Trajectory Design Tools for Libration and Cislunar Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carnegie Institution of Washington Department of Terrestrial Magnetism Washington, DC 20015-1305
43 Carnegie Institution of Washington Department of Terrestrial Magnetism Washington, DC 20015-1305 This report covers astronomical research carried out during protostellar outflows have this much momentum out to rela- the period July 1, 1994 – June 30, 1995. Astronomical tively large distances. Planetary nebulae do not, but with studies at the Department of Terrestrial Magnetism ~DTM! their characteristic high post-shock temperatures, collapse of the Carnegie Institution of Washington encompass again occurs. Hence all three outflows appear to be able to observational and theoretical fields of solar system and trigger the collapse of molecular clouds to form stars. planet formation and evolution, stars and star formation, Foster and Boss are continuing this work and examining galaxy kinematics and evolution, and various areas where the possibility of introducing 26Al into the early solar system these fields intersect. in a heterogeneous manner. Some meteoritical inclusions ~chondrules! show no evidence for live 26Al at the time of their formation. So either the chondrules formed after the 1. PERSONNEL aluminium had decayed away, or the solar nebula was not Staff Members: Sean C. Solomon ~Director!, Conel M. O’D. Alexander, Alan P. Boss, John A. Graham, Vera C. Rubin, uniformly populated with the isotope. Foster & Boss are ex- Franc¸ois Schweizer, George W. Wetherill ploring the injection of shock wave particles into the collaps- Postdoctoral Fellows: Harold M. Butner, John E. Chambers, ing solar system. Preliminary results are that ;40% of the Prudence N. Foster, Munir Humayun, Stacy S. McGaugh, incident shock particles are swallowed by the collapsing Bryan W. Miller, Elizabeth A. Myhill, David L. -
The Hubble Space Telescope – 10 Years On
BEN 11/7/00 2:27 PM Page 2 r bulletin 104 — november 2000 10 BEN 11/7/00 2:28 PM Page 3 the hubble space telescope – 10 years on The Hubble Space Telescope – 10 Years On P. Benvenuti & L. Lindberg Christensen ESA/ESO Space Telescope European Coordinating Facility, Garching, Germany Introduction scientists at the Space Telescope Science ESA is NASA’s partner in the Hubble Space Institute in Baltimore (STScI), USA. In return, a Telescope Project. ESA built the Faint Object minimum of 15% of the Telescope’s observing Camera (the HST instrument that delivers time is guaranteed for projects and research images with the highest spatial resolution), submitted by European astronomers from provided the solar panels that power the ESA’s Member States. In reality, the spacecraft, and supports a team of 15 high standard of projects from European astronomers has, so far, won them some 20% of the total observing time. Last Christmas Eve was very special one for ESA astronauts Claude Nicollier and Jean-François Clervoy: together with their American The initial ESA/NASA Memorandum of colleagues, they spent it aboard the Space Shuttle ‘Discovery’, after Understanding on HST expires 11 years after its concluding the latest scheduled repair mission to the orbiting Hubble launch, i.e. in April 2001. Both ESA and NASA Space Telescope (HST). This third Shuttle refurbishment mission to are convinced that the collaboration on HST has HST was, like its two predecessors, a resounding success. Only days been very successful, not merely in the later, as Hubble entered the new millennium, came the first beautiful development and initial operation of the images of a complex gravitationally lensing cluster of galaxies. -
Applications of Solar Wind Particle Impact Simulations at Lunar Magnetic Anomalies to the Study of Lunar Swirls
47th Lunar and Planetary Science Conference (2016) 2648.pdf APPLICATIONS OF SOLAR WIND PARTICLE IMPACT SIMULATIONS AT LUNAR MAGNETIC ANOMALIES TO THE STUDY OF LUNAR SWIRLS. C. J. Tai Udovicic1, G. Y. Kramer2, and E. M. Harnett3, 1Dept of Earth Sciences, University of Toronto, 22 Russell St, Toronto, ON, Canada, ([email protected]), 2Lunar and Planetary Institute, 3600 Bay Area Bvld, Houston, TX, ([email protected]), 3University of Washington, Earth and Space Sciences, Seattle, WA ([email protected]). Introduction: Lunar swirls are high albedo features highlands often appear to have swirl-like anomalies due that exhibit low spectral maturity. They have been to their complicated topography. To mitigate this, we identified at various sites on the Moon, and all coincide generated a slope map from the WAC GLD100 (SLP), with a lunar magnetic anomaly (magnomaly) [1], which we overlayed with the WAC 643 nm normalized although not all magnomalies have an identifiable swirl. reflectance image to distinguish high albedo swirls from The leading hypothesis for lunar swirl origin is high albedo slopes. Even so, after one pass of the region, presented in [2] as magnetic field standoff of the solar only about half of the swirls could be detected with this wind which causes uneven space weathering at the swirl method alone. The remaining half were found after surface. This hypothesis fails to explain why lunar using particle simulations as a guide. swirls are observed at some but not all of the magnetic Solar wind particle tracking simulations: We anomalies present on the Moon. To investigate the solar used the 2D solar wind particle tracking simulation wind standoff hypothesis further and to improve swirl presented in [2]. -
Apollo 17 Index: 70 Mm, 35 Mm, and 16 Mm Photographs
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) Preparation, Scanning, Editing, and Conversion to Adobe Portable Document Format (PDF) by: Ronald A. Wells University of California Berkeley, CA 94720 May 2000 A P O L L O 1 7 I N D E X 7 0 m m, 3 5 m m, A N D 1 6 m m P H O T O G R A P H S M a p p i n g S c i e n c e s B r a n c h N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n J o h n s o n S p a c e C e n t e r H o u s t o n, T e x a s APPROVED: Michael C . -
Trajectory Design Tools for Libration and Cis-Lunar Environments
Trajectory Design Tools for Libration and Cis-Lunar Environments David C. Folta, Cassandra M. Webster, Natasha Bosanac, Andrew Cox, Davide Guzzetti, and Kathleen C. Howell National Aeronautics and Space Administration/ Goddard Space Flight Center, Greenbelt, MD, 20771 [email protected], [email protected] School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 {nbosanac,cox50,dguzzett,howell}@purdue.edu ABSTRACT science orbit. WFIRST trajectory design is based on an optimal direct-transfer trajectory to a specific Sun- Innovative trajectory design tools are required to Earth L2 quasi-halo orbit. support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration Trajectory design in support of lunar and libration of propulsion influences. Two distinctive tools, point missions is becoming more challenging as more Adaptive Trajectory Design and the General Mission complex mission designs are envisioned. To meet Analysis Tool have been developed and certified to these greater challenges, trajectory design software provide the astrodynamics community with the ability must be developed or enhanced to incorporate to design multi-body trajectories. In this paper we improved understanding of the Sun-Earth/Moon discuss the multi-body design process and the dynamical solution space and to encompass new capabilities of both tools. Demonstrable applications to optimal methods. Thus the support community needs confirmed missions, the Lunar IceCube Cubesat lunar to improve the efficiency and expand the capabilities mission and the Wide-Field Infrared Survey Telescope of current trajectory design approaches. For example, (WFIRST) Sun-Earth L2 mission, are presented. invariant manifolds, derived from dynamical systems theory, have been applied to the trajectory design of 1. -
Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System
Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System Thomas A. Pavlak∗ and Kathleen C. Howelly Purdue University, West Lafayette, IN, 47907-2045, USA In an effort to design low-cost maneuvers that reliably maintain unstable libration point orbits in the Earth-Moon system for long durations, an existing long-term stationkeeping strategy is augmented to compute locally optimal maneuvers that satisfy end-of-mission constraints downstream. This approach reduces stationkeeping costs for planar and three- dimensional orbits in dynamical systems of varying degrees of fidelity and demonstrates the correlation between optimal maneuver direction and the stable mode observed during ARTEMIS mission operations. An optimally-constrained multiple shooting strategy is also introduced that is capable of computing near optimal maintenance maneuvers without formal optimization software. I. Introduction Most orbits in the vicinity of collinear libration points are inherently unstable and, consequently, sta- tionkeeping strategies are a critical component of mission design and operations in these chaotic dynamical regions. Stationkeeping is particularly important for libration point missions in the Earth-Moon system since fast time scales require that orbit maintenance maneuvers be implemented approximately once per week. Assuming that acceptable orbit determination solutions require 3-4 days to obtain, stationkeeping ∆V planning activities must be quick, efficient, and effective. Furthermore, the duration of a libration point mission is often dictated by the remaining propellant so a key capability is maintenance maneuvers that are low-cost. Thus, to accommodate a likely increase in future operations in the vicinity of the Earth-Moon libration points, fast, reliable algorithms capable of rapidly computing low-cost stationkeeping maneuvers, with little or no human interaction, are critical. -
Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations
Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations Erika Harnett∗ Department of Earth and Space Science, University of Washington,Seattle, WA 98195-1310, USA Georgiana Kramer Lunar and Planetary Institute, 3600 Bay Area Blvd, Houston, TX 77058, USA Christian Udovicic Department of Physics, University of Toronto, 60 St George St,Toronto, ON M5S 1A7, Canada Ruth Bamford RAL Space, STFC, Rutherford Appleton Laboratory,Chilton, Didcot Ox11 0Qx, UK (Dated: November 5, 2018) Ever since the Apollo era, a question has remained as to the origin of the lunar swirls (high albedo regions coincident with the regions of surface magnetization). Different processes have been proposed for their origin. In this work we test the idea that the lunar swirls have a higher albedo relative to surrounding regions because they deflect incoming solar wind particles that would otherwise darken the surface. 3D particle tracking is used to estimate the influence of five lunar magnetic anomalies on incoming solar wind. The regions investigated include Mare Ingenii, Gerasimovich, Renier Gamma, Northwest of Apollo and Marginis. Both protons and electrons are tracked as they interact with the anomalous magnetic field and impact maps are calculated. The impact maps are then compared to optical observations and comparisons are made between the maxima and minima in surface fluxes and the albedo and optical maturity of the regions. Results show deflection of slow to typical solar wind particles on a larger scale than the fine scale optical, swirl, features. It is found that efficiency of a particular anomaly for deflection of incoming particles does not only scale directly with surface magnetic field strength, but also is a function of the coherence of the magnetic field. -
Mars Astrobiological Cave and Internal Habitability Explorer (MACIE): a New Frontiers Mission Concept
Mars Astrobiological Cave and Internal habitability Explorer (MACIE): A New Frontiers Mission Concept By: C. Phillips-Lander ([email protected])1, A. Agha-mohamamdi2, J. J. Wynne3, T. N. Titus4, N. Chanover5, C. Demirel-Floyd6, K. Uckert2, K. Williams4, D. Wyrick1, J.G. Blank7,8, P. Boston8, K. Mitchell2, A. Kereszturi9, J. Martin-Torres10,11, S. Shkolyar12, N. Bardabelias13, S. Datta14, K. Retherford1, Lydia Sam11, A. Bhardwaj11, A. Fairén15,16, D. Flannery17, R. Wiens17 1Southwest Research Institute 2 NASA Jet Propulsion Laboratory 3Northern Arizona University 4U.S. Geological Survey 5New Mexico State University 6University of Oklahoma 7Blue Marble Space Institute of Science 8NASA Ames Research Center 9Konkoly Thege Miklos Astronomical Institute, Budapest, Hungary 10Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Spain 11University of Aberdeen, United Kingdo 12USRA/NASA Goddard 13University of Arizona 14University of Texas-San Antonio 15Centro de Astrobiogía, Spain 16Cornell University 17Queensland University for Technology, Australia 18Los Alamos National Laboratory Cosigners 1 Summary of Key Points 1. Martian subsurface habitability and astrobiology can be evaluated via a lava tube cave, without drilling. 2. MACIE addresses two key goals of the Decadal Survey (2013-2022) and three MEPAG goals. 3. New advances in robotic architectures, autonomous navigation, target sample selection, and analysis will enable MACIE to explore the Martian subsurface. 1. Martian lava tubes are one of the best places to search for evidence of life The Mars Astrobiological Cave and Internal habitability Explorer (MACIE) mission concept is named for Macie Roberts, one of NASA’s ‘human computers’ (Conway 2007). MACIE would access the Martian subsurface via a lava tube. -
GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation
Icarus 292 (2017) 54–73 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation ∗ David M.H. Baker a,b, , James W. Head a, Roger J. Phillips c, Gregory A. Neumann b, Carver J. Bierson d, David E. Smith e, Maria T. Zuber e a Department of Geological Sciences, Brown University, Providence, RI 02912, USA b NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA c Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA d Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA e Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139, USA a r t i c l e i n f o a b s t r a c t Article history: High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide Received 14 September 2016 the opportunity to analyze the detailed gravity and crustal structure of impact features in the morpho- Revised 1 March 2017 logical transition from complex craters to peak-ring basins on the Moon. We calculate average radial Accepted 21 March 2017 profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest Available online 22 March 2017 complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. -
Small Satellite Solutions with Large Satellite Implications
SSC08-III-8 Plug and Play – Small Satellite Solutions with Large Satellite Implications Lee Thienel, Guy Robinson, Dale Stottlemyer, Rus Burgess Libration Systems Management, Inc. 2301 Yale Boulevard, SE, Suite C3, Albuquerque, New Mexico 76106; 505.243.6767 [email protected], [email protected] [email protected], [email protected] Scott Clough Vantage Systems Inc. 4600 Forbes Boulevard, Suite 100, Lanham, MD 20706; 301.459.6007 [email protected] ABSTRACT The Plug N Play concept has roots that reach back decades and has implications that reach decades into the future. The aerospace industry has tried to achieve a reusable modular satellite from time to time to leverage recurring design costs and by reusing them change them into nonrecurring costs. The Air Force Research Laboratory (AFRL) is working on a new approach to implement a modern version of a standardized bus definition. It started with standardization efforts for NASA and DoD MMS (Multimission Modular Satellite) missions of the 1970’s and 1980’s.It has evolved to today’s applications in small responsive space satellite programs. The potential applications of Plug N Play concepts to large satellite programs can reduce costs as well as minimize assembly, integration and test timelines. Today we have to ask “Are the large satellite houses ready to adapt a new paradigm that will reduce satellite cost, and shorten the Integration and Test cycle?” INTRODUCTION focused on Earth orbit science and exploration. NASA Modular satellites are coming of age with the projects was building their Great Observatories – Hubble Space Telescope, the Compton Gamma-Ray Observatory, the such as AFRL’s Plug and Play Satellite (PnPSat). -
The Geology of Smythii and Marginis
Lunar and Planetary Science XXVIII 1293.PDF THE GEOLOGY OF SMYTHII AND MARIGINIS BASINS USING INTEGRATED REMOTE SENSING TECHNIQUES: A Look At What’s Around The Corner. Jeffrey J. Gillis1, Paul D. Spudis2 and D. Ben J. Bussey2, 1. Dept. of Geology and Geophysics, 6100 South Main Street, MS-126, Rice University, Houston, Texas, 77005. Gil- [email protected] 2. Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, Texas, 77058. As part of our ongoing study of volcanism on the far side highlands material while craters greater than 350 meters deep of the Moon, we are studying the geologically diverse eastern (e.g. unnamed crater 3.5 km in diameter located at 0.6o N, limb of the Moon. Crustal thickness in this area, 60 - 75 km, 86o E) have excavated highlands material from beneath the [1, 2] approximates more closely the average crustal thick- mare. Thus, we estimate that the basalt is approximately 325 ness of the far side of the Moon (100 km) than the crustal meters thick at most. thickness beneath the near side, Apollo sites (40-60 km). Moreover, the eastern limb region has been documented by a A unit with intermediate albedo and iron values (10 - 12 wt. variety of remote sensing techniques: Lunar Orbiter and % FeO) occupies the southwestern central area of the Apollo images, Apollo X-ray and gamma-ray data, and Smythii basin. Topographically higher, this unit forms an Clementine gravity, topography and multispectral images. elongate arch that stretches from northwest to southeast and divides the main basalt deposit to the northeast from two A comprehensive study of the geology of the eastern limb of isolated basalt patches to the south and southwest. -
Not Yet Imagined: a Study of Hubble Space Telescope Operations
NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.