa Serfontein * autor para a correspondência – author for correspondence [email protected] Universidade Eduardo Mondlane Faculdade de Agronomia e Engenharia Florestal Departamento de Engenharia Florestal Maputo, Moçambique Abril de 2005 financiado por – funded by IUCN Mozambique Fundo Para a Gestão dos Recursos Naturais e Ambiente (FGRNA) Projecto No 17/2004/FGRNA/PES/C2CICLO2 Índice – Table of Contents Abreviaturas – Abbreviations..............................................................................2 Nomes vernáculos – vernacular names: .............................................................3 Referências bibliográficas – Bibliographic References ......................................4 Checklist de Mamíferos- Checklist of Mammals ................................................5 Checklist de Aves- Checklist of Birds ..............................................................38 Checklist de Répteis- Checklist of Reptiles ....................................................102 Checklist de Anfíbios- Checklist of Amphibians............................................124 Checklist de Peixes- Checklist of Fish............................................................130 1 Abreviaturas - Abbreviations * espécie introduzida – introduced species ? ocorrência duvidosa – occurrence uncertain end. espécie endémica (só avaliada para mamíferos, aves e répteis) – endemic species (only
    [Show full text]