Applications of Solar Wind Particle Impact Simulations at Lunar Magnetic Anomalies to the Study of Lunar Swirls
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
SOLAR ECLIPSE NEWSLETTER SOLAR ECLIPSE November 2003 NEWSLETTER
Volume 8, Issue 11 SOLAR ECLIPSE NEWSLETTER SOLAR ECLIPSE November 2003 NEWSLETTER The sole Newsletter dedicated to Solar Eclipses INDEX 2 SECalendar November Dear SENL reader, 6 Artis planetarium 6 CNN tonight 6 Antiquity of 'Dragon's Head and Tail' When we are finishing this newsletter, some of the die 7 New Sony videocamera with 3 Megapixel CCD hards are on its way to observe the total solar eclipse 8 Total irradiance graph 9 Eclipse retrocalculations of 23 November 2003. Indeed, some of the eclipse 10 Saros 139/144 and 129/134 chasers left with the icebreaker from South Africa to- 11 Question about eclipse seasons 11 Virus wards the Antarctic. Hopefully they will have a safe 11 Nasa Eclipse Site CD journey and we hope of course a safe return. 11 Picture Logo NASA WebPages 12 Fast question...... Many others will leave for Australia and will observe the 13 "Our Mr. Sun" 13 An eclipse/transit calculator for your mobile phone! eclipse from the air. We wish them of course all suc- 14 3d pix of eclipse cess with the observations of the eclipse. Hopefully we 15 25 october Mercury occultation by new moon 16 Giant sunspot approaching the Sun's centre will see some nice images of the eclipses, and their ac- 16 Live solar images , and northern lights counts in a few weeks time. 17 Satellites eclipsed 18 New Moon Oct 2003 The total lunar eclipse is another challenge for this 19 NASA Scientist Dives Into Perfect Space Storm 20 On the shortest time lap between tw o totalities in the same month. -
An Examination of Mare Age Based On
An Examination of Mare Age Based On Cratering Density The Chenango Forks Lunar Research Team: Sharon Hartzell, Jackson Haskell, Benjamin Daniels, Sarah Maximowicz, and Sarah Andrus Objective Cooled basaltic lava flows, known as maria, cover approximately sixteen percent of the lunar surface. The determination of absolute and relative ages of maria is an important question in lunar research, because it provides insight into the geologic history of the lunar environment. Many samples returned from the Apollo and Luna missions have been absolutely dated using radiogenic techniques. However, not all samples returned from the moon have been radiogenically dated. Furthermore, returned samples represent only a small portion of each visited mare. One of the major challenges facing lunar researches is the fact that most maria are still unvisited. The lack of complete data from visited maria in combination with the absence of data from unvisited maria has compelled lunar researchers to rely on remote techniques for relative dating. The overriding goal of our research was to develop and utilize a method for analyzing the ages of the twenty‐three lunar maria. Approach •Areas of the twenty‐three lunar maria were analyzed in three distinct investigations. Investigation 1: Total crater count to determine cratering densities, and comparison of densities to absolute age Investigation 2: Analysis of crater weathering in relation to age Investigation 3: Analysis of crater size in relation to age •A relative age map was created to display the distribution of the maria on the moon’s surface. The •Analysis of age dist ributions within individual mari a revealed several interesting trends: Investigation 1 map itself was obtained from Google Moon, and the maria were highlighted based on the scale Method displayed below. -
Apollo 17 Index: 70 Mm, 35 Mm, and 16 Mm Photographs
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) Preparation, Scanning, Editing, and Conversion to Adobe Portable Document Format (PDF) by: Ronald A. Wells University of California Berkeley, CA 94720 May 2000 A P O L L O 1 7 I N D E X 7 0 m m, 3 5 m m, A N D 1 6 m m P H O T O G R A P H S M a p p i n g S c i e n c e s B r a n c h N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n J o h n s o n S p a c e C e n t e r H o u s t o n, T e x a s APPROVED: Michael C . -
Thirty-First Annual Summer Intern Conference
Papers Presented at the Thirty-First Annual Summer Intern Conference August 6, 2015 Houston, Texas 2015 Summer Intern Program for Undergraduates Lunar and Planetary Institute Sponsored by Lunar and Planetary Institute NASA Johnson Space Center LPI Contribution No. 1859 Compiled in 2015 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. HIGHLIGHTS Special Activities Date Activity Location June 1 Lunar Curatorial and Stardust Lab Tour NASA JSC June 11 USRA Family BBQ Picnic USRA/LPI July 9 Meteorite Lab Tour NASA JSC July 16 Human Exploration Research Analog (HERA)/Morpheus NASA JSC July 17 LPI Science Staff Research Presentations USRA/LPI July 20 Annual Safety Training USRA/LPI LPI Summer Intern Program 2015 — Brown Bag Seminars Wednesdays, 12:00 noon–1:00 p.m., -
Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System
Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System Thomas A. Pavlak∗ and Kathleen C. Howelly Purdue University, West Lafayette, IN, 47907-2045, USA In an effort to design low-cost maneuvers that reliably maintain unstable libration point orbits in the Earth-Moon system for long durations, an existing long-term stationkeeping strategy is augmented to compute locally optimal maneuvers that satisfy end-of-mission constraints downstream. This approach reduces stationkeeping costs for planar and three- dimensional orbits in dynamical systems of varying degrees of fidelity and demonstrates the correlation between optimal maneuver direction and the stable mode observed during ARTEMIS mission operations. An optimally-constrained multiple shooting strategy is also introduced that is capable of computing near optimal maintenance maneuvers without formal optimization software. I. Introduction Most orbits in the vicinity of collinear libration points are inherently unstable and, consequently, sta- tionkeeping strategies are a critical component of mission design and operations in these chaotic dynamical regions. Stationkeeping is particularly important for libration point missions in the Earth-Moon system since fast time scales require that orbit maintenance maneuvers be implemented approximately once per week. Assuming that acceptable orbit determination solutions require 3-4 days to obtain, stationkeeping ∆V planning activities must be quick, efficient, and effective. Furthermore, the duration of a libration point mission is often dictated by the remaining propellant so a key capability is maintenance maneuvers that are low-cost. Thus, to accommodate a likely increase in future operations in the vicinity of the Earth-Moon libration points, fast, reliable algorithms capable of rapidly computing low-cost stationkeeping maneuvers, with little or no human interaction, are critical. -
Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations
Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations Erika Harnett∗ Department of Earth and Space Science, University of Washington,Seattle, WA 98195-1310, USA Georgiana Kramer Lunar and Planetary Institute, 3600 Bay Area Blvd, Houston, TX 77058, USA Christian Udovicic Department of Physics, University of Toronto, 60 St George St,Toronto, ON M5S 1A7, Canada Ruth Bamford RAL Space, STFC, Rutherford Appleton Laboratory,Chilton, Didcot Ox11 0Qx, UK (Dated: November 5, 2018) Ever since the Apollo era, a question has remained as to the origin of the lunar swirls (high albedo regions coincident with the regions of surface magnetization). Different processes have been proposed for their origin. In this work we test the idea that the lunar swirls have a higher albedo relative to surrounding regions because they deflect incoming solar wind particles that would otherwise darken the surface. 3D particle tracking is used to estimate the influence of five lunar magnetic anomalies on incoming solar wind. The regions investigated include Mare Ingenii, Gerasimovich, Renier Gamma, Northwest of Apollo and Marginis. Both protons and electrons are tracked as they interact with the anomalous magnetic field and impact maps are calculated. The impact maps are then compared to optical observations and comparisons are made between the maxima and minima in surface fluxes and the albedo and optical maturity of the regions. Results show deflection of slow to typical solar wind particles on a larger scale than the fine scale optical, swirl, features. It is found that efficiency of a particular anomaly for deflection of incoming particles does not only scale directly with surface magnetic field strength, but also is a function of the coherence of the magnetic field. -
Mars Astrobiological Cave and Internal Habitability Explorer (MACIE): a New Frontiers Mission Concept
Mars Astrobiological Cave and Internal habitability Explorer (MACIE): A New Frontiers Mission Concept By: C. Phillips-Lander ([email protected])1, A. Agha-mohamamdi2, J. J. Wynne3, T. N. Titus4, N. Chanover5, C. Demirel-Floyd6, K. Uckert2, K. Williams4, D. Wyrick1, J.G. Blank7,8, P. Boston8, K. Mitchell2, A. Kereszturi9, J. Martin-Torres10,11, S. Shkolyar12, N. Bardabelias13, S. Datta14, K. Retherford1, Lydia Sam11, A. Bhardwaj11, A. Fairén15,16, D. Flannery17, R. Wiens17 1Southwest Research Institute 2 NASA Jet Propulsion Laboratory 3Northern Arizona University 4U.S. Geological Survey 5New Mexico State University 6University of Oklahoma 7Blue Marble Space Institute of Science 8NASA Ames Research Center 9Konkoly Thege Miklos Astronomical Institute, Budapest, Hungary 10Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Spain 11University of Aberdeen, United Kingdo 12USRA/NASA Goddard 13University of Arizona 14University of Texas-San Antonio 15Centro de Astrobiogía, Spain 16Cornell University 17Queensland University for Technology, Australia 18Los Alamos National Laboratory Cosigners 1 Summary of Key Points 1. Martian subsurface habitability and astrobiology can be evaluated via a lava tube cave, without drilling. 2. MACIE addresses two key goals of the Decadal Survey (2013-2022) and three MEPAG goals. 3. New advances in robotic architectures, autonomous navigation, target sample selection, and analysis will enable MACIE to explore the Martian subsurface. 1. Martian lava tubes are one of the best places to search for evidence of life The Mars Astrobiological Cave and Internal habitability Explorer (MACIE) mission concept is named for Macie Roberts, one of NASA’s ‘human computers’ (Conway 2007). MACIE would access the Martian subsurface via a lava tube. -
Trajectory Design Tools for Libration and Cislunar Environments
TRAJECTORY DESIGN TOOLS FOR LIBRATION AND CISLUNAR ENVIRONMENTS David C. Folta, Cassandra M. Webster, Natasha Bosanac, Andrew D. Cox, Davide Guzzetti, and Kathleen C. Howell National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, 20771 [email protected], [email protected] School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 {nbosanac,cox50,dguzzett,howell}@purdue.edu ABSTRACT supplies insight into the natural dynamics associated with multi- body systems. In fact, such information enables a rapid and robust Innovative trajectory design tools are required to support methodology for libration point orbit and transfer design when challenging multi-body regimes with complex dynamics, uncertain used in combination with numerical techniques such as targeting perturbations, and the integration of propulsion influences. Two and optimization. distinctive tools, Adaptive Trajectory Design and the General Strategies that offer interactive access to a variety of solutions Mission Analysis Tool have been developed and certified to enable a thorough and guided exploration of the trajectory design provide the astrodynamics community with the ability to design space. ATD is intended to provide access to well-known solutions multi-body trajectories. In this paper we discuss the multi-body that exist within the framework of the Circular Restricted Three- design process and the capabilities of both tools. Demonstrable Body Problem (CR3BP) by leveraging both interactive and applications to confirmed missions, the Lunar IceCube CubeSat automated features to facilitate trajectory design in multi-body mission and the Wide-Field Infrared Survey Telescope Sun-Earth regimes [8]. In particular, well-known solutions from the CR3BP, such as body-centered, resonant and libration point periodic and L2 mission, are presented. -
GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation
Icarus 292 (2017) 54–73 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation ∗ David M.H. Baker a,b, , James W. Head a, Roger J. Phillips c, Gregory A. Neumann b, Carver J. Bierson d, David E. Smith e, Maria T. Zuber e a Department of Geological Sciences, Brown University, Providence, RI 02912, USA b NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA c Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA d Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA e Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139, USA a r t i c l e i n f o a b s t r a c t Article history: High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide Received 14 September 2016 the opportunity to analyze the detailed gravity and crustal structure of impact features in the morpho- Revised 1 March 2017 logical transition from complex craters to peak-ring basins on the Moon. We calculate average radial Accepted 21 March 2017 profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest Available online 22 March 2017 complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. -
Thumbnail Index
Thumbnail Index The following five pages depict each plate in the book and provide the following information about it: • Longitude and latitude of the main feature shown. • Sun’s angle (SE), ranging from 1°, with grazing illumination and long shadows, up to 72° for nearly full Moon conditions with the Sun almost overhead. • The elevation or height (H) in kilometers of the spacecraft above the surface when the image was acquired, from 21 to 116 km. • The time of acquisition in this sequence: year, month, day, hour, and minute in Universal Time. 1. Gauss 2. Cleomedes 3. Yerkes 4. Proclus 5. Mare Marginis 79°E, 36°N SE=30° H=65km 2009.05.29. 05:15 56°E, 24°N SE=28° H=100km 2008.12.03. 09:02 52°E, 15°N SE=34° H=72km 2009.05.31. 06:07 48°E, 17°N SE=59° H=45km 2009.05.04. 06:40 87°E, 14°N SE=7° H=60km 2009.01.10. 22:29 6. Mare Smythii 7. Taruntius 8. Mare Fecunditatis 9. Langrenus 10. Petavius 86°E, 3°S SE=19° H=58km 2009.01.11. 00:28 47°E, 6°N SE=33° H=72km 2009.05.31. 15:27 50°E, 7°S SE=10° H=64km 2009.01.13. 19:40 60°E, 11°S SE=24° H=95km 2008.06.08. 08:10 61°E, 23°S SE=9° H=65km 2009.01.12. 22:42 11.Humboldt 12. Furnerius 13. Stevinus 14. Rheita Valley 15. Kaguya impact point 80°E, 27°S SE=42° H=105km 2008.05.10. -
Planetológiai Helyesírási Tanácsadó
Planetológiai helyesírási tanácsadó GEOLÓGIA Kőzetrétegtani egységek ridged member = gerinces tagozat Heveliusi Formáció, Hold Geokronológia (idő) imbriumi időszak kora-imbriumi kor noachi időszak Kronosztratigráfia (időrétegtani)(kőzettestek) imbriumi rendszer alsó-imbriumi sorozat noachi rendszer Az egyes egységek magyar elnevezései MERKÚR kuiperi mansuri calorisi tolsztoji pretolsztoji VÉNUSZ aureliai atlai guinevrai ruszalkai laviniai sigrúni fortunai prefortunai HOLD kopernikuszi eratoszthenészi imbriumi nektári prenektári (procellárumi: elavult) MARS amazoni heszperiai noachi prenoachi MARS - geokémiai sideriki theiiki phylloci (ejtsd: filloszi) GEOGRÁFIA Bolygófelszíni alakzatok elnevezései Köznévi taggal (az alábbiakat mindig kötőjellel kapcsoljuk, kivéve birtokos esetben: Cassini-régió, de: Válságok tengere) Megjegyzések: • Az itt felsorolt alakok: latin alak egyes szám, többes szám [latin alak latinos kiejtése], magyar megfelelő • A ¯ jel az előtte álló u-n vagy e-n lévő vonalékezet • A toldalékok a (magyar vagy latin) nevekhez általában közvetlenül kapcsolódnak, a szükséges hasonulások vagy a szóvégi magánhangzó nyúlásának a jelölésével: Caloris Montesszal, Lavinia Planitián, Ión. • A két különírt tagból álló latin elnevezésekhez az -i/-beli képzô kötôjellel kapcsolódik; az eredeti kis- és nagybetûket megtartjuk: Caloris Planitia-i, Sinus Meridiani-beli stb. (vö. AkH. 1984: 217. b) pont). A két különírt tagból álló magyar elnevezéseknél az -i képzôs forma: Halál tavabeli, Méz tengerebeli, Rothadás mocsarabeli, Szivárvány öblebeli