Electric Tricycle Project: Appropriate Mobility

Total Page:16

File Type:pdf, Size:1020Kb

Electric Tricycle Project: Appropriate Mobility Electric Tricycle Project: Appropriate Mobility Final Design Report 10 May 2004 Daniel Dourte David Sandberg Tolu Ogundipe Abstract The goal of the Electric Tricycle Project is to bring increased mobility to disabled persons in Burkina Faso, West Africa. Presently, hand-powered tricycles are used by many of the disabled in this community, but some current users of the hand-powered tricycles do not have the physical strength or coordination to propel themselves on the tricycle with their arms and hands. The aim of this project is to add an electric power train and control system to the current hand-powered tricycle to provide tricycle users with improved levels of mobility, facilitating freedom in travel and contribution to the community. The design objectives required a simple and affordable design for the power train and controls, a design that needed to be reliable, sustainable, and functional. In response to the request from an SIM missionary at the Handicap Center in Mahadaga, Burkina Faso, Dokimoi Ergatai (DE) committed to designing and supplying a kit to add electric motor power to the current tricycle design, and we, David Sandberg, Tolulope Ogundipe, and Daniel Dourte partnered with DE in their commitment. Our project was advised by Dr. Donald Pratt and Mr. John Meyer. 2 Table of Contents Acknowledgements…………………………………………………………… P. 4 1 Introduction………………………………………………………………… P. 4 1.1 Description...……………………………………………………………… P. 6 1.2 Literature Review………………………………………………………… P. 7 1.3 Solution…………………………………………………………………… P. 10 2 Design Process……………………………………………………………… P. 13 3 Implementation…………………………………………………………….. P. 25 4 Schedule…………………………………………………………………….. P. 27 5 Budget………………………………………………………………………. P. 28 6 Conclusions…………………………………………………………………. P. 29 7 Recommendations for Future Work………………………………………. P. 30 Appendix……………………………………………………………...………. P. 31 3 Acknowledgements We would like to thank Mr. John Meyer for his patient advising and abundant manufacturing assistance and Dr. Donald Pratt for his very thorough advising. We thank Dokimoi Ergatai for partnering with us and providing much project support and information. We are grateful to Dan Elliott and Jim Liebundgut for consulting with us on motor controlling. Finally, we thank our fellow student Brian Wohltmann for his help in editing our presentation video. 1 Introduction Hand-powered tricycles are presently being used to provide mobility for disabled persons in a rural community in Mahadaga, Burkina Faso. Below is a photograph of a boy in Mahadaga on his hand-powered tricycle. The map on the right shows the location of Burkina Faso (in green). With this project we designed and manufactured a system to convert the hand- powered tricycle to an electric motor powered version. We essentially created an affordable, rugged electric wheelchair for use in a developing country. We have worked to make our design appropriate to the culture where it will be used. This meant designing 4 for the use of locally available parts and manufacturing capabilities. The result is a system that can be almost entirely replicated, with the exception of the motor and motor controller, with familiar parts, tools, and processes. Using the hand-powered tricycle as the basis for our design made the Electric Tricycle more of an appropriate technology because it uses a familiar, locally available platform as a starting point. In Mahadaga there are currently four potential users of the Electric Tricycle. Disease or old age has left these members of the community dependent on others for their mobility. Though they own hand-powered tricycles, they are being used like conventional wheelchairs with the motive force coming from a person pushing from behind. Our first user is named Yempabou. He is a 12 year old boy from Burkina Faso who has cerebral palsy. Yempabou is pictured below: Cerebral Palsy limits his dexterity and severely limits the used of his lower limbs. Currently, he is learning to use a modified type of hand-powered tricycle, but has not 5 been able to power himself consistently. The Electric Tricycle should enable Yempabou, and others in the future, to be independently mobile. Dokimoi Ergatai, a Messiah College service-learning organization that works to improve living conditions for people in developing nations, was an important resource in this project. DE is responsible for the origin of the project, through their partnership with those in the community in Mahadaga, and much of the information gathering that was required to complete the project. 1.1 Description The design of the Electric Tricycle is adaptable to the current hand-powered tricycles with little modification. The design consists of an electric motor, a drive system, motor and steering controls, and a power supply. See picture below for design schematic: An electric motor was chosen because high fuel costs prohibited the use of a combustion engine and because of the availability of electricity in Mahadaga. A solar array that 6 provides electricity for the Handicap Center provides the ideal source of electricity for battery recharging. The first aspect of our design that was addressed was the drive system or means of power transmission. Power must be transmitted from the electric motor to a rear wheel of the tricycle. Second, a method of motor control was decided on. The controls for motor speed and braking were incorporated into a simple mechanical joystick to facilitate operation by users with limited dexterity. The hand-power system was replaced with a steering system that disables the hand-power capability of the tricycle. Third, power is supplied to the motor by a battery pack. All the above components (motor, transmission, controls, batteries) were designed to be able to be installed on the existing hand-powered tricycles. Everything necessary to convert a hand-powered tricycle to the Electric Tricycle is simple to install, and the conversion is reversible. Our objectives for the project are as follows, in order of decreasing priority: · Be appropriate for use and replication in Mahadaga, Burkina Faso · Be able to climb a 10% grade · Limit top speed to 7 mph · Have a power supply that will provide a range of 8 miles at maximum speed · Total cost of power train and controls and power supply will not exceed $300 1.2 Literature Review Research was done online as well as in magazine articles in search of presently available solutions to our problem. We found many products that were available for 7 purchase, but they didn’t entirely meet the requirements of our unique problem. The problem has been solved, and in many different ways, but what we found, or rather didn’t find, was a solution to our problem that meets our specific needs of affordability and appropriateness. The advantage of finding these solutions is that we can see what works, what has been tried, and what’s available on the market. Then we can more effectively consider how to design a similar product that meets our unique needs. www.kinetics.org.uk/html/the_motor.html is a website that has Heinzmann motors, which are a type of hub motor (Picture 1). This option is quite an expensive option. It costs over a $1000 and is available in England. Hub motors, although a very good design option, may not be the appropriate technology option that we’re looking for. Once the hub motor breaks or needs some maintenance, it becomes useless to the local people. It is a self contained system, but self contained also means more complicated technology as well. Teftec Mobility (http://www.teftec.com/index.asp0) is a company that produces electric wheelchairs, which is essentially what we’re doing. Their more basic and cheapest model is the AlphaTrac and costs $12,495 (Picture 2). This isn’t out of the typical electric wheelchair price range which is about $5,000 to $20,000. The amount of engineering that goes into making this machine far surpasses what will go into our Electric Wheelchair. This is a great option and is state of the art, but we believe that we’re approaching this art from a much different perspective with very different goals than the typical electric wheelchair manufacturer. Picture 3 shows different ways, very expensive ways, of hand powering a tricycle. These options may or may not allow for a better design for attaching an electric motor to. 8 We decided that although these are great designs, their purpose was for recreation and would not suit the needs of the people that we are designing the electric kit for. Their low position doesn’t allow a good seating position for a table or clearance enough for the conditions of the area. Literature Review Pictures: Picture 1: Heinzmann Hub motor Picture 2: AlphaTrac (John Deere inspired color configuration, more ‘off road’) Pictures 3: These are different options for hand powered operation of a tricycle. 9 1.3 Solution We began the design project with three drive options for transmitting power from the electric motor to the drive wheel. First, a hub motor was considered. The hub motor incorporated the motor and transmission into the hub of the wheel. See picture: This design was very simple and offered the advantage of a sealed, self-contained drive system, but it is the most expensive and least appropriate of the three options. Deciding against the hub motor, we pursued a friction drive system in which torque is transmitted from the motor to the wheel by direct contact between a drive roller on the motor and the tire of the tricycle. See picture: 10 The main advantage of the friction drive system is that it is capable of very simply providing the large speed reduction because of the difference in diameters of the drive roller on the motor and the wheel of the tricycle. This option was extensively prototyped, and different drive roller sizes and materials were tested, however, we decided against this option because of its limitations on torque transmission.
Recommended publications
  • Copake Auction Inc. PO BOX H - 266 Route 7A Copake, NY 12516
    Copake Auction Inc. PO BOX H - 266 Route 7A Copake, NY 12516 Phone: 518-329-1142 December 1, 2012 Pedaling History Bicycle Museum Auction 12/1/2012 LOT # LOT # 1 19th c. Pierce Poster Framed 6 Royal Doulton Pitcher and Tumbler 19th c. Pierce Poster Framed. Site, 81" x 41". English Doulton Lambeth Pitcher 161, and "Niagara Lith. Co. Buffalo, NY 1898". Superb Royal-Doulton tumbler 1957. Estimate: 75.00 - condition, probably the best known example. 125.00 Estimate: 3,000.00 - 5,000.00 7 League Shaft Drive Chainless Bicycle 2 46" Springfield Roadster High Wheel Safety Bicycle C. 1895 League, first commercial chainless, C. 1889 46" Springfield Roadster high wheel rideable, very rare, replaced headbadge, grips safety. Rare, serial #2054, restored, rideable. and spokes. Estimate: 3,200.00 - 3,700.00 Estimate: 4,500.00 - 5,000.00 8 Wood Brothers Boneshaker Bicycle 3 50" Victor High Wheel Ordinary Bicycle C. 1869 Wood Brothers boneshaker, 596 C. 1888 50" Victor "Junior" high wheel, serial Broadway, NYC, acorn pedals, good rideable, #119, restored, rideable. Estimate: 1,600.00 - 37" x 31" diameter wheels. Estimate: 3,000.00 - 1,800.00 4,000.00 4 46" Gormully & Jeffrey High Wheel Ordinary Bicycle 9 Elliott Hickory Hard Tire Safety Bicycle C. 1886 46" Gormully & Jeffrey High Wheel C. 1891 Elliott Hickory model B. Restored and "Challenge", older restoration, incorrect step. rideable, 32" x 26" diameter wheels. Estimate: Estimate: 1,700.00 - 1,900.00 2,800.00 - 3,300.00 4a Gormully & Jeffery High Wheel Safety Bicycle 10 Columbia High Wheel Ordinary Bicycle C.
    [Show full text]
  • Shlall RACING CARS.* by HN CHARLES, B.Sc.7
    500 THE INSTITUTION OF AUTOMOBILE ENGINEERS. ShlALL RACING CARS.* By H. N. CHARLES, B.Sc.7 (ASSOCIATEMEMBER.) February, 1935. INTRODUCTION. It is undeniable that everybody with a normal sense of values enjoys a clean sporting contest of any kind between adversaries who are fairly and evenly matched. To make the contest a real test of merit it must take place in public, and must be in accordance with the accepted rules. The above requirements are met by motor racing, since thousands of people witness the great long-distance motor races of the present day. The rules usually are also comparatively strict, and fine sportsmanship frequently exists in addition, in connexion with honouring the unwritten rules of the motor racing game. It has been the author’s good fortune during the last few years to be entrusted with the dcsigning of a number of types of what, for the want of a better term, may be briefly described as “ small racing cars.” The work, as it happens, has been entirely carried out for one Company, whose drawing office and experimental depart- ment are combined under his care. Having previously been in daily contact at different times with motor-cycle engines, airship engines, both rotary and stationary aeroplane engines, and a variety of accessories connected with the various types, it was at first some- what difficult to go back to the beginning and start with small engines all over again, but there is a great fascination about these small units, because they provide an almost ideal ground for experiment, the cost of which is greatly reduced by the small size of the parts involved.
    [Show full text]
  • English Summary Walter Ulreich / Wolfgang Wehap Die Geschichte Der PUCH-Fahrräder ISBN 978-3-7059-0381-4 22,5 X 26,5 Cm, 400 Seiten Mit Ca
    English Summary Walter Ulreich / Wolfgang Wehap Die Geschichte der PUCH-Fahrräder ISBN 978-3-7059-0381-4 22,5 x 26,5 cm, 400 Seiten mit ca. 500 farbigen Abb., Hardcover mit Schutzumschlag, geb., Euro 48,– 1. Beginnings of Bicycle Manufacturing in Austria and Weishaupt Verlag • www.weishaupt.at Styria (1885 – 1889) High wheel bicycles first appeared in Austria-Hungary in 1880. Since they were originally imported from England, they were called “bicycles”. The word Fahrrad came later (though in Swiss German, Velo became the established term). Regular production of high wheel bicycles in Austria-Hungary began in Jan Kohout’s factory for agricultural machines in Smíchov, near Prague, in 1880, following English designs. Kohout’s sons Josef and Petr made a name for themselves and the bicycles as successful racers. Smaller makers before 1885, such as Valentin Wiegele in Korpitsch near Villach, only became known locally. In Vienna, Karl Greger’s Velociped-Fabrik started making high wheel bicycles in 1884 under the brand name ‘Austria’; the annual output seems to have reached 300–400 bicy- cles. In 1896, Greger was mentioned as “the oldest bicycle factory of Austria and one of the largest on the continent”, and as “ founder of the bicycle industry in Austria-Hunga- ry”. At about the same time as Greger, Carl Goldeband and the sewing-machine factory of H. Wagner also began making bicycles in Vienna. In the years from 1885 to 1889, there is good evidence that bicycles were also being made by Mathias Allmer, Josef Benesch und Josef Eigler in Graz, Johann Jax in Linz, Josef Fritsch in Eger (Cheb), Julius Mickerts und Otto Schäffler in Vienna, Nicolaus Heid in Stockerau, near Vienna and G.
    [Show full text]
  • The History of the Wheel and Bicycles
    NOW & THE FUTURE THE HISTORY OF THE WHEEL AND BICYCLES COMPILED BY HOWIE BAUM OUT OF THE 3 BEST INVENTIONS IN HISTORY, ONE OF THEM IS THE WHEEL !! Evidence indicates the wheel was created to serve as potter's wheels around 4300 – 4000 BCE in Mesopotamia. This was 300 years before they were used for chariots. (Jim Vecchi / Corbis) METHODS TO MOVE HEAVY OBJECTS BEFORE THE WHEEL WAS INVENTED Heavy objects could be moved easier if something round, like a log was placed under it and the object rolled over it. The Sledge Logs or sticks were placed under an object and used to drag the heavy object, like a sled and a wedge put together. Log Roller Later, humans thought to use the round logs and a sledge together. Humans used several logs or rollers in a row, dragging the sledge over one roller to the next. Inventing a Primitive Axle With time, the sledges started to wear grooves into the rollers and humans noticed that the grooved rollers actually worked better, carrying the object further. The log roller was becoming a wheel, humans cut away the wood between the two inner grooves to create what is called an axle. THE ANCIENT GREEKS INVENTED WESTERN PHILOSOPHY…AND THE WHEELBARROW CHINA FOLLOWED 400 YEARS AFTERWARDS The wheelbarrow first appeared in Greece, between the 6th and 4th centuries BCE. It was found in China 400 years later and then ended up in medieval Europe. Although wheelbarrows were expensive to purchase, they could pay for themselves in just 3 or 4 days in terms of labor savings.
    [Show full text]
  • Guide to Promoting Bicycling on Federal Lands
    GUIDE TO PROMOTING BICYCLING ON FEDERAL LANDS Publication No. FHWA-CFL/TD-08-007 September 2008 Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, CO 80228 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-CFL/TD-08-007 4. Title and Subtitle 5. Report Date September 2008 Guide to Promoting Bicycling on Federal Lands 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Rebecca Gleason, P.E. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Western Transportation Institute P.O. Box 174250 11. Contract or Grant No. Bozeman, MT 59717-4250 DTFH68-06-X-00029 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration Final Report Central Federal Lands Highway Division August 2006 – August 2008 12300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Susan Law – FHWA CFLHD. Advisory Panel Members: Andy Clarke – League of American Bicyclists, Andy Rasmussen – FHWA WFLHD, Ann Do – FHWA TFHRC, Chris Sporl – USFS, Christine Black and Roger Surdahl – FHWA CFLHD, Franz Gimmler – Rails to Trails Conservancy, Gabe Rousseau – FHWA HQ, Gay Page – NPS, Jack Placchi – BLM, Jeff Olson – Alta Planning and Design, Jenn Dice – International Mountain Bicycling Association, John Weyhrich – Adventure Cycling Association, Nathan Caldwell – FWS, Tamara Redmon – FHWA HQ, Tim Young – Friends of Pathways. This project was funded under the FHWA Federal Lands Highway Coordinated Technology Implementation Program (CTIP). 16. Abstract Federal lands, including units of the National Park Service, National Forests, National Wildlife Refuges, and Bureau of Land Management lands are at a critical juncture.
    [Show full text]
  • Design Considerations for Robotic Needle Steering∗
    Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005 Design Considerations for Robotic Needle Steering∗ Robert J. Webster III, Jasenka Memisevic, and Allison M. Okamura Department of Mechanical Engineering Engineering Research Center for Computer-Integrated Surgical Systems and Technology The Johns Hopkins University Baltimore, MD, 21218 USA [email protected], [email protected], [email protected] Abstract— Many medical procedures involve the use of In our systems, the steering effect is caused by the needles, but targeting accuracy can be limited due to obstacles asymmetry of a bevel tip on a flexible needle [9], [11]. in the needle’s path, shifts in target position caused by Lateral motion and tissue deformation can also cause tissue deformation, and undesired bending of the needle after insertion. In order to address these limitations, we have steering, although our systems do not explicitly employ developed robotic systems that actively steer a needle in those techniques. Clinically, needles are manually steered soft tissue. A bevel (asymmetric) tip causes the needle to through a combination of lateral, twisting, and inserting bend during insertion, and steering is enhanced when the motions under visual feedback from imaging systems such needle is very flexible. An experimental needle steering robot as ultrasound [13]. However, these techniques can yield was designed that includes force/torque sensing, horizontal needle insertion, stereo image data acquisition, and controlled inconsistent results and are difficult to learn. Physicians actuation of needle rotation and translation. Experiments also sometimes continually spin bevel tip needles during were performed with a phantom tissue to determine the effects insertion to prevent them from bending.
    [Show full text]
  • The Velocipede Craze in Maine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Maine Maine History Volume 38 Number 3 Bicycling in Maine Article 3 1-1-1999 The Velocipede Craze in Maine David V. Herlihy Follow this and additional works at: https://digitalcommons.library.umaine.edu/mainehistoryjournal Part of the Cultural History Commons, Economics Commons, Legal Studies Commons, and the United States History Commons Recommended Citation Herlihy, David V.. "The Velocipede Craze in Maine." Maine History 38, 3 (1999): 186-209. https://digitalcommons.library.umaine.edu/mainehistoryjournal/vol38/iss3/3 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine History by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. DAVID V HERLIHY THE VELOCIPEDE CRAZE IN MAINE In early 1869\ when the nation experienced its first bicycle craze, Maine was among the hardest-hit regions. Portland boasted one of the first and largest manufacto­ ries, and indoor rinks proliferated statewide in frenzied anticipation of the dawning “era of road travel. ” In this article, the author traces the movement in Maine within an international context and tackles the fundamental riddle: Why was the craze so intense, and yet so brief? He challenges the conventional explanation - that technical inadequacies doomed the machine - and cites economic obstacles: in particular, the unreasonable royalty demands imposed by Maine-born patent-holder Calvin Witty. David V. Herlihy holds a B.A. in the history of science from Harvard University.
    [Show full text]
  • Sun Bicycles Trike Supplemental Owner's Manual
    Sun Traditional Trike Supplemental Owner’s Manual Find us online at Sun.Bike Revised 10-2015 CONGRATULATIONS! Congratulations and welcome to the Sun Trike family! You have selected one of the best three-wheeled cycle on the market. Please read this manual before riding your Sun Trike. In this manual you will find that we cover the basics for setting up and understanding your new trike. IMPORTANT: This manual is only a supplement to the main Sun Bicycle/Tricycle Owner’s Manual. Read it before you take the first ride on your new bicycle/tricycle, and keep it for reference. NOTE: This manual is not intended as a comprehensive use, service, repair or maintenance manual. Please see your dealer for all service, repairs or maintenance. Your dealer may also be able to refer you to classes, clinics or books on bicycle use, service, repair or maintenance. Sun Traditional 24 Trike Specifications Model: Traditional 24 Style: Adult Trike Frame: Hi-Tensile Steel Frame Rear Unit: Hi-Tensile Steel Headset: 1-1/8” Steel, Threaded, Caged Bearings, CP Handlebar: Steel, 700mm Wide x 230mm High, CP Stem: Steel/Alloy, 25.4 x 205mm Quill x 60mm Ext. x 40 Deg. Rise Grips: Hi Density Foam Brake Lever: Alloy, 3 Finger Lever, Linear Pull W/Parking Lock Front Brake: Alloy, 110mm Arms, Linear Pull Rear Brake: Not included Freewheel: 20T x 1/2” x 1/8” Seat Clamp / Binder Bolt: Integrated, Bolt/Nut Seat Post: Steel, 28.6mm O.D. x 305mm Length Seat Support Bar: Steel, 483mm Length Saddle: Sun Tractor, Padded with Steel Base Crankset: Steel, One-Piece, 165mm Chainwheel:
    [Show full text]
  • 1990) Through 25Th (2014
    CUMULATIVE INDEX TO THE PROCEEDINGS OF THE INTERNATIONAL CYCLE HISTORY CONFERENCES 1st (1990) through 25th (2014) Prepared by Gary W. Sanderson (Edition of February 2015) KEY TO INDEXES A. Indexed by Authors -- pp. 1-14 B. General Index of Subjects in Papers - pp. 1-20 Copies of all volumes of the proceedings of the International Cycling History Conference can be found in the United States Library of Congress, Washington, DC (U.S.A.), and in the British National Library in London (England). Access to these documents can be accomplished by following the directions outlined as follows: For the U.S. Library of Congress: Scholars will find all volumes of the International Cycling History Conference Proceedings in the collection of the United States Library of Congress in Washington, DC. To view Library materials, you must have a reader registration card, which is free but requires an in-person visit. Once registered, you can read an ICHC volume by searching the online catalog for the appropriate call number and then submitting a call slip at a reading room in the Library's Jefferson Building or Adams Building. For detailed instructions, visit www.loc.gov. For the British Library: The British Library holds copies of all of the Proceedings from Volume 1 through Volume 25. To consult these you will need to register with The British Library for a Reader Pass. You will usually need to be over 18 years of age. You can't browse in the British Library’s Reading Rooms to see what you want; readers search the online catalogue then order their items from storage and wait to collect them.
    [Show full text]
  • 1700 Animated Linkages
    Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1.
    [Show full text]
  • PUBLIC INPUT REPORT Veterans Memorial Park Public Input Report
    VETERANS MEMORIAL PARK PUBLIC INPUT REPORT Veterans Memorial Park Public Input Report Appendices Table of Contents Social media comments 4 Workshop comments 6 Online survey comments 13 Workshop input metrics summary 122 Workshop format feedback 124 Online survey metrics summary 127 Geographic distribution of survey respondents 136 Veterans Memorial Park Input Report 2 VETERANS MEMORIAL PARK APPENDICES Veterans Memorial Park Input Report 3 Facebook Input An additional 7 comments were provided in response to the Facebook posts for the workshop and online survey. Below are the verbatim comments. Veterans Memorial Park Input Report 4 Veterans Memorial Park Input Report 5 Workshop Comments Comment Theme(s) Flat, easier paths circuits Accessibility Recreation with family Active Recreation Bike trails dedicated to bike use to minimize conflict. Sustainable trails that users take responsibility for - mountain bikers are the most active trail advocates and contributors in SD county. Active Recreation Mountain biking; down hill and working on new tricks Active Recreation Riding down a fresh cut bike trail having the time of my life. Active Recreation No drones, no concerts, no pickleball or anything noisy Active Recreation Adult fitness apparatus/stations Active Recreation Bike skills area / pump track Active Recreation Biking Active Recreation Bocce ball Active Recreation Celebrate the biking community (industry big in Carlsbad) Active Recreation Croquet Active Recreation Exercise Active Recreation Frisbee golf Active Recreation Giant slide Active Recreation Kiting Active Recreation Outdoor adventure Active Recreation Physical adventure Active Recreation Pickle ball Active Recreation Pump track Active Recreation Riding on trails / fresh cut bike trail Active Recreation Active Recreation, Children's Area, Honor Veterans, Peace/tranquility, Multi-generational Accessibility I wan to be in a place that is multigenerational and designed for Active Recreation, Children's Areas, everyone.
    [Show full text]
  • CTM English E2 First Bicycles Final.Cdr
    The First Bicycles Course: English Adult Learning at Coventry Transport Museum The First Bicycles Course: English Teacher information This activity is designed for learners working at Entry 2 or above. The questions are based on information in this museum exhibition: Cycle Pioneers 1868-1900 Learners can answer the questions on the wipeable answer sheet. There is a vocabulary sheet at the front of the pack. In this activity, learners will practice: • using illustrations, captions and images to locate information • understanding the main points in texts • sequencing words in alphabetical order Introduction Go to this exhibition to answer the questions: Cycle Pioneers 1868-1900 You can answer the questions on the wipeable answer sheet. What are pioneers? Pioneers are the first people to do something. The Cycle Pioneers 1868 - 1900 exhibition tells you about the people who were first to design and develop bicycles. It also tells you about the history of the bicycle and how the bicycle started out. To understand the history of the bicycle, you can look at the captions and illustrations. Captions are labels or headings, and illustrations are pictures. You can use the captions and illustrations in the museum to help you understand the history of the bicycle. Vocabulary Parts of a Bicycle Brake Lever Handlebars Saddle Brakes Pedals Tyres Brakes These help the rider to slow down and stop a bicycle. The rider squeezes a lever on the handlebars to make the brakes work. The brakes squeeze on the wheels to make them stop. Handlebars A bar with a handle on each end. The rider holds each end of the handlebars to steer the bicycle.
    [Show full text]