Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System

Total Page:16

File Type:pdf, Size:1020Kb

Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System Thomas A. Pavlak∗ and Kathleen C. Howelly Purdue University, West Lafayette, IN, 47907-2045, USA In an effort to design low-cost maneuvers that reliably maintain unstable libration point orbits in the Earth-Moon system for long durations, an existing long-term stationkeeping strategy is augmented to compute locally optimal maneuvers that satisfy end-of-mission constraints downstream. This approach reduces stationkeeping costs for planar and three- dimensional orbits in dynamical systems of varying degrees of fidelity and demonstrates the correlation between optimal maneuver direction and the stable mode observed during ARTEMIS mission operations. An optimally-constrained multiple shooting strategy is also introduced that is capable of computing near optimal maintenance maneuvers without formal optimization software. I. Introduction Most orbits in the vicinity of collinear libration points are inherently unstable and, consequently, sta- tionkeeping strategies are a critical component of mission design and operations in these chaotic dynamical regions. Stationkeeping is particularly important for libration point missions in the Earth-Moon system since fast time scales require that orbit maintenance maneuvers be implemented approximately once per week. Assuming that acceptable orbit determination solutions require 3-4 days to obtain, stationkeeping ∆V planning activities must be quick, efficient, and effective. Furthermore, the duration of a libration point mission is often dictated by the remaining propellant so a key capability is maintenance maneuvers that are low-cost. Thus, to accommodate a likely increase in future operations in the vicinity of the Earth-Moon libration points, fast, reliable algorithms capable of rapidly computing low-cost stationkeeping maneuvers, with little or no human interaction, are critical. The libration point stationkeeping problem has been explored in both the Sun-Earth and Earth-Moon systems by numerous researchers. The majority of these orbit maintenance methods can be classified as \short-term" approaches given that the goal for each individual maneuver is maintenance of the spacecraft within the vicinity of the libration point for only the immediate future. Optimal short-term strategies, some incorporating Floquet theory to eliminate the unstable component of spacecraft error, have been explored extensively by Farquhar,1,2 Breakwell et al.,3 and others.4{6 Globally optimal maneuvers have been sought via a global search stationkeeping algorithm designed for the Sun-Earth L2 James Webb Space Telescope by Janes and Beckman.7 During operation of the first Earth-Moon libration point mission, ARTEMIS,8 { depicted in Figure1 { the L1 and L2 quasi-periodic orbits were maintained over 1-2 revolutions at a time using direct optimization.9 Post-processing of maneuver data revealed that the ∆V direction aligned closely with the associated stable mode for virtually all of the approximately 60 stationkeeping maneuvers that were successfully implemented.10 A number of \long-term" stationkeeping approaches, specifically concerned with ensuring that the space- craft meets specific end-of-mission constraints, have also been developed, but are generally non-optimal. A method employed by Grebow et al.12 and Folta et al.13 targets a rigidly maintained baseline trajectory. The long-term stationkeeping strategy presented previously by Pavlak and Howell14 is flexible and able to ∗Ph.D. Candidate, School of Aeronautics and Astronautics, Purdue University, Armstrong Hall of Engineering, 701 W. Stadium Ave, West Lafayette, Indiana 47907-2045, Student Member AIAA. yHsu Lo Professor of Aeronautical and Astronautical Engineering, School of Aeronautics and Astronautics, Purdue Univer- sity, Armstrong Hall of Engineering, 701 W. Stadium Ave, West Lafayette, Indiana 47907-2045; Fellow AAS; Associate Fellow AIAA. 1 of 16 American Institute of Aeronautics and Astronautics Figure 1. ARTEMIS P1 Earth-Moon Trajectory11 maintain libration point orbits with a variety of mission requirements using multiple shooting. The algorithm employs stationkeeping maneuvers and targets many revolutions ahead { in contrast to the more limited 1-2 revolutions that serve as the basis in some short-term strategies { and, thus, is capable of maintaining tra- jectories for an arbitrary number of revolutions and/or meeting end-of-mission constraints such as a specific set of lunar arrival conditions. The analysis in this investigation is motivated by a need for flexible libration point orbit stationkeeping methods that are capable of reliably delivering a spacecraft to a set of desired end-of-mission conditions, final targets that may occur many revolutions downstream, and accomplish the goal for minimum cost in terms of ∆V . Furthermore, the empirical results generated from analysis of the ARTEMIS trajectory maneuvers currently represent only a single data set, so the observed alignment of the ∆V and stable mode directions warrants further exploration. The current investigation first seeks to augment the long-term stationkeeping scheme discussed by Pavlak and Howell14 with direct optimization to yield a flexible method for computing low-cost orbit maintenance maneuvers that is well-suited for automation. The optimal long-term strategy is also employed to further explore the empirical results extracted from the previous ARTEMIS stationkeeping analysis. Stationkeeping costs are reduced over results obtained via non-optimal long-term stationkeeping in the circular restricted three-body and higher-fidelity models. It is also demonstrated that knowledge obtained from ARTEMIS mission stationkeeping operations can be applied to develop algorithms to rapidly compute \near-optimal" stationkeeping maneuvers using only existing differential corrections strategies that do not require commercial optimization software. II. System Models Dynamical models of multiple levels of fidelity are utilized in this analysis. The circular restricted three-body problem (CR3BP) serves as the baseline model and is used for preliminary trajectory design and stationkeeping activities. A higher-fidelity ephemeris model incorporating lunar eccentricity and solar gravity { both of which can be significant when operating in the vicinity of the Earth-Moon libration point orbits { is included as well. II.A. Circular Restricted Three-Body Problem The circular restricted three-body problem represents a dynamical model that governs the motion of a \massless" spacecraft under the simultaneous influence of two gravitational bodies { in this case, the Earth and the Moon. The system is further simplified by assuming that the orbits of the Earth and Moon are both circular and coplanar; each body rotates about a common barycenter. It is often convenient to formulate the governing equations in the CR3BP with respect to a reference frame centered at the Earth-Moon barycenter; 2 of 16 American Institute of Aeronautics and Astronautics the rotational rate of the frame is equal to the orbital rate of the bodies. The rotating positive x-axis is aligned with the Earth-Moon line, the z-axis is defined to be orthogonal to the orbital plane of the gravitating bodies, and the y-axis completes the right-handed triad. The nondimensional mass parameter, µ, is defined as m µ = M (1) mE + mM and effectively represents the relative influence of the smaller body, i.e., the Moon, within the three-body system. The mass of the Earth and the Moon are denoted mE and mM , respectively. Spacecraft state information is described by a Cartesian six-dimesional state vector, h iT x = x; y; z; x;_ y;_ z_ (2) in which positions and velocities are expressed in the barycentered rotating frame. Note that bold symbols are used to represent vector quantities. Motion within the circular-restricted three-body problem is governed by the set of nondimensional second-order scalar differential equations, (1 µ)(x + µ) µ (x 1 + µ) x¨ 2y _ x = − 3 − 3 (3) − − − d1 − d2 (1 µ) y µy y¨ + 2x _ y = −3 3 (4) − − d1 − d2 (1 µ) z µz z¨ = −3 3 (5) − d1 − d2 with the scalar Earth-spacecraft and Moon-spacecraft distances { represented by d1 and d2, respectively { expressed as follows, q 2 2 2 d1 = (x + µ) + y + z (6) q d = (x 1 + µ)2 + y2 + z2 (7) 2 − Trajectories are computed in the CR3BP by numerically integrating the equations of motion written in first-order vector form, i.e., x_ = f (t; x) (8) where x is the six-dimensional state vector described previously. II.B. Libration Point Orbit Stability The equations of motion in the circular restricted three-body problem are autonomous when expressed in terms of a rotating frame and admit five well-known equilibrium solutions, i.e., the libration points. The three collinear libration points that lie along the Earth-Moon line are dynamically unstable as are many of the periodic orbits in their vicinity. The monodromy matrix, M, associated with a periodic libration point orbit is computed by integrating the state transition matrix (STM), Φ (t; ti), for one orbital period, P , i.e., M = φ (ti + P; ti) (9) Since the monodromy matrix corresponds to a discrete linear mapping, the orbital stability is assessed by examining the eigenvalues of M relative to a unit circle. The eigenvalues, λi, exist in reciprocal pairs and are interpreted as follows: λi 1 - Stable eigenvalue j j ≤ λi 1 - Unstable eigenvalue j j ≥ λi = 1 - Corresponds to orbit periodicity This classification is further illustrated in Figure2. Stable and unstable manifolds exist as higher dimensional surfaces governing flow into and out of un- stable periodic libration point orbits. Local manifold information is obtained from the eigenvectors, ν, of a 3 of 16 American Institute of Aeronautics and Astronautics Periodicity Neutrally Stable Stable Unstable Figure 2. Example Eigenvalue Diagram for Unstable Periodic Orbit monodromy matrix computed at a desired fixed point along the periodic orbit. The local stable and unstable manifolds { νs and νu, respectively { associated with a fixed point on an L2 Lyapunov orbit are projected onto configuration space and depicted in Figure 3(a). Note that the stable and unstable subspaces extend in both \+" and \ " directions.
Recommended publications
  • Rare Astronomical Sights and Sounds
    Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Tellurium Tellurium N
    Experiment Description/Manual Tellurium Tellurium N Table of contents General remarks ............................................................................................................................3 Important parts of the Tellurium and their operation .....................................................................4 Teaching units for working with the Tellurium: Introduction: From one´s own shadow to the shadow-figure on the globe of the Tellurium ...........6 1. The earth, a gyroscope in space ............................................................................................8 2. Day and night ..................................................................................................................... 10 3. Midday line and division of hours ....................................................................................... 13 4. Polar day and polar night .................................................................................................... 16 5. The Tropic of Cancer and Capricorn and the tropics ........................................................... 17 6. The seasons ........................................................................................................................ 19 7. Lengths of day and night in various latitudes ......................................................................22 Working sheet “Lengths of day in various seasons” ............................................................ 24 8. The times of day .................................................................................................................25
    [Show full text]
  • Lunar Laser Ranging: the Millimeter Challenge
    REVIEW ARTICLE Lunar Laser Ranging: The Millimeter Challenge T. W. Murphy, Jr. Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA E-mail: [email protected] Abstract. Lunar laser ranging has provided many of the best tests of gravitation since the first Apollo astronauts landed on the Moon. The march to higher precision continues to this day, now entering the millimeter regime, and promising continued improvement in scientific results. This review introduces key aspects of the technique, details the motivations, observables, and results for a variety of science objectives, summarizes the current state of the art, highlights new developments in the field, describes the modeling challenges, and looks to the future of the enterprise. PACS numbers: 95.30.Sf, 04.80.-y, 04.80.Cc, 91.4g.Bg arXiv:1309.6294v1 [gr-qc] 24 Sep 2013 CONTENTS 2 Contents 1 The LLR concept 3 1.1 Current Science Results . 4 1.2 A Quantitative Introduction . 5 1.3 Reflectors and Divergence-Imposed Requirements . 5 1.4 Fundamental Measurement and World Lines . 10 2 Science from LLR 12 2.1 Relativity and Gravity . 12 2.1.1 Equivalence Principle . 13 2.1.2 Time-rate-of-change of G ....................... 14 2.1.3 Gravitomagnetism, Geodetic Precession, and other PPN Tests . 14 2.1.4 Inverse Square Law, Extra Dimensions, and other Frontiers . 16 2.2 Lunar and Earth Physics . 16 2.2.1 The Lunar Interior . 16 2.2.2 Earth Orientation, Precession, and Coordinate Frames . 18 3 LLR Capability across Time 20 3.1 Brief LLR History .
    [Show full text]
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • The Moon and Eclipses
    Lecture 10 The Moon and Eclipses Jiong Qiu, MSU Physics Department Guiding Questions 1. Why does the Moon keep the same face to us? 2. Is the Moon completely covered with craters? What is the difference between highlands and maria? 3. Does the Moon’s interior have a similar structure to the interior of the Earth? 4. Why does the Moon go through phases? At a given phase, when does the Moon rise or set with respect to the Sun? 5. What is the difference between a lunar eclipse and a solar eclipse? During what phases do they occur? 6. How often do lunar eclipses happen? When one is taking place, where do you have to be to see it? 7. How often do solar eclipses happen? Why are they visible only from certain special locations on Earth? 10.1 Introduction The moon looks 14% bigger at perigee than at apogee. The Moon wobbles. 59% of its surface can be seen from the Earth. The Moon can not hold the atmosphere The Moon does NOT have an atmosphere and the Moon does NOT have liquid water. Q: what factors determine the presence of an atmosphere? The Moon probably formed from debris cast into space when a huge planetesimal struck the proto-Earth. 10.2 Exploration of the Moon Unmanned exploration: 1950, Lunas 1-3 -- 1960s, Ranger -- 1966-67, Lunar Orbiters -- 1966-68, Surveyors (first soft landing) -- 1966-76, Lunas 9-24 (soft landing) -- 1989-93, Galileo -- 1994, Clementine -- 1998, Lunar Prospector Achievement: high-resolution lunar surface images; surface composition; evidence of ice patches around the south pole.
    [Show full text]
  • Applications of Solar Wind Particle Impact Simulations at Lunar Magnetic Anomalies to the Study of Lunar Swirls
    47th Lunar and Planetary Science Conference (2016) 2648.pdf APPLICATIONS OF SOLAR WIND PARTICLE IMPACT SIMULATIONS AT LUNAR MAGNETIC ANOMALIES TO THE STUDY OF LUNAR SWIRLS. C. J. Tai Udovicic1, G. Y. Kramer2, and E. M. Harnett3, 1Dept of Earth Sciences, University of Toronto, 22 Russell St, Toronto, ON, Canada, ([email protected]), 2Lunar and Planetary Institute, 3600 Bay Area Bvld, Houston, TX, ([email protected]), 3University of Washington, Earth and Space Sciences, Seattle, WA ([email protected]). Introduction: Lunar swirls are high albedo features highlands often appear to have swirl-like anomalies due that exhibit low spectral maturity. They have been to their complicated topography. To mitigate this, we identified at various sites on the Moon, and all coincide generated a slope map from the WAC GLD100 (SLP), with a lunar magnetic anomaly (magnomaly) [1], which we overlayed with the WAC 643 nm normalized although not all magnomalies have an identifiable swirl. reflectance image to distinguish high albedo swirls from The leading hypothesis for lunar swirl origin is high albedo slopes. Even so, after one pass of the region, presented in [2] as magnetic field standoff of the solar only about half of the swirls could be detected with this wind which causes uneven space weathering at the swirl method alone. The remaining half were found after surface. This hypothesis fails to explain why lunar using particle simulations as a guide. swirls are observed at some but not all of the magnetic Solar wind particle tracking simulations: We anomalies present on the Moon. To investigate the solar used the 2D solar wind particle tracking simulation wind standoff hypothesis further and to improve swirl presented in [2].
    [Show full text]
  • L1 Lunar Lander Element Conceptual Design Report
    EX15-01-092 L1 Lunar Lander Element Conceptual Design Report Engineering Directorate November 2000 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 Table Of Contents i List of Figures………………………………………………………………………….……………iv ii List of Tables……………………………………………………………………………….………. v iii Contact Information………………………………………………………………………………..vi iv Introduction……………...………………………………………………………………………….vii 1.0 Element Description……………………………………………………………………….………..1 1.1 Design Objectives, Constraints & Requirements……………………………….…………..1 1.2 Vehicle Configuration Trades………………………………………………….……………3 1.3 Operations Concept…………………………………………………………….……………5 1.4 Vehicle Mass Statement…………………………………………………..………………. 9 1.5 Power Profile………………………………………………………………..……………. 10 2.0 Propulsion System…………………………………………………………………..…………….. 12 2.1 Functional Description and Design Requirements…………………………..……………. 12 2.2 Trades Considered and Results……………………………………………..……………... 12 2.3 Reference Design Description………………………………………………..…………… 12 2.4 Technology Needs and Design Challenges…………………………………..…………….13 3.0 Structure..……………………………………………………………….………….……………….14 3.1 Functional Description and Design Requirements………………………………...……….14 3.2 Trades Considered and Results……………………………………………………………..15 3.3 Reference Design Description……………………………………………………...………15 3.4 Technology Needs and Design Challenges…………………………………………………16 4.0 Electrical Power System…………………………………………………………………………….17 4.1 Functional Description and Design Requirements………………………………………….17 4.2 Trades
    [Show full text]
  • Analytical Formulation of Lunar Cratering Asymmetries Nan Wang (王楠) and Ji-Lin Zhou (周济林)
    A&A 594, A52 (2016) Astronomy DOI: 10.1051/0004-6361/201628598 & c ESO 2016 Astrophysics Analytical formulation of lunar cratering asymmetries Nan Wang (王`) and Ji-Lin Zhou (hN林) School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 210046 Nanjing, PR China e-mail: [email protected] Received 28 March 2016 / Accepted 3 July 2016 ABSTRACT Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system im- pactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims. We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods. Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM=venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth–Moon distance aM = 20−60 Earth radii in five cases. Results. The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1+A1 cos β), which decreases as the apex distance β increases. The numer- ical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2 cos 2'), which decreases as the latitude modulus j'j increases.
    [Show full text]
  • Apollo 17 Index: 70 Mm, 35 Mm, and 16 Mm Photographs
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) Preparation, Scanning, Editing, and Conversion to Adobe Portable Document Format (PDF) by: Ronald A. Wells University of California Berkeley, CA 94720 May 2000 A P O L L O 1 7 I N D E X 7 0 m m, 3 5 m m, A N D 1 6 m m P H O T O G R A P H S M a p p i n g S c i e n c e s B r a n c h N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n J o h n s o n S p a c e C e n t e r H o u s t o n, T e x a s APPROVED: Michael C .
    [Show full text]
  • Iaa-Pdc-15-04-17 from Sail to Soil – Getting Sailcraft out of the Harbour on a Visit to One of Earth’S Nearest Neighbours
    4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-17 FROM SAIL TO SOIL – GETTING SAILCRAFT OUT OF THE HARBOUR ON A VISIT TO ONE OF EARTH’S NEAREST NEIGHBOURS Jan Thimo Grundmann(1,2), Waldemar Bauer(1,3), Jens Biele(8,9), Federico Cordero(11), Bernd Dachwald(12), Alexander Koncz(13,14), Christian Krause(8,10), Tobias Mikschl(16,17), Sergio Montenegro(16,18), Dominik Quantius(1,4), Michael Ruffer(16,19), Kaname Sasaki (1,5), Nicole Schmitz(13,15), Patric Seefeldt (1,6), Norbert Tóth(1,7), Elisabet Wejmo(1,8) (1)DLR Institute of Space Systems, Robert-Hooke-Strasse 7, 28359 Bremen (2)+49-(0)421-24420-1107, (3)+49-(0)421-24420-1197, (4)+49-(0)421-24420-1109, (5)+49-(0)421-24420-1150, (6)+49-(0)421-24420-1609, (7)+49-(0)421-24420-1186, (8)+49-(0)421-24420-1107, (11)DLR Space Operations and Astronaut Training – MUSC, 51147 Köln, Germany (9)+49-2203-601-4563, (10)+49-2203-601-3048, (11)Telespazio-VEGA, Darmstadt, Germany, [email protected] (12) Faculty of Aerospace Engineering, FH Aachen University of Applied Sciences, Hohenstaufenallee 6, 52064 Aachen, Germany, +49-241-6009-52343 / -52854, (13)DLR Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin (14)+49-(0)30 67055-575, (15)+49-(0)30 67055-456, (16)Informatik 8, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany Keywords: small spacecraft, solar sail, GOSSAMER roadmap, MASCOT, co-orbital asteroid ABSTRACT The DLR-ESTEC GOSSAMER roadmap envisages the development of solar sailing by successive low-cost technology demonstrators towards first science missions.
    [Show full text]
  • Trajectory Sensitivities for Sun-Mars Libration Point Missions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 2016 Trajectory Sensitivities for Sun-Mars Libration Point Missions Kutrieb, Joshua M. http://hdl.handle.net/10945/48886 AAS 01-327 TRAJECTORY SENSITIVITIES FOR SUN-MARS LIBRATION POINT MISSIONS John P. Carrico*, Jon D. Strizzi‡, Joshua M. Kutrieb‡, and Paul E. Damphousse‡ Previous research has analyzed proposed missions utilizing spacecraft in Lissajous orbits about each of the co-linear, near-Mars, Sun-Mars libration points to form a communication relay with Earth. This current effort focuses on 2016 Earth-Mars transfers to these mission orbits with their trajectory characteristics and sensitivities. This includes further analysis of using a mid-course correction as well as a braking maneuver at close approach to Mars to control Lissajous orbit insertion and the critical parameter of the phasing of the two-vehicle relay system, with one spacecraft each in orbit about L1 and L2. Stationkeeping sensitivities are investigated via a monte carlo technique. Commercial, desktop simulation and analysis tools are used to provide numerical data; and on-going, successful collaboration between military and industry researchers in a virtual environment is demonstrated. The resulting data should provide new information on these trajectory sensitivities to future researchers and mission planners. INTRODUCTION “NASA is seeking innovation to attack the diversity of Mars…to change the vantage point from which we explore…” - CNN, 25 June 2001 The concept of using communication relay vehicles in orbit about colinear Lagrange points to support exploration of the secondary body is not entirely new, being first conceptualized in the case of the Earth-Moon system by R.
    [Show full text]
  • Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations
    Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations Erika Harnett∗ Department of Earth and Space Science, University of Washington,Seattle, WA 98195-1310, USA Georgiana Kramer Lunar and Planetary Institute, 3600 Bay Area Blvd, Houston, TX 77058, USA Christian Udovicic Department of Physics, University of Toronto, 60 St George St,Toronto, ON M5S 1A7, Canada Ruth Bamford RAL Space, STFC, Rutherford Appleton Laboratory,Chilton, Didcot Ox11 0Qx, UK (Dated: November 5, 2018) Ever since the Apollo era, a question has remained as to the origin of the lunar swirls (high albedo regions coincident with the regions of surface magnetization). Different processes have been proposed for their origin. In this work we test the idea that the lunar swirls have a higher albedo relative to surrounding regions because they deflect incoming solar wind particles that would otherwise darken the surface. 3D particle tracking is used to estimate the influence of five lunar magnetic anomalies on incoming solar wind. The regions investigated include Mare Ingenii, Gerasimovich, Renier Gamma, Northwest of Apollo and Marginis. Both protons and electrons are tracked as they interact with the anomalous magnetic field and impact maps are calculated. The impact maps are then compared to optical observations and comparisons are made between the maxima and minima in surface fluxes and the albedo and optical maturity of the regions. Results show deflection of slow to typical solar wind particles on a larger scale than the fine scale optical, swirl, features. It is found that efficiency of a particular anomaly for deflection of incoming particles does not only scale directly with surface magnetic field strength, but also is a function of the coherence of the magnetic field.
    [Show full text]