Ecology Anemonefish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RAJA AMPAT MARINE PARK, INDONESIA: the Heart of the Coral Triangle — Conservation Atlas 12/26/18, 10:08 AM
RAJA AMPAT MARINE PARK, INDONESIA: The Heart of the Coral Triangle — Conservation Atlas 12/26/18, 10:08 AM DECEMBER 12, 2018 RAJA AMPAT MARINE PARK, INDONESIA: The Heart of the Coral Triangle Text: Andreea Lotak; Photographs: Justin & Andreea Lotak • 10 min read The stunning beauty of the Fam Islands as seen from above, Raja Ampat There aren’t many places left on Earth with ecosystems as healthy as those in the Raja Ampat Marine Park. There are over 1,700 species of fish here — with a few dozens of them found nowhere else — swimming among what represents 76% of the world’s coral diversity. The park’s crystal waters protect an area stretching across 35,000 sq km (13,500 sq mi), where large gatherings of manta rays, sharks, whales, mollusks, fish and other aquatic organisms are attracted by the rich nutrients brought by strong oceanic currents. Among all this natural beauty there are roughly 50,000 residents living in villages, settlements and the small town of Waisai, surrounded by limestone cliffs shooting from the turquoise waters and by dense forests where the loud birdsong creates a perfect musical background for a tropical paradise. https://www.conservationatlas.org/blog/raja-ampat-marine-park-indonesia-the-heart-of-the-coral-triangle2018 Page 1 of 15 RAJA AMPAT MARINE PARK, INDONESIA: The Heart of the Coral Triangle — Conservation Atlas 12/26/18, 10:08 AM The Coral Triangle is located at the confluence of the Western Pacific and Indian Oceans, spread across the waters and coastlines of six countries: Indonesia, the Philippines, Papua New Guinea, Malaysia, Solomon Islands and Timor Leste. -
Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-22-2020 Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade Bryce Risley University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons Recommended Citation Risley, Bryce, "Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade" (2020). Electronic Theses and Dissertations. 3314. https://digitalcommons.library.umaine.edu/etd/3314 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SENDERS, RECEIVERS, AND SPILLOVER DYNAMICS: UNDERSTANDING TRANSFORMATIVE FORCES OF AQUACULTURE IN THE MARINE AQUARIUM TRADE By Bryce Risley B.S. University of New Mexico, 2014 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Policy and Marine Biology) The Graduate School The University of Maine May 2020 Advisory Committee: Joshua Stoll, Assistant Professor of Marine Policy, Co-advisor Nishad Jayasundara, Assistant Professor of Marine Biology, Co-advisor Aaron Strong, Assistant Professor of Environmental Studies (Hamilton College) Christine Beitl, Associate Professor of Anthropology Douglas Rasher, Senior Research Scientist of Marine Ecology (Bigelow Laboratory) Heather Hamlin, Associate Professor of Marine Biology No photograph in this thesis may be used in another work without written permission from the photographer. -
1. Dinoflagellate Chemotaxis and Attraction to Fish Products…………………………………………………………
ABSTRACT CANCELLIERI, PAUL JOSEPH. Chemosensory Attraction of Pfiesteria spp. to Fish Secreta. (Under the direction of Dr. JoAnn M. Burkholder). Dinoflagellates represent a diverse group of both auxotrophic and heterotrophic protists. Most heterotrophic dinoflagellates are raptorial feeders that encounter prey using “temporal-gradient sensing” chemotaxis wherein cells move along a chemical gradient in a directed manner toward the highest concentration. Using short-term “memory” to determine the orientation of the gradient, dinoflagellates swim in a “run- and-tumble” pattern, alternating directed swimming with rapid changes in orientation. As the extracellular concentration of the attractant increases, a corresponding increase in the ratio of net-to-gross displacement results in overall movement toward the stimulus. The dinoflagellates Pfiesteria piscicida and P. shumwayae are heterotrophic estuarine species with complex life cycles that include amoeboid, flagellated, and cyst stages, that have been implicated as causative agents in numerous major fish kills in the southeastern United States These organisms show documented “ambush-predator” behavior toward live fish in culture, including rapid transformations among stages and directed swimming toward fish prey in a manner that suggests the presence of a strong signalling relationship between live fish and cells of Pfiesteria spp. Zoospores of the two species of Pfiesteria can be divided into three functional types: TOX-A designates actively toxic isolates fed on fish prey; TOX-B refers to temporarily non-toxic cultures that have recently (1 week to 6 months) been removed from fish prey (and fed alternative algal prey); and NON-IND refers to isolates without apparent ichthyotoxic ability (tested as unable to kill fish in the standardized fish bioassay process; or without access to fish for ca. -
Thesis and Paper II
Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 21.02.2020 Dato for disputas: 1111 © Copyright Nguyen Thi Hai Thanh The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Adaptation of anemonefish to their host anemones: From Genetics to Physiology Name: Nguyen Thi Hai Thanh Print: Skipnes Kommunikasjon / University of Bergen Scientific environment i Scientific environment The work of this doctoral thesis was financed by the Norwegian Agency for Development Cooperation through the project “Incorporating Climate Change into Ecosystem Approaches to Fisheries and Aquaculture Management” (SRV-13/0010) The experiments were carried out at the Center for Aquaculture Animal Health and Breeding Studies (CAAHBS) and Institute of Biotechnology and Environment, Nha Trang University (NTU), Vietnam from 2015 to 2017 under the supervision of Dr Dang T. Binh, Dr Ha L.T.Loc and Assoc. Professor Ngo D. Nghia. The study was continued at the Department of Biology, University of Bergen under the supervision of Professor Audrey J. Geffen. Acknowledgements ii Acknowledgements During these years of my journey, there are so many people I would like to thank for their support in the completion of my PhD. I would like to express my gratitude to my principle supervisor Audrey J. -
One Smart Fish Free
FREE ONE SMART FISH PDF Christopher Wormell | 32 pages | 06 Jan 2011 | Random House Children's Publishers UK | 9781862306523 | English | London, United Kingdom One Smart Fish by Chris Wormell Hardcover | eBay Now a day people who Living in the era exactly where everything reachable by interact with the internet and the resources inside can be true or not require people to be aware of each information they get. How a lot more to be smart in One Smart Fish any information nowadays? Of course the solution is reading a book. Looking at a book can help folks out of this uncertainty Information particularly this One Smart Fish Smart Fish Rookie Reader Rhyme book as this book offers you rich info and knowledge. Of course the details in this book hundred percent guarantees there is no doubt in it you may already know. You can get a lot of help after read this book. This specific book exist new know-how the information that exist in this reserve represented the condition of the world now. That is important to yo7u to find out how the improvement of the world. This kind of book will bring you throughout new era of the globalization. You can read the e-book on your own smart phone, so you can read that anywhere you want. A lot of people always spent their free time to vacation One Smart Fish well as go to the outside with them loved ones or their friend. Did you know? Many a lot of people spent these people free One Smart Fish just watching TV, or even playing video games all day long. -
Central American Cichlids Thea Quick Beautiful Guide to the Major Klunzinger’S Groups! Wrasse
Redfish Issue #6, December 2011 Central American cichlids theA quick beautiful guide to the major Klunzinger’s groups! Wrasse Tropical Marine Reef Grow the Red Tiger Lotus! Family Serranidae explored. Vanuatu’s amazing reef! 100 80 60 40 Light insensityLight (%) 20 0 0:00 4:00 8:00 12:00 16:00 20:00 0:00 Time PAR Readings Surface 855 20cm 405 40cm 185 60cm 110 0 200 400 600 800 1000 Model Number Dimensions Power Radiance 60 68x22x5.5cm 90W Radiance 90 100x22x5.5cm 130W Radiance 120 130x22x5.5cm 180W 11000K (white only) Total Output 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 Distribution Relative Spectral Relative 0.0 0.0 400 500 600 700 400 500 600 700 Wavelength Marine Coral Reef Aqua One Radiance.indd 1 9/12/11 12:36 PM Redfish contents redfishmagazine.com.au 4 About 5 News Redfish is: 7 Off the shelf Jessica Drake, Nicole Sawyer, Julian Corlet & David Midgley 13 Where land and water meet: Ripariums Email: [email protected] Web: redfishmagazine.com.au 15 Competitions Facebook: facebook.com/redfishmagazine Twitter: @redfishmagazine 16 Red Lotus Redfish Publishing. Pty Ltd. PO Box 109 Berowra Heights, 17 Today in the Fishroom NSW, Australia, 2082. ACN: 151 463 759 23 Klunzinger’s Wrasse This month’s Eye Candy Contents Page Photos courtesy: (Top row. Left to Right) 28 Not just Groupers: Serranidae ‘Gurnard on the Wing - Coió’ by Lazlo Ilyes ‘shachihoko’ by Emre Ayaroglu ‘Starfish, Waterlemon Cay, St. John, USVI’ by Brad Spry 33 Snorkel Vanuatu ‘Water Ballet’ by Martina Rathgens ‘Strange Creatures’ by Steve Jurvetson 42 Illumination: Guide to lighting (Part II) (Bottom row. -
Recruitment in Anemonefishes
Interspecific, Spatial and Temporal Variability of Self- Recruitment in Anemonefishes Hawis H. Madduppa1*, Janne Timm2, Marc Kochzius3 1 Marine Science and Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University (IPB), Bogor, Indonesia, 2 Biotechnology and Molecular Genetics, University of Bremen, Bremen, Germany, 3 Marine Biology, Vrije Universiteit Brussel, Brussels, Belgium Abstract Polymorphic microsatellite DNA parentage analysis was used to investigate the spatio-temporal variability of self- recruitment in populations of two anemonefishes: Amphiprion ocellaris and A. perideraion. Tissue samples of A. ocellaris (n = 364) and A. perideraion (n = 105) were collected from fringing reefs around two small islands (Barrang Lompo and Samalona) in Spermonde Archipelago, Indonesia. Specimens were genotyped based on seven microsatellite loci for A. ocellaris and five microsatellite loci for A. perideraion, and parentage assignment as well as site fidelity were calculated. Both species showed high levels of self-recruitment: 65.2% of juvenile A. ocellaris in Samalona were the progeny of parents from the same island, while on Barrang Lompo 47.4% of A. ocellaris and 46.9% of A. perideraion juveniles had parents from that island. Self-recruitment of A. ocellaris in Barrang Lompo varied from 44% to 52% between the two sampling periods. The site fidelity of A. ocellaris juveniles that returned to their reef site in Barang Lompo was up to 44%, while for A. perideraion up to 19%. In Samalona, the percentage of juveniles that returned to their natal reef site ranged from 8% to 11%. Exchange of progeny between the two study islands, located 7.5 km apart, was also detected via parentage assignments. -
Download Fishlore.Com's Saltwater Aquarium and Reef Tank E-Book
Updated: August 6, 2013 This e-Book is FREE for public use. Commercial use prohibited. Copyright FishLore.com – providing tropical fish tank and aquarium fish information for freshwater fish and saltwater fish keepers. FishLore.com Saltwater Aquarium & Reef Tank e-Book 1 CONTENTS Foreword .......................................................................................................................................... 10 Why Set Up an Aquarium? .............................................................................................................. 12 Aquarium Types ............................................................................................................................... 14 Aquarium Electrical Safety ............................................................................................................... 15 Aquarium Fish Cruelty Through Ignorance ..................................................................................... 17 The Aquarium Nitrogen Cycle ......................................................................................................... 19 Aquarium Filter and Fish Tank Filtration ......................................................................................... 24 Saltwater Aquarium Types - FOWLR, Fish Only with Live Rock, Reef Tank .................................... 30 Freshwater Aquarium vs. Saltwater Aquarium ............................................................................... 33 Saltwater Aquarium Tank Setup Guide .......................................................................................... -
Seed Production and Culture of Marine Ornamental Fishes G
Course Manual Seed Production and Culture of Marine Ornamental Fishes G. Gopakumar, A. K. Abdul Nazar and R. Jayakumar Mandapam Regional Centre of CMFRI Mandapam Camp - 623 520, Tamil Nadu, India Introduction The marine ornamental fish trade has been expanding in recent years and has grown into a multimillion dollar enterprise. The ornamental animals are the highest valued products that are mostly harvested from coral reef environments. The global marine ornamental trade is estimated at US$ 200-330 million. The trade is operated throughout the tropics. Philippines, Indonesia, Solomon Islands, Sri Lanka, Australia, Fiji, Maldives and Palau supplied more than 98% of the total number of marine ornamental fish exported in recent years. It is a multi-stakeholder industry ranging from specimen collectors, culturists, wholesalers, transhippers, retailers, and hobbyists to researchers, government resource managers and conservators and hence involves a series of issues to be addressed and policies to be formulated for developing and expanding a sustainable trade. It is well understood that a long term sustainable trade of marine ornamental fishes can be developed only through the development and commercialization of hatchery production technologies for the species which are in high demand in the trade. Global scenario In recent years it has been reported that nearly 1500 species of marine ornamental fishes are traded globally and most of these are associated with coral reefs. Nearly 98% of the marine ornamental fishes marketed are wild collected from coral reefs of tropical countries. Among the most commercially traded families of reef fishes, family Pomacentridae dominate, accounting for nearly 43% of all fish traded. -
Assessment of the Flame Angelfish (Centropyge Loriculus) As a Model Species in Studies on Egg and Larval Quality in Marine Fishes Chatham K
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2007 Assessment of the Flame Angelfish (Centropyge loriculus) as a Model Species in Studies on Egg and Larval Quality in Marine Fishes Chatham K. Callan Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Aquaculture and Fisheries Commons, and the Oceanography Commons Recommended Citation Callan, Chatham K., "Assessment of the Flame Angelfish (Centropyge loriculus) as a Model Species in Studies on Egg and Larval Quality in Marine Fishes" (2007). Electronic Theses and Dissertations. 126. http://digitalcommons.library.umaine.edu/etd/126 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSMENT OF THE FLAME ANGELFISH (Centropyge loriculus) AS A MODEL SPECIES IN STUDIES ON EGG AND LARVAL QUALITY IN MARINE FISHES By Chatham K. Callan B.S. Fairleigh Dickinson University, 1997 M.S. University of Maine, 2000 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Marine Biology) The Graduate School The University of Maine August, 2007 Advisory Committee: David W. Townsend, Professor of Oceanography, Advisor Linda Kling, Associate Professor of Aquaculture and Fish Nutrition, Co-Advisor Denise Skonberg, Associate Professor of Food Science Mary Tyler, Professor of Biological Science Christopher Brown, Professor of Marine Science (Florida International University) LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for an advanced degree at The University of Maine, I agree that the Library shall make it freely available for inspection. -
Marine Protected Area Restricts Demographic Connectivity: Dissimilarity in a Marine Environment Can Function As a Biological Barrier
Received: 2 July 2017 | Accepted: 15 July 2017 DOI: 10.1002/ece3.3318 ORIGINAL RESEARCH Marine protected area restricts demographic connectivity: Dissimilarity in a marine environment can function as a biological barrier Masaaki Sato1 | Kentaro Honda2 | Wilfredo H. Uy3 | Darwin I. Baslot3 | Tom G. Genovia3 | Yohei Nakamura4 | Lawrence Patrick C. Bernardo5 | Hiroyuki Kurokochi6 | Allyn Duvin S. Pantallano3,4 | Chunlan Lian6 | Kazuo Nadaoka5 | Masahiro Nakaoka2 1Graduate School of Environmental Science, Hokkaido University, Akkeshi-cho, Hokkaido, Japan 2Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi-cho, Hokkaido, Japan 3Institute of Fisheries Research and Development, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines 4Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan 5Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan 6Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo, Japan Correspondence Masaaki Sato, Graduate School of Abstract Environmental Science, Hokkaido University, The establishment of marine protected areas (MPAs) can often lead to environmental Akkeshi-cho, Hokkaido, Japan. Email: [email protected] differences between MPAs and fishing zones. To determine the effects on marine dispersal of environmental dissimilarity between an MPA and fishing zone, we exam- Present addresses Masaaki Sato, National Research Institute ined the abundance and recruitment patterns of two anemonefishes (Amphiprion fre- of Fisheries Engineering, Japan Fisheries natus and A. perideraion) that inhabit sea anemones in different management zones Research and Education Agency, Hasaki, Kamisu-shi, Ibaraki, Japan (i.e., an MPA and two fishing zones) by performing a field survey and a genetic parent- Kentaro Honda, Hokkaido National Fisheries age analysis. -
Report on Roving Collectors: Case Studies from Indonesia and the Philippines” November 2006
i MAMTI Technical Paper: “Report on Roving Collectors: Case Studies from Indonesia and the Philippines” November 2006 ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means, or otherwise circulated in any form, binding or cover, other than the form, binding and cover in which it was published, without prior written permission of the Marine Aquarium Council, on behalf ot Reef Check and Conservation and Community Investment Forum and the International Finance Corporation, Global Environment Facility, Conservation International and United States Agency for International Development (USAID). Marine Aquarium Council 6th Floor Salustiana D. Ty Tower 104 Paseo de Roxas, Legaspi Village Makati City Tel : +632-813-1308 www.aquariumcouncil.org Disclaimer This report was prepared by Marine Aquarium Council, Reef Check and the Conservation and Community Investment Forum. The judgments expressed do not necessarily reflect the views of the Marine Aquarium Council, Reef Check and Conservation and Community Investment Forum, the funding agencies: the International Finance Corporation, Global Environment Facility, Conservation International and United States Agency for International Development (USAID). While every effort has been made to ensure accuracy of the information contained in this technical paper, this is not guaranteed. Accordingly, neither the Marine Aquarium Council, Reef Check and Conservation and Community Investment Forum nor the International Finance Corporation, Global Environment Facility, Conservation International and United States Agency for International Development (USAID) accepts any liability for actions taken based on this material. Printed: November 2006 ii Table of Contents LIST OF TABLES AND FIGURES .................................................................................. IV INTRODUCTION ..........................................................................................................