The Role of Intestinal Microbiota and the Immune System

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Intestinal Microbiota and the Immune System European Review for Medical and Pharmacological Sciences 2013; 17: 323-333 The role of intestinal microbiota and the immune system F. PURCHIARONI, A. TORTORA, M. GABRIELLI, F. BERTUCCI, G. GIGANTE, G. IANIRO, V. OJETTI, E. SCARPELLINI, A. GASBARRINI Department of Internal Medicine, School of Medicine, Catholic University of the Sacred Heart, Gemelli Hospital, Rome, Italy Abstract. – BACKGROUND: The human gut Introduction is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the The intestinal microbiota is composed of 1013-14 host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the in- microorganisms (Figure 1), with at least 100 testinal innate and adaptive immune system, af- times as many genes as our genome, the micro- fecting different aspects of its development and biome. Its composition is individual-specific, function. ranges among individuals and also within the AIM: To review the immunological functions same individual during life. Many factors can in- of gut microbiota and improve knowledge of its fluence the gut flora composition, as diet, age, therapeutic implications for several intestinal medications, illness, stress and lifestyle. The gas- and extra-intestinal diseases associated to dys- regulation of the immune system. trointestinal (GI) tract contains both “friendly” METHODS: Significant articles were identified bugs, such as Gram-positive Lactobacilli and Bi- by literature search and selected based on con- fidobacteria dominate (> 85% of total bacteria), tent, including atopic diseases, inflammatory and potential pathogenic bacteria, coexisting in a bowel diseases and treatment of these condi- complex symbiosis. Several evidences show that tions with probiotics. intestinal microbiota supports energy metabolism RESULTS: Accumulating evidence indicates and immune and trophic functions in the host. that intestinal microflora has protective, meta- bolic, trophic and immunological functions and Furthermore, the concept of a “super-organism” is able to establish a “cross-talk” with the im- has emerged to reflect the physiologic impor- mune component of mucosal immunity, compris- tance of mutually advantageous bidirectional ing cellular and soluble elements. When one or host-microbe interactions in the gut. When this more steps in this fine interaction fail, autoim- equilibrium is altered several gastrointestinal and mune or auto-inflammatory diseases may occur. extraintestinal diseases can occur. Furthermore, it results from the data that probi- otics, used for the treatment of the diseases Gut Microbiota and caused by the dysregulation of the immune sys- Intestinal Mucosa Development tem, can have a beneficial effect by different mechanisms. Intestinal microflora has protective, metabolic, CONCLUSIONS: Gut microbiota interacts with trophic and immunological functions. In fact, to- both innate and adaptive immune system, play- gether with digestive enzymes, mucins, peristal- ing a pivotal role in maintenance and disruption sis, epithelial barrier with tight junctions, micro- of gut immune quiescence. A cross talk between biota belongs to the so called non-immune com- the mucosal immune system and endogenous microflora favours a mutual growth, survival and ponent of mucosal immunity and is able to estab- inflammatory control of the intestinal ecosys- lish a “cross-talk” with the immune component tem. Based on these evidences, probiotics can of mucosal immunity, comprising cellular and be used as an ecological therapy in the treat- soluble elements1. Commensal microbiota can ment of immune diseases. profoundly influence the development of the gut mucosal immune system and be crucial in pre- Key Words: venting exogenous pathogen intrusion, both by Gut microbiota, Intestinal immune system, Atopic direct interaction with pathogenic bacteria and by diseases, Inflammatory bowel disease, Probiotics. stimulation of the immune system. Comparative Corresponding Author: Flaminia Purchiaroni, MD; e-mail: [email protected] 323 F. Purchiaroni, A. Tortora, M. Gabrielli, F. Bertucci, G. Gigante, G. Ianiro, et al. Figure 1. GUT microbiota composition and distribution. studies in germ-free and conventional animals favours a mutual growth, survival and inflamma- have established that the intestinal microflora is tory control of the intestinal ecosystem. A typi- essential for the development and function of the cal feature of innate immunity is the ability of mucosal immune system especially during early distinguishing between potentially pathogenic life, a process important to overall immunity in microbial components and harmless antigens by adults2. Different studies over the time have “pattern recognition receptors” (PRRs) and demonstrated that the development of the ultra- among those toll-like receptors (TLRs) enable structure of the intestinal mucosa is dependent on mammalian cells to recognize conserved charac- luminal bacteria. For example, villus capillaries teristic molecules present on microorganisms in germ-free mice develop poorly during wean- and described as pathogen-associated molecular ing and remain poorly developed until adulthood, patterns (PAMPs)9-11. Since these molecules e.g. indicating a microbial contribution in angiogene- lipopolysaccharides, peptidoglycans, flagellin, sis of villus-core3-5. Germ-free animals show de- formylated peptides and others, are present also fects in the development of gut-associated lym- on commensal bacteria it seems more precise to phoid tissue (GALT) and antibody production, call them microbe-associated molecular patterns fewer cellular lymphoid follicles (Peyer’s patch- (MAMPs). In mammals TLRs are present on es), reduced cellular lamina propria, and fewer macrophages, neutrophils, dendritic cells (DCs), plasma cells in germinal center of the mesenteric intestinal epithelial cells (ECs) and other cells lymph node (MLNs) compared with animals un- belonging to innate immune system. Over the der conventional conditions6-8. The microbiota al- time, researches have led different studies so contributes to the development of intra-epithe- demonstrating that microbiota can regulate the lial lymphocytes (IEL). intestinal innate immune system by modulating TLRs expression on immunosensory cells sur- Gut Microbiota and Innate Immune System face through MAMPs; recognition of microbes A cross talk between the mucosal innate im- leads to activation of nuclear factor-kappa B mune system and endogenous microflora (NF-κB) signaling pathway and consequently 324 The role of intestinal microbiota and the immune system triggers cytokine production, up-regulation of tions by adhering to pathogens15,16 and protect co-stimulatory molecules on antigen presenting against acid gastric and duodenal secretions. The cells, leading to activation of T cells. Thus, in- mucus also provide a medium in which bacterial- nate immunity is tightly linked to adaptive im- derived metabolites with signaling functions are munity9-11. secreted and concentrated. Thus, the mucus layer In physiological conditions, complex and may promote mutualism by keeping bacteria at poorly understood cell interactions regulate in bay and restricting overt immune stimulation the gut responses to food antigens and to anti- while facilitating host-commensal or commensal- gens of the normal microflora in close proximity commensal cross-talk through the diffusion of to a large population of rapidly renewing ECs, bacterial products. specialized IELs and other immunologically ac- tive cells present in the mucosa. Cells of innate Gut Microbiota and immunity are able to produce cytokines essential Adaptative Immune System for inflammatory reactions as well as factors crit- An important immune compartment in the ical for the subsequent initiation of specific im- bowel is the lamina propria, where is present a munity. The contact with bacteria and their com- large number of macrophages, DCs, T cells, and ponents through the PRRs on their surface initi- IgA-secreting B cells. Acquired immune re- ates innate immunity responses11. So far, the ex- sponse is primarily imprinted in GALT (Peyer’s pression and modulation of TLRs on DCs (which patches (PPs) and MLNs)17-19. Indeed, regulatory represent the link between innate and adaptive cells are also present in the lamina propria where immunity) and on ECs play an active role during they maintain tolerance to foods and self-anti- interaction with external environment and in reg- gens. In the lamina propria are also present resi- ulating the mucosal immune responses. dent CD4, CD8 and B cells, while some CD8 ECs are perhaps the most important part of lymphocytes migrate to tip of the villous, where the innate defense mechanism of mucosal sur- they became IELs20,21. The B cells in the lamina faces. It has been recently shown that ECs are propria are activated and become IgA-producing directly involved in various immune processes, plasma cells. The IgA is transported across the in addition to their absorptive, digestive and se- epithelial layer and secreted in the gut lumen. cretory functions. For example, they show a pe- Antigens sampled in the lamina propria are taken culiar capacity of transporting secretory im- up by DCs and transported via draining lymphat- munoglobulins, produced by plasma cells in ic vessels to the MLNs and secondarily to the gut lamina propria, to the lumen, by binding these lymphoid tissue (PPs), to response to gut anti- to a receptor of polymeric immunoglobulins gens. The important feature
Recommended publications
  • IFM Innate Immunity Infographic
    UNDERSTANDING INNATE IMMUNITY INTRODUCTION The immune system is comprised of two arms that work together to protect the body – the innate and adaptive immune systems. INNATE ADAPTIVE γδ T Cell Dendritic B Cell Cell Macrophage Antibodies Natural Killer Lymphocites Neutrophil T Cell CD4+ CD8+ T Cell T Cell TIME 6 hours 12 hours 1 week INNATE IMMUNITY ADAPTIVE IMMUNITY Innate immunity is the body’s first The adaptive, or acquired, immune line of immunological response system is activated when the innate and reacts quickly to anything that immune system is not able to fully should not be present. address a threat, but responses are slow, taking up to a week to fully respond. Pathogen evades the innate Dendritic immune system T Cell Cell Through antigen Pathogen presentation, the dendritic cell informs T cells of the pathogen, which informs Macrophage B cells B Cell B cells create antibodies against the pathogen Macrophages engulf and destroy Antibodies label invading pathogens pathogens for destruction Scientists estimate innate immunity comprises approximately: The adaptive immune system develops of the immune memory of pathogen exposures, so that 80% system B and T cells can respond quickly to eliminate repeat invaders. IMMUNE SYSTEM AND DISEASE If the immune system consistently under-responds or over-responds, serious diseases can result. CANCER INFLAMMATION Innate system is TOO ACTIVE Innate system NOT ACTIVE ENOUGH Cancers grow and spread when tumor Certain diseases trigger the innate cells evade detection by the immune immune system to unnecessarily system. The innate immune system is respond and cause excessive inflammation. responsible for detecting cancer cells and This type of chronic inflammation is signaling to the adaptive immune system associated with autoimmune and for the destruction of the cancer cells.
    [Show full text]
  • Innate Immunity in the Lung: How Epithelial Cells Fight Against
    Copyright #ERSJournals Ltd 2004 EurRespir J 2004;23: 327– 333 EuropeanRespiratory Journal DOI: 10.1183/09031936.03.00098803 ISSN0903-1936 Printedin UK –allrights reserved REVIEW Innateimmunity in the lung: how epithelialcells ght against respiratorypathogens R. Bals*,P.S. Hiemstra # Innateimmunity in the lung: how epithelial cells ® ghtagainst respiratory pathogens *Deptof Internal Medicine, Division of R Bals, P S Hiemstra #ERS JournalsLtd 2004 PulmonaryMedicine, Hospital of the Uni- versityof Marburg, Philipps-University, ABSTRACT: Thehuman lung is exposed to a largenumber of airborne pathogens as a # resultof the daily inhalation of 10,000 litres of air Theobservation that respiratory Marburg,Germany; Deptof Pulmonology, LeidenUniversity Medical Center, Leiden, infectionsare nevertheless rare is testimony to the presence of anef®cient host defence TheNetherlands systemat the mucosal surface of the lung Theairway epithelium is strategically positioned at the interface with the Correspondence:P S Hiemstra,Dept of environment,and thus plays a keyrole in this host defence system Recognition Pulmonology,Leiden University Medical systemsemployed by airwayepithelial cells to respond to microbialexposure include the Center, P O Box9600, 2300 RC Leiden, The actionof the toll-like receptors Netherlands Theairway epithelium responds to such exposure by increasing its production of Fax:31 715266927 mediatorssuch as cytokines, chemokines and antimicrobial peptides Recent® ndings E-mail: p s hiemstra@lumc nl indicatethe importance of these peptides
    [Show full text]
  • Our Immune System (Children's Book)
    OurOur ImmuneImmune SystemSystem A story for children with primary immunodeficiency diseases Written by IMMUNE DEFICIENCY Sara LeBien FOUNDATION A note from the author The purpose of this book is to help young children who are immune deficient to better understand their immune system. What is a “B-cell,” a “T-cell,” an “immunoglobulin” or “IgG”? They hear doctors use these words, but what do they mean? With cheerful illustrations, Our Immune System explains how a normal immune system works and what treatments may be necessary when the system is deficient. In this second edition, a description of a new treatment has been included. I hope this book will enable these children and their families to explore together the immune system, and that it will help alleviate any confusion or fears they may have. Sara LeBien This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. SECOND EDITION COPYRIGHT 1990, 2007 IMMUNE DEFICIENCY FOUNDATION Copyright 2007 by Immune Deficiency Foundation, USA. Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. Our Immune System may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 40 West Chesapeake Avenue, Suite 308, Towson, MD 21204, USA; or by telephone at 1-800-296-4433.
    [Show full text]
  • Associated Lymphoid Tissue in Chickens and Turkeys Andrew Stephen Fix Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1990 The trs ucture and function of conjunctiva- associated lymphoid tissue in chickens and turkeys Andrew Stephen Fix Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, and the Veterinary Medicine Commons Recommended Citation Fix, Andrew Stephen, "The trs ucture and function of conjunctiva-associated lymphoid tissue in chickens and turkeys " (1990). Retrospective Theses and Dissertations. 9496. https://lib.dr.iastate.edu/rtd/9496 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. Hie quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • The Evolution of Nasal Immune Systems in Vertebrates
    Molecular Immunology 69 (2016) 131–138 Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm The evolution of nasal immune systems in vertebrates ∗ Ali Sepahi, Irene Salinas Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA a r t i c l e i n f o a b s t r a c t Article history: The olfactory organs of vertebrates are not only extraordinary chemosensory organs but also a powerful Received 15 July 2015 defense system against infection. Nasopharynx-associated lymphoid tissue (NALT) has been traditionally Received in revised form 5 September 2015 considered as the first line of defense against inhaled antigens in birds and mammals. Novel work in Accepted 6 September 2015 early vertebrates such as teleost fish has expanded our view of nasal immune systems, now recognized Available online 19 September 2015 to fight both water-borne and air-borne pathogens reaching the olfactory epithelium. Like other mucosa- associated lymphoid tissues (MALT), NALT of birds and mammals is composed of organized lymphoid Keywords: tissue (O-NALT) (i.e., tonsils) as well as a diffuse network of immune cells, known as diffuse NALT (D- Evolution NALT). In teleosts, only D-NALT is present and shares most of the canonical features of other teleost Nasal immunity NALT MALT. This review focuses on the evolution of NALT in vertebrates with an emphasis on the most recent Mucosal immunity findings in teleosts and lungfish. Whereas teleost are currently the most ancient group where NALT has Vertebrates been found, lungfish appear to be the earliest group to have evolved primitive O-NALT structures.
    [Show full text]
  • Lung Microbiome Participation in Local Immune Response Regulation in Respiratory Diseases
    microorganisms Review Lung Microbiome Participation in Local Immune Response Regulation in Respiratory Diseases Juan Alberto Lira-Lucio 1 , Ramcés Falfán-Valencia 1 , Alejandra Ramírez-Venegas 2, Ivette Buendía-Roldán 3 , Jorge Rojas-Serrano 4 , Mayra Mejía 4 and Gloria Pérez-Rubio 1,* 1 HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; [email protected] (J.A.L.-L.); [email protected] (R.F.-V.) 2 Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; [email protected] 3 Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; [email protected] 4 Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; [email protected] (J.R.-S.); [email protected] (M.M.) * Correspondence: [email protected]; Tel.: +52-55-5487-1700 (ext. 5152) Received: 11 June 2020; Accepted: 7 July 2020; Published: 16 July 2020 Abstract: The lung microbiome composition has critical implications in the regulation of innate and adaptive immune responses. Next-generation sequencing techniques have revolutionized the understanding of pulmonary physiology and pathology. Currently, it is clear that the lung is not a sterile place; therefore, the investigation of the participation of the pulmonary microbiome in the presentation, severity, and prognosis of multiple pathologies, such as asthma, chronic obstructive pulmonary disease, and interstitial lung diseases, contributes to a better understanding of the pathophysiology. Dysregulation of microbiota components in the microbiome–host interaction is associated with multiple lung pathologies, severity, and prognosis, making microbiome study a useful tool for the identification of potential therapeutic strategies.
    [Show full text]
  • Qnas with Max D. Cooper and Jacques F. A. P. Miller
    QNAS QnAswithMaxD.CooperandJacquesF.A.P.Miller QNAS Brian Doctrow, Science Writer Anyone who has ever contracted chicken pox can thank the adaptive immune system for future pro- tection against the disease. It is also thanks to this system that vaccines prevent diseases. The adaptive immune system provides organisms with a memory of past infections, enabling the body to quickly kill returning infections before they can do significant damage. Immunologists Jacques F. A. P. Miller and Max D. Cooper determined that adaptive immunity requires 2 distinct cell types that perform comple- mentary functions. Miller’s findings, published in the early 1960s in Lancet (1) and Proceedings of the Royal Society (2), showed that the ability to distinguish one’s own cells from foreign cells, a key feature of the adap- tive immune system, depends on lymphocytes, now known as T cells, matured in an organ called the thy- mus. Subsequently, Cooper reported in Nature (3) that Max Dale Cooper. Image courtesy of Georgia Research antibody production depends on a separate set of Alliance/Billy Howard. lymphocytes, dubbed B cells. The division of labor between T and B cells is a fundamental organizing principle of the adaptive immune system, the discov- did cancer research. I started working on leukemia and ery of which laid the groundwork for modern immu- this gave me an interest in lymphocytes. nology and made possible many subsequent medical advances, including monoclonal antibody produc- Cooper: I became interested through patients that I tion, vaccine development, and checkpoint inhibi- was taking care of: Children that had deficient immune tion therapies for cancer.
    [Show full text]
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Hormones and the Immune Response
    Ann Rheum Dis: first published as 10.1136/ard.48.1.1 on 1 January 1989. Downloaded from Annals of the Rheumatic Diseases, 1989; 48, 1-6 Review Hormones and the immune response Recent advances suggest that the immune system cells, are present on mouse spleen cells3 and human does not function in isolation but is influenced by peripheral blood mononuclear cells.4 Receptors, other physiological systems such as the endocrine identical to those in the central nervous system, for and neuroendocrine systems. This review discusses methionine enkephalin are present on splenocytes aspects of immune function altered by neuroendo- and T lymphocytes.3 In contrast, leucine enkephalin crine peptides, sex hormones, and vitamin D and j3-endorphin receptors on T lymphocyte differ metabolites. from those in the central nervous system as binding cannot be inhibited by opiate antagonists.5 6 In the Neuroendocrine effects case of ,3-endorphin the bindings occur through its carboxy terminal, whereas opiates bind their A system of bidirectional communication between receptor through the amino terminus. This raises the immune and neuroendocrine system exists, in an interesting possibility that a peptide such as which the two systems share a common set of f6-endorphin could form a bridge between two hormones and receptors.'2 Not only do immune lymphocyte subtypes by binding to one through its for peptides, to the and cells possess receptors neuroendocrine amino terminus opiate receptor through copyright. they are also capable of synthesising them and of its carboxy terminus to the non-opiate receptor on responding to them. Products of immune cells affect another lymphocyte.4 the central nervous system, which possesses recep- Other neuroendocrine peptide receptors present tors for cytokines and can also synthesise them on leucocztes include those for neurotensin,7 sub- (Fig.
    [Show full text]
  • The Immune System
    Chapter 43 The Immune System Lecture Outline Overview: Reconnaissance, Recognition, and Response • An animal must defend itself against pathogens, infectious agents that cause disease. o Viruses, bacteria, protists, and fungi infect a wide range of animals, including humans. • Animals fight back in various ways. o Immune cells patrol the body fluids of animals, seeking out and destroying foreign cells. o Responses to infection include proteins that punch holes in bacterial membranes or block viruses from entering body cells. • Immune systems help animals to avoid or limit many infections. o External barriers, formed by the skin or shell, provide an obstacle to microbes. o Chemical secretions that trap or kill microbes guard the body’s entrances and exits. o The internal defenses include macrophages and other phagocytic cells that ingest and destroy pathogens. • An animal’s immune system must detect foreign particles and tissues that invade the body, distinguishing self from nonself. • To identify pathogens, animal immune systems use receptors that specifically bind molecules from foreign cells or viruses. • Two general strategies for molecular recognition form the basis for innate and acquired immunity. • Innate immunity is common to all animals. • Innate immune responses are active immediately upon infection and are the same whether or not the pathogen has been encountered previously. • Innate immunity includes the barrier defenses (for example, skin) as well as defenses that combat pathogens after they enter the body. • The activation of many of these internal defenses relies on the recognition of pathogens. o Innate immune cells produce a small, preset group of receptor proteins that accomplish this recognition.
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma
    biology Review The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma Megan R. Gillespie 1, Vikrant Rai 2 , Swati Agrawal 3 and Kalyana C. Nandipati 3,* 1 School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; [email protected] 2 Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; [email protected] 3 Department of Surgery, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-402-280-5292 Simple Summary: Esophageal adenocarcinoma has a poor 5-year survival rate and is among the highest mortality cancers. Changes in the esophageal microbiome have been associated with cancer pathogenesis; however, the molecular mechanism remains obscure. This review article critically analyzes the molecular mechanisms through which microbiota may mediate the development and progression of esophageal adenocarcinoma and its precursors-gastroesophageal reflux disease and Barrett’s esophagus. It summarizes changes in esophageal microbiome composition in normal and pathologic states and subsequently discusses the role of altered microbiota in disease progression. The potential role of esophageal microbiota in protecting against the development of esophageal adenocarcinoma is also discussed. By doing so, this article highlights specific directions for future research developing microbiome-mediated therapeutics for esophageal adenocarcinoma. Abstract: Esophageal adenocarcinoma (EAC) is associated with poor overall five-year survival. The Citation: Gillespie, M.R.; Rai, V.; incidence of esophageal cancer is on the rise, especially in Western societies, and the pathophysiologic Agrawal, S.; Nandipati, K.C. The Role of Microbiota in the Pathogenesis of mechanisms by which EAC develops are of extreme interest.
    [Show full text]