Retrospective of the ARPA-E ALPHA Fusion Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TAE Technologies G Round Introduction July 2019
TAE Technologies G Round Introduction July 2019 PRIVILEGED AND CONFIDENTIAL 1 Contents TAE Technologies Overview 3 TAE Fusion 10 TAE Life Sciences 13 Disclaimer 17 Contact Information 18 PRIVILEGED AND CONFIDENTIAL 2 TAE Technologies Overview PRIVILEGED AND CONFIDENTIAL 3 “I would like to see the development of fusion power to give an unlimited supply of clean energy and a switch to electric cars.” Stephen Hawking watch video online PRIVILEGEDPRIVILEGED AND AND CONFIDENTIAL CONFIDENTIAL4 4 Vast fusion-incubated IP portfolio primed for commercialization Enables disruptive high-growth businesses Game-changing targeted radiation cancer therapy Revolutionary electric drivetrain platform for road, rail, air and sea Advanced particle accelerators for fusion, POWER GENERATION POWER DISTRIBUTION medicine and more • Fusion R&D • Microgrids • Confinement licensing • Energy storage/buffering • Plasma control • Power switching • Consulting services • Power factor correction PRIVILEGEDPRIVILEGED AND CONFIDENTIAL 5 Investment Opportunity Synopsis TAE is commercializing its intellectual property portfolio • Inflection point in TAE’s evolution • After over 1,100 patents filed and 20 years of R&D – starting to commercialize our technologies and realize accelerated revenues • Multiple tiered opportunities that drive significant value creation around • Fusion power generation technology ($7 trillion cumulative market out to 2040) • Targeted radiation oncology ($30+ billion/yr market for head & neck tumors w/ 6% CAGR) • Mobility technology (e.g. $20+ billion/yr EV drivetrain market w/ 19% CAGR) • Power management technologies (e.g. $10+ billion/yr data center power market w/ 7% CAGR) PRIVILEGED AND CONFIDENTIAL 6 Board, management and investors well-matched to opportunity Drawing on leadership from industry, technology and finance Strong and engaged board including: • Former U.S. -
A Doubly-Magic Storage Ring EDM Measurement Method
A doubly-magic storage ring EDM measurement method Richard Talman Cornell University, Ithaca, U.S.A. 10 December, 2018 arXiv:1812.05949v1 [physics.acc-ph] 14 Dec 2018 1 Abstract This paper discusses \doubly-magic trap" operation of storage rings with su- perimposed electric and magnetic bending, allowing spins in two beams to be frozen (at the same time, if necessary), and their application to electric dipole moment (EDM) measurement. Especially novel is the possibility of simultaneous storage in the same ring of frozen spin beams of two different particle types. A few doubly-magic cases have been found: One has an 86.62990502 MeV frozen spin proton beam and a 30.09255159 MeV frozen spin positron beam (with accu- racies matching their known magnetic moments) counter-circulating in the same storage ring. (Assuming the positron EDM to be negligibly small) the positron beam can be used to null the worst source of systematic EDM error|namely, the existence of unintentional and unknown average radial magnetic field < Br > which, acting on the MDM, causes spurious background spin precession indis- tinguishable from foreground EDM-induced precession. The resulting measured proton minus positron EDM difference is then independent of < Br >. This amounts to being a measurement of the proton EDM. Most doubly-magic features can be tested in one or more \small" EDM proto- type rings. One promising example is a doubly-magic proton-helion combination, which would measure the difference between helion (i.e. helium-3) and proton EDM's. This combination can be used in the near future for EDM measurement, for example in a 10 m bending radius ring, using only already well-understood and proven technology. -
Nuclear Fusion
Copyright © 2016 by Gerald Black. Published by The Mars Society with permission NUCLEAR FUSION: THE SOLUTION TO THE ENERGY PROBLEM AND TO ADVANCED SPACE PROPULSION Gerald Black Aerospace Engineer (retired, 40+ year career); email: [email protected] Currently Chair of the Ohio Chapter of the Mars Society Presented at Mars Society Annual Convention, Washington DC, September 22, 2016 ABSTRACT Nuclear fusion has long been viewed as a potential solution to the world’s energy needs. However, the government sponsored megaprojects have been floundering. The two multi-billion- dollar flagship programs, the International Tokamak Experimental Reactor (ITER) and the National Ignition Facility (NIF), have both experienced years of delays and a several-fold increase in costs. The ITER tokamak design is so large and complex that, even if this approach succeeds, there is doubt that it would be economical. After years of testing at full power, the NIF facility is still far short of achieving its goal of fusion ignition. But hope is not lost. Several private companies have come up with smaller and simpler approaches that show promise. This talk highlights the progress made by one such private company, namely LPPFusion (formerly called Lawrenceville Plasma Physics). LPPFusion is developing focus fusion technology based on the dense plasma focus device and hydrogen-boron 11 fuel. This approach, if it works, would produce a fusion power generator small enough to fit in a truck. This device would produce no radioactivity, there would be no possibility of a meltdown or other safety issues, and it would be more economical than any other source of electricity. -
First Simulations of Turbulent Transport in the Field-Reversed Configuration C
Lau DOI:10.1088/1741-4326/ab1578 EX/P6-37 First Simulations of Turbulent Transport in the Field-Reversed Configuration C. K. Lau1, D. P. Fulton1, J. Bao2, Z. Lin2, T. Tajima1,2, and L. Schmitz1,3 The TAE Team 1TAE Technologies, Inc., Foothill Ranch, CA 92688, USA 2University of California Irvine, CA 92697, USA 3University of California Los Angeles, CA 90095, USA Corresponding Author: C. K. Lau, [email protected] Experimental progress by TAE Technologies has led to successful suppression of MHD insta- bilities in field-reversed configuration (FRC) plasmas using C-2U and C-2W devices. Resultant particle and energy confinement times are on the order of several milliseconds, governed by mi- croturbulence driven transport processes. Understanding these mechanisms is essential towards improved confinement and a viable FRC fusion reactor. Experimental measurements of low frequency density fluctuations in C-2 have shown that fluctuations of the FRC core and SOL exhibit distinct qualities. In the SOL, fluctuations are highest in amplitude at ion-scale lengths and exponentially decrease towards electron-scale lengths. In the core, fluctuations are overall lower in amplitude with a dip in the ion-scale lengths and a slight peak in electron-scale lengths. Using the Gyrokinetic Toroidal Code (GTC), local linear simulations of drift-wave instabilities have found qualitatively similar trends. The SOL is linearly unstable for a wide range of length scales and pressure gradients. On the other hand, the core is shown to be robustly stable due to the stabilizing FRC traits of short field-line connection lengths, radially increasing magnetic field strength, and the large finite Larmor radius (FLR) of ions. -
TAE Milestone Press Release
Fusion Energy Milestone from TAE Technologies Validates Path to Cost-Competitive Carbon-Free Baseload Energy Company Raises Additional $280M for Reactor-Scale Demonstration Facility “Norman” Platform Outperforms Goals; Generates Stable High-Temperature Plasmas Additional Funds Will Support Final Step Toward Commercialization Foothill Ranch, CA -- April 8, 2021 -- TAE Technologies, the world’s largest private fusion energy company, has announced a landmark fusion technology milestone by producing stable plasma at 50M+ degrees Celsius in a proprietary compact reactor design that can scale to competitive fusion-generated power. This milestone furthers confidence in TAE’s path to commercialization, and has aided the company in raising $280M in additional funding. When combined with prior rounds, TAE has now raised over $880M from some of the world’s most sophisticated investors. The latest financing is the direct result of TAE achieving its most recent scientific milestone on the path to delivering carbon-free baseload energy from the Hydrogen-Boron (aka H-B11 or p-B11) fuel cycle, the most abundant and environmentally friendly fuel source on Earth, capable of sustaining the planet for millennia. This success crucially confirms a key differentiator of TAE’s patented technology: a positive relationship between plasma confinement and reactor temperature, meaning that the company’s compact linear configuration improves plasma confinement as temperatures rise. By generating such stable high temperature plasmas, TAE has now validated that the company’s unique approach can scale to the conditions necessary for an economically viable commercial fusion power plant by the end of the decade. A portion of the capital will be used to initiate development of a demonstration facility called “Copernicus” that will operate well in excess of 100 million degrees Celsius to simulate net energy production from the conventional Deuterium-Tritium (D-T) fuel cycle. -
Forward Helion Scattering and Neutron Polarization N
Forward Helion Scattering and Neutron Polarization N. H. Buttimore Trinity College Dublin, Ireland Abstract. The elastic scattering of spin half helium-3 nuclei at small angles can show a sufficiently large analyzing power to enable the level of helion polarization to be evaluated. As the helion to a large extent inherits the polarization of its unpaired neutron the asymmetry observed in helion collisions can be transformed into a measurement of the polarization of its constituent neutron. Neutron polarimetry therefore relies upon understanding the spin dependence of the electromagnetic and hadronic interactions in the region of interference where there is an optimal analyzing power. Keywords: Neutron, spin polarization, helion, elastic scattering, asymmetry PACS: 11.80.Cr, 12.20.Ds, 13.40.Ks, 25.55.Ci, 13.85.Dz, 13.88.+e INTRODUCTION The spin polarized neutrons available from a polarized helium-3 beam would be very suitable for the study of polarized down quarks in various QCD processes particularly relating to transversity [1], nucleon spin structure [2], multi Pomeron exchange [3], gluon distributions [4], and additional dimensions [5]. Measuring the analyzing power in small angle elastic scattering of hadrons with spin provides an opportunity for evaluating the level of polarisation of incident helium-3 nuclei (helions) [6] thereby providing an effective neutron polarimeter [7]. Such a method relies upon an understanding of high energy spin dependence in diffractive processes [8]. Here, the interference of elastic hadronic and electromagnetic interactions in a suitable peripheral region enhances the size of the transverse spin asym- metry sufficiently to offer a tangible polarimeter for high energy helions. -
Small-Scale Fusion Tackles Energy, Space Applications
NEWS FEATURE NEWS FEATURE Small-scalefusiontacklesenergy,spaceapplications Efforts are underway to exploit a strategy that could generate fusion with relative ease. M. Mitchell Waldrop, Science Writer On July 14, 2015, nine years and five billion kilometers Cohen explains, referring to the ionized plasma inside after liftoff, NASA’s New Horizons spacecraft passed the tube that’s emitting the flashes. So there are no the dwarf planet Pluto and its outsized moon Charon actual fusion reactions taking place; that’s not in his at almost 14 kilometers per second—roughly 20 times research plan until the mid-2020s, when he hopes to faster than a rifle bullet. be working with a more advanced prototype at least The images and data that New Horizons pains- three times larger than this one. takingly radioed back to Earth in the weeks that If that hope pans out and his future machine does followed revealed a pair of worlds that were far more indeed produce more greenhouse gas–free fusion en- varied and geologically active than anyone had ergy than it consumes, Cohen and his team will have thought possible. The revelations were breathtak- beaten the standard timetable for fusion by about a ing—and yet tinged with melancholy, because New decade—using a reactor that’s just a tiny fraction of Horizons was almost certain to be both the first and the size and cost of the huge, donut-shaped “tokamak” the last spacecraft to visit this fascinating world in devices that have long devoured most of the research our lifetimes. funding in this field. -
On TAE's Path to Fusion
On TAE’s Path to Fusion A Private-Sector Perspective Michl Binderbauer | President & CTO | TAE Technologies Committee on aCOMMITTE Strategic ON Plan A STRATEGIC for US Burning PLAN FOR Plasma U.S. BURNING Research, PLASMA General RESEARCH Atomic, | FEBRUARY Feb 26-28, 2018 2018 1 Agenda • Concept, Motivation and History • Key Past Program Accomplishments • Current Status and Next Steps • Overall Perspective Forward – Public-Private Partnership COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 2 TAE Concept Advanced beam driven FRC • High plasma β~1 • compact and high power density • aneutronic fuel capability • indigenous kinetic particles • Tangential high-energy beam injection • large orbit ion population decouples from micro-turbulence • improved stability and transport • Simple geometry • only diagmagnetic currents • easier design and maintenance • Linear unrestricted divertor • facilitates impurity, ash and power removal COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 3 Goals, Issues and Initiatives for FRC Research FESAC TAP report (2008) & ReNeW (2009) Long-range mission • Develop compact (high-β) reactor without toroidal field coils or a central solenoid ITER era goal • Achieve stable, long-pulse keV plasmas with favorable confinement scaling Key issues • Is global stability possible at large s (a/ρi ≥ 30) with low collisionality? • What governs energy transport and can it be reduced at high temperature? • Is energy-efficient sustainment possible at large-s and with good confinement? • Theory and simulation challenges (high-β, kinetic effects, transport) Suggested possible initiatives • Build larger facility with rotating magnetic fields or neutral beam injection (NBI) • Develop comprehensive diagnostics suite (profiles, fluctuations, …) COMMITTE ON A STRATEGIC PLAN FOR U.S. -
Fusion Public Meeting Slides-03302021-FINAL
TitleDeveloping Lorem a Regulatory Ipsum Framework for Fusion Energy Systems March 30, 2021 Agenda Time Topic Speaker(s) 12:30-12:40pm Introduction/Opening Remarks NRC Discussion on NAS Report “Key Goals and Innovations Needed for a U.S. Fusion Jennifer Uhle (NEI) 12:40-1:10pm Pilot Plant” Rich Hawryluk (PPPL) Social License and Ethical Review of Fusion: Methods to Achieve Social Seth Hoedl (PRF) 1:10-1:40pm Acceptance Developers Perspectives on Potential Hazards, Consequences, and Regulatory Frameworks for Commercial Deployment: • Fusion Industry Association - Industry Remarks Andrew Holland (FIA) 1:40-2:40pm • TAE – Regulatory Insights Michl Binderbauer (TAE) • Commonwealth Fusion Systems – Fusion Technology and Radiological Bob Mumgaard (CFS) Hazards 2:40-2:50pm Break 2:50-3:10pm Licensing and Regulating Byproduct Materials by the NRC and Agreement States NRC Discussions of Possible Frameworks for Licensing/Regulating Commercial Fusion • NRC Perspectives – Byproduct Approach NRC/OAS 3:10-4:10pm • NRC Perspectives – Hybrid Approach NRC • Industry Perspectives - Hybrid Approach Sachin Desai (Hogan Lovells) 4:10-4:30pm Next Steps/Questions All Public Meeting Format The Commission recently revised its policy statement on how the agency conducts public meetings (ADAMS No.: ML21050A046). NRC Public Website - Fusion https://www.nrc.gov/reactors/new-reactors/advanced/fusion-energy.html NAS Report “Key Goals and Innovations Needed for a U.S. Fusion Pilot Plant” Bringing Fusion to the U.S. Grid R. J. Hawryluk J. Uhle D. Roop D. Whyte March 30, 2021 Committee Composition Richard J. Brenda L. Garcia-Diaz Gerald L. Kathryn A. Per F. Peterson (NAE) Jeffrey P. Hawryluk (Chair) Savannah River National Kulcinski (NAE) McCarthy (NAE) University of California, Quintenz Princeton Plasma Laboratory University of Oak Ridge National Berkeley/ Kairos Power TechSource, Inc. -
On TAE's Path to Fusion
On TAE’s Path to Fusion A Private-Sector Perspective Michl Binderbauer | President & CTO | TAE Technologies Committee on aCOMMITTE Strategic ON Plan A STRATEGIC for US Burning PLAN FOR Plasma U.S. BURNING Research, PLASMA General RESEARCH Atomic, | FEBRUARY Feb 26-28, 2018 2018 1 Agenda • Concept, Motivation and History • Key Past Program Accomplishments • Current Status and Next Steps • Overall Perspective Forward – Public-Private Partnership COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 2 TAE Concept Advanced beam driven FRC • High plasma β~1 • compact and high power density • aneutronic fuel capability • indigenous kinetic particles • Tangential high-energy beam injection • large orbit ion population decouples from micro-turbulence • improved stability and transport • Simple geometry • only diagmagnetic currents • easier design and maintenance • Linear unrestricted divertor • facilitates impurity, ash and power removal COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 3 Goals, Issues and Initiatives for FRC Research FESAC TAP report (2008) & ReNeW (2009) Long-range mission • Develop compact (high-β) reactor without toroidal field coils or a central solenoid ITER era goal • Achieve stable, long-pulse keV plasmas with favorable confinement scaling Key issues • Is global stability possible at large s (a/ρi ≥ 30) with low collisionality? • What governs energy transport and can it be reduced at high temperature? • Is energy-efficient sustainment possible at large-s and with good confinement? • Theory and simulation challenges (high-β, kinetic effects, transport) Suggested possible initiatives • Build larger facility with rotating magnetic fields or neutral beam injection (NBI) • Develop comprehensive diagnostics suite (profiles, fluctuations, …) COMMITTE ON A STRATEGIC PLAN FOR U.S. -
Staged Magnetic Compression of FRC Targets to Fusion Conditions ALPHA Annual Review
Staged Magnetic Compression of FRC Targets to Fusion Conditions ALPHA Annual Review John Slough Principal Investigator Helion Energy: Brian Campbell, David Kirtley, Richard Milroy, Chris Pihl, George Votroubek MSNW LLC: John Slough, Kyle Holbrook, Akihisa Shimazu Coronado Consulting: Daniel Barnes The Economics of Power Density (Fusion’s Goldilocks Zone) Low Density Optimal Density High Density Wall material limit pulsed operation ($B) 10 Devices: Total Cost Tokamak (ITER) 1 Stellerator Devices: Spherical Torus Laser based (NIF) RFPs, CTs Magnetic Target (MTF) MIF (several) Wall heating limit Fusion Engine for continuous 0.1 Operating Point Fusion System System Fusion operation Fusion Driver Reactor (Heating and costs Replacement costs) 0.01 Fission Cost of Cost 0.1 10 1000 105 Power Density (MW/m3) The Fusion Engine 1. Dynamic Formation – Two FRC plasmoids are dynamically formed by sequential field reversal 2. Peristaltic Acceleration – FRC plasmoids accelerated to high velocities (>300 km/s) 3. Merging –The two supersonic plasmoids merge converting FRC kinetic into ion thermal energy 4. Adiabatic Compression – FRC is reversibly compressed to fusion temperatures 5. Energy Generation – fusion neutron energy thermally converted in blanket with spent plasma and fusion ion energy directly converted to electricity Artist’s animation of the FE 2D Magnetohydrodynamic simulation of the FE Fusion Engine Electrical Energy Flow I. Formation I II. Acceleration II III. Merging III IV. Compression and Burn IV V. Pump-out and Recovery V Net Electrical -
Accelerating Low-Cost Plasma Heating and Assembly – ALPHA
Accelerating Low-Cost Plasma Heating and Assembly – ALPHA PROJECT DESCRIPTIONS California Institute of Technology – Pasadena, CA Prototype Tools to Establish the Viability of the Adiabatic Heating and Compression Mechanisms Required for Magnetized Target Fusion - $800,000 Caltech, in coordination with Los Alamos National Laboratory, will investigate collisions of plasma jets and targets over a wide range of parameters to characterize the scaling of adiabatic heating and compression of liner-driven magnetized target fusion plasmas. The team will propel fast magnetized plasma jets into stationary heavy gases or metal walls. The resulting collision is equivalent to a fast heavy gas or metal liner impacting a stationary magnetized target in a shifted reference frame and allows the non-destructive and rapid investigation of physical phenomena and scaling laws governing the degree of adiabaticity of liner implosions. This study will provide critical information on the interactions and limitations for a variety of possible driver and plasma target combinations being developed across the ALPHA program portfolio. Helion Energy, Inc. – Redmond, WA Staged Magnetic Compression of FRC Targets to Fusion Conditions- $3,971,264 Helion Energy, Inc. will investigate staged magnetic compression of field-reversed configuration (FRC) plasmas, building on past successes to develop a prototype that can attain higher temperatures and fuel density than previously possible. The team will use these results to assess the viability of scaling to a power reactor, which if successful would offer the benefits of simple linear geometry, attractive scaling, and compatibility with modern pulsed power electronics. Lawrence Berkeley National Laboratory – Berkeley, CA MEMS Based Ion Beam Drivers for Magnetized Target Fusion- $2,200,000 Lawrence Berkley National Laboratory (LBNL), in close collaboration with Cornell University, will develop a scalable ion beam driver based on microelectromechanical systems (MEMS) technology.