An Examination of Mare Age Based On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
88 PAJ 116 Anne Carson Reading Text in STACKS © Michael Hart, 2008
Anne Carson reading text in STACKS © Michael Hart, 2008. Courtesy Jonah Bokaer Choreography. 88 PAJ 116 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/PAJJ_a_00369 by guest on 01 October 2021 Stacks Anne Carson STACK OF THE SEAS OF THE MOON IN ALPHABETICAL ORDER Mare Aliorum Sea of Others Mare Ambulationis Sea of Walking Mare Anguis Snake Sea Mare Australe Sea to the South Mare Crisium Sea of Crises Mare Dormiendi Nuditer Sea of Sleeping Naked Mare Frigoris Sea of Cold Mare Humboldtianum Humboldt’s Sea Mare Humorum Sea of Moistures Mare Imbrium Sea of Rains Mare Lunae Quaestionum Sea of the Problems of the Moon Mare Marginis Border Sea Mare Moscoviense Moscow Sea Mare Nectaris Sea of Nectar Mare Nocte Ambulationis Sea of Walking at Night Mare Nubium Sea of Clouds Mare Orientale Sea to the East Mare Personarum Sea of Masks Mare Phoenici Phoenician Sea Mare Phoenicopterorum Sea of Flamingos Mare Pudoris Sea of Shame Mare Relictum Sea of Detroit Mare Ridens Laughing Sea Mare Smythii Sea of Smyth Mare Spumans Foaming Sea Mare Tempestivitatis Sea of What Frank O’Hara Calls “Cantankerous Filaments of a Larger Faintheartedness Like Loving Summer” Mare Vituperationis Sea of Blaming © 2017 Anne Carson PAJ 116 (2017), pp. 89–108. 89 doi:10.1162/PAJJ _a_00369 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/PAJJ_a_00369 by guest on 01 October 2021 THUNDERSTORM STACK A bird flashed by as if mistaken then it starts. We do not think speed of life. We do not think why hate Jezebel? We think who’s that throwing trees against the house? Jezebel was a Phoenician. -
Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig. -
EPSC2013-167, 2013 European Planetary Science Congress 2013 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2013
EPSC Abstracts Vol. 8, EPSC2013-167, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Scientific Characterization of Mare Moscoviense Region of Interest A. Calzada (1) and S.C. Mest (2,3) (1) Department of Earth and Planetary Sciences Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX (2) Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719-2395 and (3) Planetary Geodynamics Laboratory, Code 698, NASA GSFC, Greenbelt, MD 20771 Abstract NASA´s Constellation Program has identified 50 Regions of Interest (ROI) with high scientific value in preparation for an eventual return to the Moon [1]. These 50 locations are geological diverse and geographically distributed to achieve a variety of goals and objectives and described by LEAG [2]. In order to evaluate its scientific interest, Mare Moscoviense (MMos) ROI was characterized using digital images and data provided by NASA´s Clementine and Lunar Reconnaissance (LRO) Missions as well as ArcGISTM v.10.1 software to create a geomorphologic and geologic map. The cartography and the input were analyzed to propose a set of three hypothetical traverses for future human or robotic expeditions within an area up to distances of 5, 10 and 20 km from the ROI location. The traverses has no constrains regarding Figure 1 LRO WAC Image from Mare Moscoviense basin. Red schedule, distances or topography. Experiments box indicates the studied area. Credits: NASA/JPL/MSSS proposed vary from petrologic and geochemical characterization such as samples and drill cores to 2. Cartography geophysical experiments using gravimetry, magnetometry and seismicity methods. -
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
List of Targets for the Lunar II Observing Program (PDF File)
Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc. -
Remote Sensing
remote sensing Article Reevaluating Mare Moscoviense And Its Vicinity Using Chang’e-2 Microwave Sounder Data Zhiguo Meng 1,2,3,4, Shengbo Chen 1, Yongzhi Wang 1,2,3,* , Tianxing Wang 2 , Zhanchuan Cai 3, Yuanzhi Zhang 4 , Yongchun Zheng 4 and Shuo Hu 1 1 College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China; [email protected] (Z.M.); [email protected] (S.C.); [email protected] (S.H.) 2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 3 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China; [email protected] 4 Key Laboratory of Lunar and Deep-space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Y.Z.); [email protected] (Y.Z.) * Correspondence: [email protected]; Tel.: +86-4318-850-2362 Received: 5 December 2019; Accepted: 5 February 2020; Published: 6 February 2020 Abstract: Mare Moscoviense (148◦E, 27◦N) is one of the few large maria on the lunar farside, with the thinnest crust and a positive gravity anomaly. In this paper, the Chang’E-2 Microwave Sounder (CELMS) data was employed to study the microwave thermal emission features of mare basalts in Moscoviense Basin. The time angle and linear interpolation method are used to generate the brightness temperature (TB) maps at noon and night, as well as the TB difference (dTB) map. The obtained important results are as follows. -
Applications of Solar Wind Particle Impact Simulations at Lunar Magnetic Anomalies to the Study of Lunar Swirls
47th Lunar and Planetary Science Conference (2016) 2648.pdf APPLICATIONS OF SOLAR WIND PARTICLE IMPACT SIMULATIONS AT LUNAR MAGNETIC ANOMALIES TO THE STUDY OF LUNAR SWIRLS. C. J. Tai Udovicic1, G. Y. Kramer2, and E. M. Harnett3, 1Dept of Earth Sciences, University of Toronto, 22 Russell St, Toronto, ON, Canada, ([email protected]), 2Lunar and Planetary Institute, 3600 Bay Area Bvld, Houston, TX, ([email protected]), 3University of Washington, Earth and Space Sciences, Seattle, WA ([email protected]). Introduction: Lunar swirls are high albedo features highlands often appear to have swirl-like anomalies due that exhibit low spectral maturity. They have been to their complicated topography. To mitigate this, we identified at various sites on the Moon, and all coincide generated a slope map from the WAC GLD100 (SLP), with a lunar magnetic anomaly (magnomaly) [1], which we overlayed with the WAC 643 nm normalized although not all magnomalies have an identifiable swirl. reflectance image to distinguish high albedo swirls from The leading hypothesis for lunar swirl origin is high albedo slopes. Even so, after one pass of the region, presented in [2] as magnetic field standoff of the solar only about half of the swirls could be detected with this wind which causes uneven space weathering at the swirl method alone. The remaining half were found after surface. This hypothesis fails to explain why lunar using particle simulations as a guide. swirls are observed at some but not all of the magnetic Solar wind particle tracking simulations: We anomalies present on the Moon. To investigate the solar used the 2D solar wind particle tracking simulation wind standoff hypothesis further and to improve swirl presented in [2]. -
Constraining the Evolutionary History of the Moon and the Inner Solar System: a Case for New Returned Lunar Samples
Space Sci Rev (2019) 215:54 https://doi.org/10.1007/s11214-019-0622-x Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples Romain Tartèse1 · Mahesh Anand2,3 · Jérôme Gattacceca4 · Katherine H. Joy1 · James I. Mortimer2 · John F. Pernet-Fisher1 · Sara Russell3 · Joshua F. Snape5 · Benjamin P. Weiss6 Received: 23 August 2019 / Accepted: 25 November 2019 / Published online: 2 December 2019 © The Author(s) 2019 Abstract The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scien- tific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to contain- ing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently avail- able samples, such as those related to the age of the Moon, duration of lunar volcanism, the Role of Sample Return in Addressing Major Questions in Planetary Sciences Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana B R. -
Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations
Simulations of Particle Impact at Lunar Magnetic Anomalies and Comparison with Spectral Observations Erika Harnett∗ Department of Earth and Space Science, University of Washington,Seattle, WA 98195-1310, USA Georgiana Kramer Lunar and Planetary Institute, 3600 Bay Area Blvd, Houston, TX 77058, USA Christian Udovicic Department of Physics, University of Toronto, 60 St George St,Toronto, ON M5S 1A7, Canada Ruth Bamford RAL Space, STFC, Rutherford Appleton Laboratory,Chilton, Didcot Ox11 0Qx, UK (Dated: November 5, 2018) Ever since the Apollo era, a question has remained as to the origin of the lunar swirls (high albedo regions coincident with the regions of surface magnetization). Different processes have been proposed for their origin. In this work we test the idea that the lunar swirls have a higher albedo relative to surrounding regions because they deflect incoming solar wind particles that would otherwise darken the surface. 3D particle tracking is used to estimate the influence of five lunar magnetic anomalies on incoming solar wind. The regions investigated include Mare Ingenii, Gerasimovich, Renier Gamma, Northwest of Apollo and Marginis. Both protons and electrons are tracked as they interact with the anomalous magnetic field and impact maps are calculated. The impact maps are then compared to optical observations and comparisons are made between the maxima and minima in surface fluxes and the albedo and optical maturity of the regions. Results show deflection of slow to typical solar wind particles on a larger scale than the fine scale optical, swirl, features. It is found that efficiency of a particular anomaly for deflection of incoming particles does not only scale directly with surface magnetic field strength, but also is a function of the coherence of the magnetic field. -
Lunar Features Named After Chinese
FARSIDE Lunar features named after Chinese There are 13 lunar features named after Chinese, 5 on the nearside and 8 on the farside. Year Lat. Long. Dia.* Feature Name Origin Image / Where Adopted (deg.) (deg.) (km) Crater Bi Sheng 畢昇 2010 78.3 N 148.4 E 55 Inventor, 990 - 1051 See next page or Farside map, Label G. Cai Lun 蔡倫 2010 80.1 N 113.8 E 43 Inventor, 57 - 121 See next page or Farside map, Label H. Chang Heng 張衡 1970 19.0 N 112.2 E 43 Astronomer, 78 - 139 See next page or Farside map, Label B. Chang-Ngo 嫦娥 1976 12.7 S 2.1 W 3 Female in Chinese myth Inside crater Alphonsus, Map 12. Ching-Te 敬德 # 1976 20.0 N 30.0 E 4 Generic male name Southwest of crater Littrow, Map 9. Kao (Ping-Tse) 高平子 1982 6.7 S 87.6 E 34 Astronomer, 1888 - 1970 See Event 1 (Image T116). Kuo Shou Ching 郭守敬 1970 8.4 N 133.7 W 34 Astronomer, 1231 - 1316 See next page or Farside map, Label D. Shi Shen 石申 1970 76.0 N 104.1 E 43 Astronomer, ~ 300 B.C. See next page or Farside map, Label A. Tsu Chung-Chi 祖沖之 1970 17.3 N 145.1 E 28 Mathematician, 429 - 500 See next page or Farside map, Label C. Wan-Hoo 萬戶 1970 9.8 S 138.8 W 52 Inventor, ~ 1500 See next page or Farside map, Label E. Zhang Yuzhe 張鈺哲 2010 69.0 S 137.7 W 37 Astronomer, 1902 - 1986 See next page or Farside map, Label F. -
An Analysis of Remotely Sensed Data of Mare Australe
AN ANALYSIS OF REMOTELY SENSED DATA OF MARE AUSTRALE. J. J. Gillis, B. L. Jolliff, Washington University, Dept. Earth & Planetary Science, Saint Louis, MO 63130 ([email protected]). Introduction: In a continuing study of mare basalts Th contents are similar [7]. and factors affecting their composition, volume, and Observations: The original compositions of the eruption duration (e.g., incorporation of K-U-Th), we basalt deposits in Australe have been contaminated by examine the compositions of mare basalts and nonmare impact mixing with nonmare material. This is evident in units on the floor of Australe Basin. This pre-Nectarian Fig. 1 where iron increases from the edge to the center basin is located on the southeastern limb of the Moon of a basalt pond and parallel to the basalt/highland con- (52°S, 95°E) [1], far removed from Th-enriched proxi- tact. The original composition is estimated by measur- mal and possible antipodal Imbrium ejecta. ing the FeO content of young craters that have exca- Australe, although one of the oldest basins, lacks vated less-contaminated material. The basalt deposits younger superposed basins like those found in South with the highest Th content have the highest FeO and Pole-Aitken Basin. Structurally, Australe exhibits two TiO2 concentrations. These basalt deposits are found poorly preserved ring structures, an interior ring ~550 along the outer parts of the basin, tend to be the young- km and an exterior rim ~880 [1, 2]. Lacking well- est mare deposits in the basin, and erupted into the to- defined ring structures, the Australe Basin is most read- pographically lowest parts of the basin. -
Near Taruntius Crater Appears to Be Relatively Young (~1 Ga) [14]. of >80
LPI Contribution No. 958 31 near Taruntius Crater appears to be relatively young (~1 Ga) [14]. Of TABLE 1. A comparison of Fe concentration between mare surfaces >80 floor-fractured craters mapped by Wilhelms ( Plate 5 in [15]), and crater ejecta; crater ejecta tend to have higher FeO content ~15 have pyroclastic deposits, suggesting that these features may relative to the mare surface they are superposed on. have provided an enhanced environment for explosive volcanic eruption. Location of Mare Unit Surface FeO wt% Ejecta FeO wt% The spatial association of volcanic eruption sites and impact Mare Orientale 6–12 12–16 craters and basins on the Moon is believed to be related to crustal Lacus Veris 8–10 12–14 thinning beneath impact sites. Small pyroclastic deposits are ob- Mare Marginis 10–14 14³16 served in regions with crustal thicknesses ranging from 30 to 80 km Mare Smythii 12–14 8–10 [2], with the majority near 50 km. On the nearside, these crustal Mare Australe 8–12 12–16 thicknesses are typical of the margins of the major maria; on the farside, thinner crust is observed in the South Pole/Aitken Basin and the Moscoviense Basin, sites where pyroclastic deposits are ob- Discussion: Maps of Fe abundance for farside mare surfaces served. We are currently evaluating these data to investigate impli- show low concentrations of Fe (8–14 wt% FeO) when compared to cations for modes of eruptions of lunar pyroclastic deposits. soil samples from the Apollo landing sites (11–16 wt% FeO). Are References: [1] Clementine Basemap Mosaic, 15 volumes, farside basalts inherently lower in Fe, or are they more highly con- prepared by USGS for NASA, available via the Planetary Data taminated by impact mixing between highland and mare lithologies? System Imaging Node.