Clips Regulate Neuronal Polarization Through Microtubule and Growth Cone Dynamics” Selbständig Und Ohne Unerlaubte Hilfe Angefertigt Habe
Total Page:16
File Type:pdf, Size:1020Kb
CLIPs regulate neuronal polarization through microtubule and growth cone dynamics Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakultät für Biologie der Ludwig–Maximilians–Universität München Angefertigt am Max-Planck-Institut für Neurobiologie in der Arbeitsgruppe ‟Axonales Wachstum und Regeneration‟ Vorgelegt von Dorothee Neukirchen München, 30. März 2010 Erstgutachter: PD Dr. Frank Bradke Zweitgutachter: Prof. Dr. Rainer Uhl Tag der mündlichen Prüfung: 19.Juli 2010 Ehrenwörtliche Versicherung: Ich versichere hiermit ehrenwörtlich, dass ich die Dissertation mit dem Titel ” CLIPs regulate neuronal polarization through microtubule and growth cone dynamics” selbständig und ohne unerlaubte Hilfe angefertigt habe. Ich habe mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Hilfen und Quellen bedient. Erklärung: Hiermit erkläre ich, dass ich mich nicht anderweitig einer Doktorprüfung ohne Erfolg unterzogen habe. Die Dissertation wurde in ihrer jetzigen oder ähnlichen Form bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient. München, 30.03.2010 Dorothee Neukirchen Die vorliegende Arbeit wurde in der Arbeitsgruppe für „Axonales Wachstum und Regeneration“ von PD Dr. Frank Bradke am Max-Planck-Institut für Neurobiologie in Martinsried angefertigt. Contents List of figures ........................................................................................... III List of tables ............................................................................................. IV Abbreviations ............................................................................................. V 1 Summary ......................................................................................... - 1 - 2 Introduction .................................................................................... - 3 - 2.1 Neuronal polarity ...................................................................................... - 3 - 2.2 The role of the cytoskeleton in neuronal polarity ................................... - 5 - 2.2.1 Signaling pathways involved in neuronal polarization ........................................... - 5 - 2.2.2 The actin cytoskeleton ..................................................................................... - 7 - 2.2.3 Microtubules .................................................................................................. - 11 - 2.2.4 MAPs ............................................................................................................ - 13 - 2.2.5 Plus end tracking proteins (+TIPs) ................................................................... - 14 - 2.2.6 Cytoplasmic linker proteins 115 and 170 ........................................................... - 20 - 2.2.7 Hippocampal neurons as a model system for neuronal polarization ...................... - 23 - 2.3 Objectives of this study ..........................................................................- 25 - 3 Results ........................................................................................... - 26 - 3.1 CLIP function in hippocampal neurons ..................................................- 26 - 3.1.1 Localization of CLIP-115 and CLIP-170 in hippocampal neurons ........................... - 26 - 3.1.2 Interference with CLIP function in hippocampal neurons ..................................... - 28 - 3.1.3 Interference with CLIP function inhibits axon formation ...................................... - 31 - 3.2 The microtubule-binding domain of CLIPs (MBD-CLIP) .......................- 34 - 3.2.1 Overexpression of MBD-CLIP leads to the formation of multiple axons.................. - 35 - 3.2.2 MBD-CLIP induced processes are differentiated axons ........................................ - 37 - 3.3 Microtubule dynamics after removal of CLIPs from microtubules .......- 39 - 3.3.1 CLIPs organize the microtubule network in growth cones .................................... - 39 - 3.3.2 Microtubule dynamics are impaired after DN-CLIP transfection ............................ - 40 - 3.4 CLIPs influence the actin cytoskeleton of the growth cone .................- 43 - 3.4.1 Growth cone structure and dynamics are impaired in DN-CLIP transfected neurons- 43 - 3.4.2 Actin retrograde flow is not altered in DN-CLIP transfected neurons ..................... - 45 - 3.4.3 Filopodia formation is impaired in DN-CLIP transfected neurons .......................... - 46 - 3.5 Manipulation of the actin cytoskeleton rescues axon formation in DN- CLIP transfected neurons ................................................................................- 47 - 3.6 A direct or indirect effect of CLIPs? .......................................................- 50 - 3.6.1 Destabilization of microtubules leads to a similar phenotype as the dominant negative construct of CLIPs ........................................................................................................ - 50 - I 3.6.2 The actin cytoskeleton is also affected by destabilized microtubules ..................... - 51 - 3.6.3 Inhibiting the interaction of CLIPs with the actin cytoskeleton results in the contrary phenotype of DN-CLIP .................................................................................................. - 52 - 4 Discussion ...................................................................................... - 56 - 4.1 CLIPs are key regulators during neuronal polarization ........................- 57 - 4.2 CLIPs and the microtubule network during neuronal polarization ......- 59 - 4.3 CLIPs and the actin cytoskeleton during neuronal polarization ...........- 60 - 4.3.1 Microtubules as pushing force .......................................................................... - 61 - 4.3.2 Interaction of microtubules with the actin cytoskeleton ....................................... - 62 - 4.4 CLIPs for proper axon elongation ..........................................................- 64 - 4.5 The “tug of war” .....................................................................................- 67 - 4.6 Concluding remarks ................................................................................- 68 - 5 Materials and Methods ................................................................... - 69 - 5.1 Materials .................................................................................................- 69 - 5.1.1 Chemicals...................................................................................................... - 69 - 5.1.2 Drugs ........................................................................................................... - 70 - 5.1.3 Commercial kits ............................................................................................. - 70 - 5.1.4 Equipment ..................................................................................................... - 71 - 5.1.5 Consumables ................................................................................................. - 72 - 5.1.6 Media, buffers and standard solutions .............................................................. - 73 - 5.1.7 Antibodies ..................................................................................................... - 77 - 5.1.8 Bacteria and Plasmids ..................................................................................... - 79 - 5.2 Methods ..................................................................................................- 80 - 5.2.1 Cell culture .................................................................................................... - 80 - 5.2.2 Microscopy .................................................................................................... - 81 - 5.2.3 Immunohistochemistry ................................................................................... - 83 - 5.2.4 Molecular Biology ........................................................................................... - 84 - 5.2.5 Biochemistry .................................................................................................. - 85 - 6 References ..................................................................................... - 87 - Acknowledgements ........................................................................... - 100 - Curriculum Vitae ................................................................................ - 101 - Publications ....................................................................................... - 102 - II List of figures Figure 2-1: Neuronal network. .................................................................................. - 4 - Figure 2-3: Actin filaments. ...................................................................................... - 8 - Figure 2-4: Axonal growth cone. ............................................................................... - 9 - Figure 2-5: Axon elongation. .................................................................................. - 10 - Figure 2-6: Microtubule polymerization. ................................................................... - 12 - Figure 2-7: Mechanisms of microtubule plus-end tracking. ........................................ - 16 - Figure 2-8: Structure of CLIP-115 and CLIP-170. ..................................................... - 21 - Figure 2-2: Development of hippocampal neurons in culture. .................................... - 24 - Figure 3-1: Localization of CLIPs in hippocampal