Staged Magnetic Compression of FRC Targets to Fusion Conditions ALPHA Annual Review

Total Page:16

File Type:pdf, Size:1020Kb

Staged Magnetic Compression of FRC Targets to Fusion Conditions ALPHA Annual Review Staged Magnetic Compression of FRC Targets to Fusion Conditions ALPHA Annual Review John Slough Principal Investigator Helion Energy: Brian Campbell, David Kirtley, Richard Milroy, Chris Pihl, George Votroubek MSNW LLC: John Slough, Kyle Holbrook, Akihisa Shimazu Coronado Consulting: Daniel Barnes The Economics of Power Density (Fusion’s Goldilocks Zone) Low Density Optimal Density High Density Wall material limit pulsed operation ($B) 10 Devices: Total Cost Tokamak (ITER) 1 Stellerator Devices: Spherical Torus Laser based (NIF) RFPs, CTs Magnetic Target (MTF) MIF (several) Wall heating limit Fusion Engine for continuous 0.1 Operating Point Fusion System System Fusion operation Fusion Driver Reactor (Heating and costs Replacement costs) 0.01 Fission Cost of Cost 0.1 10 1000 105 Power Density (MW/m3) The Fusion Engine 1. Dynamic Formation – Two FRC plasmoids are dynamically formed by sequential field reversal 2. Peristaltic Acceleration – FRC plasmoids accelerated to high velocities (>300 km/s) 3. Merging –The two supersonic plasmoids merge converting FRC kinetic into ion thermal energy 4. Adiabatic Compression – FRC is reversibly compressed to fusion temperatures 5. Energy Generation – fusion neutron energy thermally converted in blanket with spent plasma and fusion ion energy directly converted to electricity Artist’s animation of the FE 2D Magnetohydrodynamic simulation of the FE Fusion Engine Electrical Energy Flow I. Formation I II. Acceleration II III. Merging III IV. Compression and Burn IV V. Pump-out and Recovery V Net Electrical output per pulse: (26.65 – 1.27 – 0.29) = 25 MJ = 50 MW @ 2 Hz e e = 0.9 cdc = 0.7 ddc = 0.85 th = 0.45 Fusion Gain Scaling Based on Past FRC Confinement 12 2 Fusion Engine Prototype Efus 1.2 10 n v N VolFRC (FEP) Collision cross section: -33 2.6 4x10 Ti (eV) Empirical FRC confinement scaling: 15 0.5 0.8 2.1 0.6 N 3.2 10 xs rs n FRC energy: LSX (1991)** 2 Venti (VC+ARPA-E) 3 Be 2 EFRC NkTe Ti VolFRC rs ls Grande (2014)* 2 20 FRC internal (poloidal) flux: 1/ 3 r3 r s c p p Be rs rc Be Gain contours as a function of the FRC E G fus 0.093B2.4 0.82 l0.5 poloidal flux and compression magnetic field. e p s (FRC length l = 1 m) EFRC s * Ti ~ 4 keV ls ~ 0.4 m ** Ti ~ 0.3 keV, ls = 3 m Current Experimental Effort Completed Venti Formation Test Facility Current Theoretical Efforts Recent Progress with Cygnus FRC code • Physics upgrades – Modified pulse-power circuit(s) – “Free-slip” boundary conditions – Ohmic heating to ions – Ionization energy factor • Numerical upgrades – r = 0 accuracy improvement – Increased accuracy/consistency of vacuum field solve – First multi-core operation (P-threads) – Direct calculation of mutual inductance matrix (circuit-centric) • Successful Benchmarking with Formation Experiment – Vacuum shots compared with Venti-form data – PI shots compared with Venti-form data Comparison of FRC Excluded Flux: Experiment – disch. 974, Simulation – calc. 21 Cygnus Development Vision R 2D MHD + Circuits + Physics “Cygnus_red” Current O Version Red + Hall + Bias code 3D (Version Orange + Fourier Y toroidal ) G 3D Version Orange + test particles B 3D w. self-consistent particles I 3D particles w. noise reduction W Final 3D version Energy Generation from Fusion at a Fraction of the Cost and Time Technology Summary Fusion Engine 50 MW @ 2Hz • Power density scales as 2B4 - the Fusion Engine will e operate at the highest and steady B of all fusion plasmas Large external divertor: mitigates power loading and provides for • Cylindrical geometry with external exhaust thereby solving divertor exhaust plasma energy recovery at high blanket and divertor materials issues thermodynamic efficiency. • Staged compression and magnetic energy recovery assure high electrical efficiency and rapid pulse repetition rates Magneto-kinetic accel/compression: formation direct, high efficiency ion heating to fusion temperature Technology Impact accelerator Remote burn: • Scale and complexity of fusion reactor greatly reduced ideal breeding geometry. Flowing heat exchanger solves Tritium breeding issues • Fusion Engine Prototype will demonstrate multi-keV 24 -3 compressor ions, densities up to 10 m , with the potential for m 3 breakeven Modular reactor design: lower cost, risk, greater availability, flexible siting, on-demand & base load Proposed Targets accelerator power State of the Fusion Engine Metric Art - NIF Prototype formation Facility & Op. Cost ($) > 5 Billion 0.008 Billion Time to full power operation 15 yrs < 2 yrs divertor (=E /E ) Gain d plasma spent 5×10-5 1.5 0.2*1.2 *With mag. energy recovery =0.7 Rep Rate (shots/month) 20 2000.
Recommended publications
  • Nuclear Fusion
    Copyright © 2016 by Gerald Black. Published by The Mars Society with permission NUCLEAR FUSION: THE SOLUTION TO THE ENERGY PROBLEM AND TO ADVANCED SPACE PROPULSION Gerald Black Aerospace Engineer (retired, 40+ year career); email: [email protected] Currently Chair of the Ohio Chapter of the Mars Society Presented at Mars Society Annual Convention, Washington DC, September 22, 2016 ABSTRACT Nuclear fusion has long been viewed as a potential solution to the world’s energy needs. However, the government sponsored megaprojects have been floundering. The two multi-billion- dollar flagship programs, the International Tokamak Experimental Reactor (ITER) and the National Ignition Facility (NIF), have both experienced years of delays and a several-fold increase in costs. The ITER tokamak design is so large and complex that, even if this approach succeeds, there is doubt that it would be economical. After years of testing at full power, the NIF facility is still far short of achieving its goal of fusion ignition. But hope is not lost. Several private companies have come up with smaller and simpler approaches that show promise. This talk highlights the progress made by one such private company, namely LPPFusion (formerly called Lawrenceville Plasma Physics). LPPFusion is developing focus fusion technology based on the dense plasma focus device and hydrogen-boron 11 fuel. This approach, if it works, would produce a fusion power generator small enough to fit in a truck. This device would produce no radioactivity, there would be no possibility of a meltdown or other safety issues, and it would be more economical than any other source of electricity.
    [Show full text]
  • Small-Scale Fusion Tackles Energy, Space Applications
    NEWS FEATURE NEWS FEATURE Small-scalefusiontacklesenergy,spaceapplications Efforts are underway to exploit a strategy that could generate fusion with relative ease. M. Mitchell Waldrop, Science Writer On July 14, 2015, nine years and five billion kilometers Cohen explains, referring to the ionized plasma inside after liftoff, NASA’s New Horizons spacecraft passed the tube that’s emitting the flashes. So there are no the dwarf planet Pluto and its outsized moon Charon actual fusion reactions taking place; that’s not in his at almost 14 kilometers per second—roughly 20 times research plan until the mid-2020s, when he hopes to faster than a rifle bullet. be working with a more advanced prototype at least The images and data that New Horizons pains- three times larger than this one. takingly radioed back to Earth in the weeks that If that hope pans out and his future machine does followed revealed a pair of worlds that were far more indeed produce more greenhouse gas–free fusion en- varied and geologically active than anyone had ergy than it consumes, Cohen and his team will have thought possible. The revelations were breathtak- beaten the standard timetable for fusion by about a ing—and yet tinged with melancholy, because New decade—using a reactor that’s just a tiny fraction of Horizons was almost certain to be both the first and the size and cost of the huge, donut-shaped “tokamak” the last spacecraft to visit this fascinating world in devices that have long devoured most of the research our lifetimes. funding in this field.
    [Show full text]
  • Accelerating Low-Cost Plasma Heating and Assembly – ALPHA
    Accelerating Low-Cost Plasma Heating and Assembly – ALPHA PROJECT DESCRIPTIONS California Institute of Technology – Pasadena, CA Prototype Tools to Establish the Viability of the Adiabatic Heating and Compression Mechanisms Required for Magnetized Target Fusion - $800,000 Caltech, in coordination with Los Alamos National Laboratory, will investigate collisions of plasma jets and targets over a wide range of parameters to characterize the scaling of adiabatic heating and compression of liner-driven magnetized target fusion plasmas. The team will propel fast magnetized plasma jets into stationary heavy gases or metal walls. The resulting collision is equivalent to a fast heavy gas or metal liner impacting a stationary magnetized target in a shifted reference frame and allows the non-destructive and rapid investigation of physical phenomena and scaling laws governing the degree of adiabaticity of liner implosions. This study will provide critical information on the interactions and limitations for a variety of possible driver and plasma target combinations being developed across the ALPHA program portfolio. Helion Energy, Inc. – Redmond, WA Staged Magnetic Compression of FRC Targets to Fusion Conditions- $3,971,264 Helion Energy, Inc. will investigate staged magnetic compression of field-reversed configuration (FRC) plasmas, building on past successes to develop a prototype that can attain higher temperatures and fuel density than previously possible. The team will use these results to assess the viability of scaling to a power reactor, which if successful would offer the benefits of simple linear geometry, attractive scaling, and compatibility with modern pulsed power electronics. Lawrence Berkeley National Laboratory – Berkeley, CA MEMS Based Ion Beam Drivers for Magnetized Target Fusion- $2,200,000 Lawrence Berkley National Laboratory (LBNL), in close collaboration with Cornell University, will develop a scalable ion beam driver based on microelectromechanical systems (MEMS) technology.
    [Show full text]
  • Compact Fusion Reactors
    Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics 26.03.2015 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lockheed Martin and LPP Fusion. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given. CERN Colloquium 26th of March 2015 Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 1 / 37 Contents Contents 1 Introduction 2 Funding of fusion research 3 Basics of fusion 4 The Polywell reactor 5 Lockheed Martin CFR 6 Dense plasma focus 7 MTF 8 Other fusion concepts or companies 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 2 / 37 Introduction Introduction Climate disruption ! ! Pollution ! ! ! Extinctions Ecosystem Transformation Population growth and consumption There is no silver bullet to solve these issues, but energy production is "#$%&'$($#!)*&+%&+,+!*&!! central to many of these issues. -.$&'.$&$&/!0,1.&$'23+! Economically practical fusion power 4$(%!",55*6'!"2+'%1+!$&! could contribute significantly to meet +' '7%!89 !)%&',62! the future increased energy :&(*61.'$*&!(*6!;*<$#2!-.=%6+! production demands in a sustainable way.
    [Show full text]
  • The Regulation of Fusion – a Practical and Innovation-Friendly Approach
    The Regulation of Fusion – A Practical and Innovation-Friendly Approach February 2020 Amy C. Roma and Sachin S. Desai AUTHORS Amy C. Roma Sachin S. Desai Partner, Washington, D.C. Senior Associate, Washington, D.C. T +1 202 637 6831 T +1 202 637 3671 [email protected] [email protected] The authors want to sincerely thank the many stakeholders who provided feedback on this paper, and especially William Regan for his invaluable contributions and review of the technical discussion. TABLE OF CONTENTS I. EXECUTIVE SUMMARY 1 II. THE STATE OF FUSION INNOVATION 3 A) An Introduction to Fusion Energy 3 B) A Rapid Growth in Private-Sector Fusion Innovation 4 III. U.S. REGULATION OF ATOMIC ENERGY - NOT ONE SIZE FITS ALL 7 A) The Foundation of U.S. Nuclear Regulation - The Atomic Energy Act and the NRC 7 B) The Atomic Energy Act Embraces Different Regulations for Different Situations 7 1. NRC Frameworks for Different Safety Cases 8 2. Delegation of Regulatory Authority to States 9 IV. THE REGULATION OF FUSION - A PRACTICAL AND INNOVATION- FRIENDLY APPROACH 10 A) Fusion Regulation Comes to the Fore, Raising Key Questions 10 B) A Regulatory Proposal That Recognizes the Safety Case of Fusion and the Needs of Fusion Innovators 11 1. Near-Term: Regulation of Fusion Under the Part 30 Framework is Appropriate Through Development and Demonstration 11 2. Long-Term: The NRC Should Develop an Independent Regulatory Framework for Fusion at Commercial Scale, Not Adopt a Fission Framework 12 V. CONCLUSION 14 1 Hogan Lovells I. EXECUTIVE SUMMARY Fusion, the process that powers the Sun, has long been seen Most fusion technologies are already regulated by the NRC as the “holy grail” of energy production.
    [Show full text]
  • Voodoo Fusion__Vixra
    VOODOO FUSION ENERGY by Daniel L. Jassby New Jersey, USA [email protected] Abstract During the last 15 years a host of fusion energy “startups” have declared that their systems will put net electrical power on the grid or serve as a portable electric power generator within a decade. But only 10% of these myriad ventures have given evidence of any fusion-neutron production whatever. This paper defines “voodoo fusion energy” as those plasma systems that have never produced any fusion neutrons, but whose promoters make the claim of near-term electric power generation. With representations analogous to those of the notorious Theranos blood-diagnosis sham, the voodoo-fusion practitioners have cast a spell over credulous journalists, investors and politicians. _____________________________________________________________________ Modern Fusion Fantasies During the last decade a host of fusion energy “startups” have captured the attention of the technology press and blogosphere. These startups promise to develop practical fusion electric power generators in 5 to 15 years, and incidentally will achieve ITER’s planned performance in a fraction of the time at 1% of the cost. With few exceptions, journalists have accepted these claims without criticism and propagated them with enthusiasm. But these projects are nothing more than modern-day versions of Ronald Richter’s arc discharges of 1948-51, the inaugural fusion fraud [1]. Just as Richter’s contraption could not generate a single fusion reaction, only a tiny minority of the current projects has given evidence of any fusion-neutron production. It was principally the absence of neutron emission that doomed claims of “cold fusion”, so why should more elaborate assemblies get a free pass, just because they use plasmas heated beyond room temperature? A tepid plasma of deuterium cannot produce measurable levels of fusion neutrons because one or more of the ion temperature, ion density or plasma volume is too small.
    [Show full text]
  • Compact Fusion Reactors
    Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics NST2016, Helsinki, 3rd of November 2016 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using alternative concepts, that potentially could result on a faster time scale in smaller and cheaper devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to standard tokamaks decreases the costs and building time of the reactors and this has allowed several private companies to enter the field, like EMC2, General Fusion, Helion Energy, LPP Fusion, Lockheed Martin, Tokamak Energy and Tri Alpha Energy. These companies are trying to demonstrate the feasibility of their concept. If that is succesfully done, their next step is to try to demonstrate net energy production and after that to attempt to commercialize their technology. In this presentation a very brief overview of compact fusion reactor research is given. Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 1 / 24 Contents Contents 1 Fusion conditions 2 Plasma confinement 3 The Polywell reactor 4 Lockheed Martin CFR 5 Dense plasma focus 6 MTF 7 Spherical tokamaks 8 Other fusion concepts 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 2 / 24 Fusion conditions Fusion conditions See Antti Hakolas presentation in this conference on mainline fusion. A useful fusion performance metric is the triple product NτT (1) that has to execeed some threshold value for the fusion reaction in question for the fusion power to exceed radiation and other losses and maintain a constant plasma temperature.
    [Show full text]
  • TR-3B - Flying Triangles - MFD – Information
    TR-3B - Flying Triangles - MFD – Information From The TR-3B to the SR-75 and oh yea Area 51 this 7 part video is full of information. Click the link below I set it up so all 7 videos are on a playlist. http://www.youtube.com/watch?v=zdbIKAi- qeE&playnext=1&list=PL428DD7DFF4769DB7&feature=results_main 1. 1 1-Former Area 51 Employee Ed Fouche (Part 1 of 7)by Luskeren78 2. 2 2-Former Area 51 Employee Ed Fouche (Part 2 of 7)by Luskeren78 3. 3 3-Former Area 51 Employee Ed Fouche (Part 3 of 7)by Luskeren78 4. 4 4-Former Area 51 Employee Ed Fouche (Part 4 of 7)by Luskeren78 5. 5 5-Former Area 51 Employee Ed Fouche (Part 5 of 7)by Luskeren78 6. 6 6-Former Area 51 Employee Ed Fouche (Part 6 of 7)by Luskeren78 7. ▶ 7-Former Area 51 Employee Ed Fouche (Part 7 of 7)by Luskeren78 I was the first one to publicly expose the TR-3B, Flying Triangles, and Magnetic Field Disruptor in 1998. Ed Fouche 1-Former Area 51 Employee Ed Fouche (Part 1 of 7) http://www.youtube.com/watch?v=zdbIKAi-qeE 2-Former Area 51 Employee Ed Fouche (Part 2 of 7) http://www.youtube.com/watch?v=6tgGKOKGXTU 3 of 7 Former Area 51 Employee Ed Fouche http://www.youtube.com/watch?v=Ust1uA-gvwA 4 of 7 Former Area 51 Employee Ed Fouche http://www.youtube.com/watch?v=pQN4RxJKcXQ 5 of 7 Former Area 51 Employee Ed Fouche http://www.youtube.com/watch?v=uY_1hkdai1c 6 of 7 Former Area 51 Employee Ed Fouche http://www.youtube.com/watch?v=v1YkO1W5o7M 7 of 7 Former Area 51 Employee Ed Fouche http://www.youtube.com/watch?v=lORZARrUJ-I Published on Aug 3, 2012 Edgar Fouche's original 1998 presentation of "Alien Rapture" to the International UFO Congress Talk with Edgar Fouche 1 on 1 and ask him questions! Edgar Fouche -- Live -- AlienScientist Forum -- Special Guest http://www.alienscientist.com/forum/f......) ©Fouche Media Associates 1998 For a written transcript and to find images of all the slides presented please visit: http://www.alienscientist.com/fouche9..
    [Show full text]
  • Confinement Time (S)
    Overview CONFIDENTIAL Why this Middle Region is Attractive Plasma Energy Driver Power 1.00E+11 1.00E+15 NIF ITER GJ TW 1.00E+08 1.00E+12 MJ MTF GW 1.00E+05 1.00E+09 $ Cost of Driver Magnetically Confined $ Cost of Confinement Plasma at Extremely High Magnetic Fields kJ MW 1.00E+02 1.00E+06 1.00E+13 1.00E+16 1.00E+19 1.00E+22 1.00E+25 Plasma Density (cm-3) CONFIDENTIAL Energy Required: MTF vs. MF and ICF Energy Required - MTF vs. MF and ICF 1E+12 Bohm Magnetic Force > Material Strength ICF electron thermal conduction 1E+9 MF 1E+6 MTF ICF Plasma Energy (J) Energy Plasma Tokamak ITER89-P 1E+3 CT Classical 1E+0 1E+14 1E+16 1E+18 1E+20 1E+22 1E+24 1E+26 Density (cm-3) 14 -3 Source: LANL MTF Group. Assumes nE = 3x10 cm s, Ti = 10 keV, and poloidal ~1. CONFIDENTIAL 3 General Fusion’s Acoustically Driven MTF CONFIDENTIAL Practical Low cost compressed gas driver Liquid absorbs most neutron energy, low dpa High breeding ratio, 1.5 with natural lithium No target destroyed CONFIDENTIAL Plasma Injector 5x10 16 cm-3 300 eV 20 µs 3 T Accelerator current damages plasma magnetic structure CONFIDENTIAL 6 1m sphere with 14 full size drivers 15 ton molten Pb storage 100 kg/s pumping Vortex formation and collapse Piston impact velocity (50 m/s) and timing control (±5 µs) achieved CONFIDENTIAL Test plasma compression with explosive CONFIDENTIAL 8 Fusion Parameter Space 1.E+27 100000 1.E+24 NIF 1.E+21 10000 MagLIF OMEGA L 1.E+18 - 3) - 1000 FRX 1.E+15 General Fusion General 1.E+12 LINUS 100 Density Density (cm 1.E+09 Magnetic Field (T) tokamak 1.E+06 Density
    [Show full text]
  • Irunway Research
    E ma Nuclear Fusion: Global IP Landscape Contents 1 Executive Summary ................................................................................................................. 3 2 Nuclear Fusion Technology Landscape ................................................................................... 6 3 Nuclear Fusion: Patent Landscape .......................................................................................... 8 3.1 Patent Categories & Classification .............................................................................................................. 9 3.2 Geographical distribution of patents .......................................................................................................... 9 3.3 Leading Patent Assignees in Nuclear Fusion Technology .......................................................................... 12 4 Thermonuclear Fusion ........................................................................................................... 13 4.1 Thermonuclear Fusion vs. Thermonuclear Pulsed - An Analysis ............................................................... 15 4.1.1 Magnetic Confinement – The premier technique ........................................................................... 17 4.1.2 Electrostatic Confinement – An un-Maxwellian Approach ............................................................. 18 4.1.3 Inertial Confinement – Physical basis of Current Research ............................................................. 19 4.1.4 Magneto-Inertial Confinement
    [Show full text]
  • Nuclear Fusion Power
    10/18/2017 Nuclear Fusion : WNA - World Nuclear Association Home / Information Library / Current and Future Generation / Nuclear Fusion Power Nuclear Fusion Power (Updated August 2017) Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, but it also presents so far insurmountable engineering challenges. The fundamental challenge is to achieve a rate of heat emitted by a fusion plasma that exceeds the rate of energy injected into the plasma. The main hope is centred on tokamak reactors and stellarators which conne a deuterium-tritium plasma magnetically. Today, many countries take part in fusion research to some extent, led by the European Union, the USA, Russia and Japan, with vigorous programs also underway in China, Brazil, Canada, and Korea. Initially, fusion research in the USA and USSR was linked to atomic weapons development, and it remained classied until the 1958 Atoms for Peace conference in Geneva. Following a breakthrough at the Soviet tokamak, fusion research became 'big science' in the 1970s. But the cost and complexity of the devices involved increased to the point where international co-operation was the only way forward. Fusion powers the Sun and stars as hydrogen atoms fuse together to form helium, and matter is converted into energy. Hydrogen, heated to very high temperatures changes from a gas to a plasma in which the negatively-charged electrons are separated from the positively-charged atomic nuclei (ions). Normally, fusion is not possible because the strongly repulsive electrostatic forces between the positively charged nuclei prevent them from getting close enough together to collide and for fusion to occur.
    [Show full text]
  • Fuelled by Venture Capital and a Lot of Hope, Alternative Fusion Technologies Are Heating Up
    THE FUSION UPSTARTS FUELLED BY VENTURE CAPITAL AND A LOT OF HOPE, ALTERNATIVE FUSION TECHNOLOGIES ARE HEATING UP. BY M. MITCHELL WALDROP o reach one of the world’s most secretive nuclear-fusion companies, launched at least half a dozen compa- General Fusion’s reactor would visitors must wind their way through a suburban office park at the nies to pursue alternative designs for use massive pistons to crush fuel foot of the Santa Ana Mountains, just east of Irvine, California, fusion reactors. Some are reporting in a spinning vortex of liquid lead. until they pull up outside the large but unmarked headquarters of encouraging results, not to mention Tri Alpha Energy. attracting sizeable investments. Tri Alpha itself has raised $150 million TThis is as close as any outsider can get without signing a non-disclosure from the likes of Microsoft co-founder Paul Allen and the Russian govern- agreement; Tri Alpha protects its trade secrets so tightly that it does not ment’s venture-capital firm, Rusnano. HUBERT KANG PHOTOGRAPHY even have a website. But the fragments of information that have filtered But that success is bringing increased scrutiny of their bold promises. out make it clear that the building houses one of the largest fusion exper- Tri Alpha “has got very tough problems to overcome as it starts scaling iments now operating in the United States. It is also one of the most up to reactor size”, says Jeffrey Freidberg, a nuclear physicist at the Mas- unconventional. Instead of using the doughnut-shaped ‘tokamak’ reac- sachusetts Institute of Technology (MIT) in Cambridge.
    [Show full text]