Remote Sensing

Total Page:16

File Type:pdf, Size:1020Kb

Remote Sensing remote sensing Article Reevaluating Mare Moscoviense And Its Vicinity Using Chang’e-2 Microwave Sounder Data Zhiguo Meng 1,2,3,4, Shengbo Chen 1, Yongzhi Wang 1,2,3,* , Tianxing Wang 2 , Zhanchuan Cai 3, Yuanzhi Zhang 4 , Yongchun Zheng 4 and Shuo Hu 1 1 College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China; [email protected] (Z.M.); [email protected] (S.C.); [email protected] (S.H.) 2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 3 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China; [email protected] 4 Key Laboratory of Lunar and Deep-space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Y.Z.); [email protected] (Y.Z.) * Correspondence: [email protected]; Tel.: +86-4318-850-2362 Received: 5 December 2019; Accepted: 5 February 2020; Published: 6 February 2020 Abstract: Mare Moscoviense (148◦E, 27◦N) is one of the few large maria on the lunar farside, with the thinnest crust and a positive gravity anomaly. In this paper, the Chang’E-2 Microwave Sounder (CELMS) data was employed to study the microwave thermal emission features of mare basalts in Moscoviense Basin. The time angle and linear interpolation method are used to generate the brightness temperature (TB) maps at noon and night, as well as the TB difference (dTB) map. The obtained important results are as follows. (1) A new geologic map is generated with the TB and dTB maps using the maximum likelihood method, which gives a new expression about the basaltic units in Mare Moscoviense compared to the optical results; (2) the substrate temperature of Moscoviense Basin is likely warmer than what we know; (3) unit Ihtm (a Late (?) Imbrian, mid- to high-Ti, high-Fe basalt) is re-understood as two independent volcanic features with their own fissures; (4) the dTB maps firstly indicate that the depth lunar regolith is homogeneous in the highlands surrounding Mare Moscoviense, at least in the microwave domain, and secondly that there exists a special material bringing about the low dTB anomaly in the shallow layer of the east highlands. The results will be of great significance to better understand the basaltic volcanism of the Moon. Keywords: Mare Moscoviense; microwave thermal emission; basaltic units; basaltic volcanism; CELMS data 1. Introduction Moscoviense Basin, centered at (148.12◦E, 27.28◦N), is a multi-ringed impact basin on the lunar farside located within the Feldspathic Highland Terrain (Figure1a). It hosts abundant mare deposits, which cover an area of 35,000 km2 within the 420 km diameter basin (Figure1b) [ 1–4]. It was reported that Mare Moscoviense has some of the thinnest crust on the entire Moon and a large positive gravity anomaly for a basin in this size [5–7]. Therefore, observations and studies of the lunar regolith in Moscoviense Basin with the passive microwave data will be of great significance to improve understanding the basaltic volcanism on the lunar farside. Up to now, five different volcanic units across the Basin were recognized, which were mainly based on spectral properties and composition, namely, high-Ti basalts, low-Ti basalts, ancient mare units, cryptomare, and highland basin soils [8,9]. Using Clementine data, Craddock et al. [10] revealed the unique, complex nature of the geology in Mare Moscoviense and found the evidence for large-scale Remote Sens. 2020, 12, 535; doi:10.3390/rs12030535 www.mdpi.com/journal/remotesensing Remote Sens. 2020, 12, 535 2 of 22 pyroclastic material on the northern lunar farside through the analysis of compositions and the ages of basalt units. Mainly dependent on the iron and titanium abundances (FTA) (Figure1c), Mare Moscoviense is divided into four broad units, namely: Im (an Early(?) Imbrian, very low-Ti, low-Fe basalt), IltmRemote (an Imbrian-age,Sens. 2020, x, x FOR PEER low-Ti, REVIEW mare basalt), Ikm (an Imbrian low-Ti basalt that partially2 of 22 fills the crater Komarov), and Ihtm (a Late(?) Imbrian, mid- to high-Ti, high-Fe basalt) by Kramer et al. [9] or large-scale pyroclastic material on the northern lunar farside through the analysis of compositions named Ehtmand (Eratosthenian the ages of basalt mid units. to Mainly high-Ti, dependent high-Fe on the basalt) iron and by Morotatitanium abundances et al. [11] (FTA) (Figure (Figure1d). Through analysis of the1c), Mare previously Moscoviense mapped is divided mare into units four broad using units, the namely Chandrayaan-1: Im (an Early(?) Moon Imbrian, Mineralogy very low- Mapper (M3) data, ThaisenTi, low-Fe et basalt al. suggested), Iltm (an Imbrian that the-age, oldest low-Ti, maremare basalt unit), Im Ikm was (an likelyImbrian the low remnant-Ti basalt that of the impact melt sheet, whichpartially wasfills the important crater Komarov to explore), and Ihtm the ( geologica Late(?) Imbrian, context mid of- to initial high-Ti, lunar high- crustalFe basalt) development by Kramer et al. [9] or named Ehtm (Eratosthenian mid to high-Ti, high-Fe basalt) by Morota et al. [11] and modification(Figure 1d [12). ].Through Pieters analysis et al. of found the previously that there mapped were mare several units using small the exposuresChandrayaan- of1 Moon three separate but distinctiveMineralogy rock types Mapper along (M3) data, the innermostThaisen et al. Moscoviensesuggested that the Basin oldest ring mare usingunit Im M3 was datalikely andthe detected olivine, orthopyroxene,remnant of the andimpact Mg-rich melt sheet, spinel which along was important the southwest to explore sectorthe geologic of the context peak-ring of initial[ lunar13]. Bhatt et al. crustal development and modification [12]. Pieters et al. found that there were several small re-classifiedexposures the previously of three separate mapped but unitdistinctive Iltm rock using type Chandrayaan-1s along the innermost visible-near Moscoviense infraredBasin ring (VIS-NIR) data and namedusing M3 the data northern and detected part olivine, as unit orthopyroxene Ivltm (Imbrian, and Mg very-rich low spinel Ti along and verythe southwest low Fe) sector because of its lower titaniumof the and peak the-ring absolute [13]. Bhatt model et al. re- ageclassified [14]. the The previously different mapped understanding unit Iltm using of Chandrayaan the basaltic-1 units also presents thevisible difficulty-near infrared in studying (VIS-NIR the) data basaltic and named volcanism the northern by part only as usingunit Ivltm the (Imbrian spectral very data. low Ti and very low Fe) because of its lower titanium and the absolute model age [14]. The different This isunderstanding mainly because of the the basaltic penetration units also presents depth ofthe thedifficulty used in spectral studying datathe basaltic is rather volcanism low, by only several microns belowonly the using lunar the spectral regolith data. [15 –18]. In such depth, the regolith can easily be affected by the space weathering andThis the is impactmainly because ejecta the from penetration nearby, depth or evenof the used far awayspectral regionsdata is rather [14 ,low,15]. only The several impact events microns below the lunar regolith [15–18]. In such depth, the regolith can easily be affected by the space from Titov craterweathering (150.28 and the◦E, impact 28.55 ejecta◦N) withinfrom nearby the, or Basin even far floor away and regions abundant [14,15]. The craters impact outsideevents from have clearly altered the surfaceTitov crater compositions (150.28°E, 28.55°N) and within topography, the Basin floor which and isabundant inevitable craters to outside affect have the clearly understanding altered of the basaltic unitstheof surface Mare compositions Moscoviense. and topograp Howhy, to which mitigate is inevitable such to disadvantages affect the understanding and of to the better basaltic explore the regolith thermophysicalunits of Mare Moscoviense features in. How situ to is mitigate a critical such problem disadvantages in current and to better lunar explore studies. the regolith thermophysical features in situ is a critical problem in current lunar studies. (a) (b) (c) (d) Figure 1. (aFigure) Position 1. (a) Position of Mare of MoscovienseMare Moscoviense (Green (Green rectangle)rectangle) on onthe thelunar lunar farside. farside. (b) A mosaic (b) Aof mosaic of optical images from Lunar Reconnaissance Orbiter Camera (LROC), which was downloaded from optical images from Lunar Reconnaissance Orbiter Camera (LROC), which was downloaded from https://astrogeology.usgs.gov /search/map/Moon/LRO/LROC_WAC; the green circle is an identified circle related to the rim of Mare Moscoviense. (c) Iron and titanium abundances (wt.%), which was estimated with the Lucey model [19] based on Clementine ultraviolet-visible (UV-VIS) data downloaded from https://astrogeology.usgs.gov/search/map/Moon/Clementine/UVVIS.(d) Geologic map [9] of Mare Moscoviense. Remote Sens. 2020, 12, 535 3 of 22 It is known that the observations in the microwave domain can eliminate well the aforementioned disadvantages [15–18]. For the first time, the Microwave Sounder (CELMS) onboard Chang’E-1/2 (CE-1/2) missions was used to measure the thermal emission of the lunar regolith in microwave domain. For the absence of the water on the Moon, the signal in microwave range can penetrate the regolith up to 10 to 20 times the wavelength [15,16]. The wavelength of the microwave used by the CELMS instrument is about 10 cm at 3.0 GHz, 3.85 cm at 7.8 GHz, 1.55 cm at 19.35 GHz, and 0.81 cm at 37 GHz. Correspondingly, the penetration is about 1 m–2 m at 3.0 GHz, 38.5 cm to 75 cm at 7.8 GHz, 15.5 cm to 31 cm at 19.35 GHz, and 8.1 cm to 16.2 cm at 37 GHz, which is decided by the FTA of the lunar regolith [15–18].
Recommended publications
  • Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
    Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig.
    [Show full text]
  • EPSC2013-167, 2013 European Planetary Science Congress 2013 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2013
    EPSC Abstracts Vol. 8, EPSC2013-167, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Scientific Characterization of Mare Moscoviense Region of Interest A. Calzada (1) and S.C. Mest (2,3) (1) Department of Earth and Planetary Sciences Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX (2) Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719-2395 and (3) Planetary Geodynamics Laboratory, Code 698, NASA GSFC, Greenbelt, MD 20771 Abstract NASA´s Constellation Program has identified 50 Regions of Interest (ROI) with high scientific value in preparation for an eventual return to the Moon [1]. These 50 locations are geological diverse and geographically distributed to achieve a variety of goals and objectives and described by LEAG [2]. In order to evaluate its scientific interest, Mare Moscoviense (MMos) ROI was characterized using digital images and data provided by NASA´s Clementine and Lunar Reconnaissance (LRO) Missions as well as ArcGISTM v.10.1 software to create a geomorphologic and geologic map. The cartography and the input were analyzed to propose a set of three hypothetical traverses for future human or robotic expeditions within an area up to distances of 5, 10 and 20 km from the ROI location. The traverses has no constrains regarding Figure 1 LRO WAC Image from Mare Moscoviense basin. Red schedule, distances or topography. Experiments box indicates the studied area. Credits: NASA/JPL/MSSS proposed vary from petrologic and geochemical characterization such as samples and drill cores to 2. Cartography geophysical experiments using gravimetry, magnetometry and seismicity methods.
    [Show full text]
  • Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
    Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process
    [Show full text]
  • An Examination of Mare Age Based On
    An Examination of Mare Age Based On Cratering Density The Chenango Forks Lunar Research Team: Sharon Hartzell, Jackson Haskell, Benjamin Daniels, Sarah Maximowicz, and Sarah Andrus Objective Cooled basaltic lava flows, known as maria, cover approximately sixteen percent of the lunar surface. The determination of absolute and relative ages of maria is an important question in lunar research, because it provides insight into the geologic history of the lunar environment. Many samples returned from the Apollo and Luna missions have been absolutely dated using radiogenic techniques. However, not all samples returned from the moon have been radiogenically dated. Furthermore, returned samples represent only a small portion of each visited mare. One of the major challenges facing lunar researches is the fact that most maria are still unvisited. The lack of complete data from visited maria in combination with the absence of data from unvisited maria has compelled lunar researchers to rely on remote techniques for relative dating. The overriding goal of our research was to develop and utilize a method for analyzing the ages of the twenty‐three lunar maria. Approach •Areas of the twenty‐three lunar maria were analyzed in three distinct investigations. Investigation 1: Total crater count to determine cratering densities, and comparison of densities to absolute age Investigation 2: Analysis of crater weathering in relation to age Investigation 3: Analysis of crater size in relation to age •A relative age map was created to display the distribution of the maria on the moon’s surface. The •Analysis of age dist ributions within individual mari a revealed several interesting trends: Investigation 1 map itself was obtained from Google Moon, and the maria were highlighted based on the scale Method displayed below.
    [Show full text]
  • Constraining the Evolutionary History of the Moon and the Inner Solar System: a Case for New Returned Lunar Samples
    Space Sci Rev (2019) 215:54 https://doi.org/10.1007/s11214-019-0622-x Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples Romain Tartèse1 · Mahesh Anand2,3 · Jérôme Gattacceca4 · Katherine H. Joy1 · James I. Mortimer2 · John F. Pernet-Fisher1 · Sara Russell3 · Joshua F. Snape5 · Benjamin P. Weiss6 Received: 23 August 2019 / Accepted: 25 November 2019 / Published online: 2 December 2019 © The Author(s) 2019 Abstract The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scien- tific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to contain- ing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently avail- able samples, such as those related to the age of the Moon, duration of lunar volcanism, the Role of Sample Return in Addressing Major Questions in Planetary Sciences Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana B R.
    [Show full text]
  • Modeling and Mapping of the Structural Deformation of Large Impact Craters on the Moon and Mercury
    MODELING AND MAPPING OF THE STRUCTURAL DEFORMATION OF LARGE IMPACT CRATERS ON THE MOON AND MERCURY by JEFFREY A. BALCERSKI Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth, Environmental, and Planetary Sciences CASE WESTERN RESERVE UNIVERSITY August, 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Jeffrey A. Balcerski candidate for the degree of Doctor of Philosophy Committee Chair Steven A. Hauck, II James A. Van Orman Ralph P. Harvey Xiong Yu June 1, 2015 *we also certify that written approval has been obtained for any proprietary material contained therein ~ i ~ Dedicated to Marie, for her love, strength, and faith ~ ii ~ Table of Contents 1. Introduction ............................................................................................................1 2. Tilted Crater Floors as Records of Mercury’s Surface Deformation .....................4 2.1 Introduction ..............................................................................................5 2.2 Craters and Global Tilt Meters ................................................................8 2.3 Measurement Process...............................................................................12 2.3.1 Visual Pre-selection of Candidate Craters ................................13 2.3.2 Inspection and Inclusion/Exclusion of Altimetric Profiles .......14 2.3.3 Trend Fitting of Crater Floor Topography ................................16 2.4 Northern
    [Show full text]
  • Lunar Impact Basins Revealed by Gravity Recovery and Interior
    Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements Gregory Neumann, Maria Zuber, Mark Wieczorek, James Head, David Baker, Sean Solomon, David Smith, Frank Lemoine, Erwan Mazarico, Terence Sabaka, et al. To cite this version: Gregory Neumann, Maria Zuber, Mark Wieczorek, James Head, David Baker, et al.. Lunar im- pact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances , American Association for the Advancement of Science (AAAS), 2015, 1 (9), pp.e1500852. 10.1126/sci- adv.1500852. hal-02458613 HAL Id: hal-02458613 https://hal.archives-ouvertes.fr/hal-02458613 Submitted on 26 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE PLANETARY SCIENCE 2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed Lunar impact basins revealed by Gravity under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Recovery and Interior Laboratory measurements 10.1126/sciadv.1500852 Gregory A. Neumann,1* Maria T. Zuber,2 Mark A. Wieczorek,3 James W. Head,4 David M. H. Baker,4 Sean C. Solomon,5,6 David E. Smith,2 Frank G.
    [Show full text]
  • JRASC December 2011, Low Resolution (PDF)
    The Journal of The Royal Astronomical Society of Canada PROMOTING ASTRONOMY IN CANADA December/décembre 2011 Volume/volume 105 Le Journal de la Société royale d’astronomie du Canada Number/numéro 6 [751] Inside this issue: Since When Was the Sun a Typical Star? A Midsummer Night The Starmus Experience Hubble and Shapley— Two Early Giants of Observational Cosmology A Vintage Star Atlas Night-Sky Poetry from Jasper Students David Levy and his Observing Logs Gigantic Elephant Trunk—IC 1396 FREE SHIPPING To Anywhere in Canada, All Products, Always KILLER VIEWS OF PLANETS CT102 NEW FROM CANADIAN TELESCOPES 102mm f:11 Air Spaced Doublet Achromatic Fraunhoufer Design CanadianTelescopes.Com Largest Collection of Telescopes and Accessories from Major Brands VIXEN ANTARES MEADE EXPLORE SCIENTIFIC CELESTRON CANADIAN TELESCOPES TELEGIZMOS IOPTRON LUNT STARLIGHT INSTRUMENTS OPTEC SBIG TELRAD HOTECH FARPOINT THOUSAND OAKS BAADER PLANETARIUM ASTRO TRAK ASTRODON RASC LOSMANDY CORONADO BORG QSI TELEVUE SKY WATCHER . and more to come December/décembre 2011 | Vol. 105, No. 6 | Whole Number 751 contents / table des matières Feature Articles / Articles de fond 273 Astrocryptic Answers by Curt Nason 232 Since When Was the Sun a Typical Star? 273 It’s Not All Sirius —Cartoon by Martin Beech by Ted Dunphy 238 A Midsummer Night 274 Society News by Robert Dick by James Edgar 240 The Starmus Experience 274 Index to Volume 105, 2011 by Paul and Kathryn Gray 245 Hubble and Shapley—Two Early Giants Columns / Rubriques of Observational Cosmology by Sidney van den Bergh
    [Show full text]
  • Ndex to Geophysical \Bstracts 184-187 .961
    ndex to Geophysical \bstracts 184-187 .961 JAMES W. CLARKE, DOROTHY B. VITALIANO, VIRGINIA S. NEUSCHEL, and others EOLOGICAL SURVEY BULLETIN 1146-E 'bstracts of current literature ~rtaining to the physics of e solid earth and to !ophysical exploration ~ITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. Price 40 cents (single copy). Subscription price: $1.75 a year; 50 cents additional for forei~n mailing. Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget (June 23, 1960). INDEX TO GEOPHYSICAL ABSTRACTS 184-187, 1961 By James W. Clarke and others AUTHOR INDEX A Abstract Abdullayev, R. N. See Afanas'yev, G. D 185-56 Academy of Sciences of the U.S.S.R. First photographs of the reverse sic;le of the moon------------------------------------------------------------------ 186-111 Adachi, Ryuzo. On the magnification of the record of a vibration by an electro­ magnetic-type transducer and a galvanometer-----------------------------­ 186-279 Adadurov, G. A., Balashov, D. B., and Dremin, A. N. Research on volume compressibility of marble under high pressure----'1"-----------------------­ 186-595 Adamiya, Sh. A. Age of the "young" granites of the Khrami crystalline massif-­ 187-43 Adams, J. A. S., Osmond, J. K., Edwards, George, and Henle, W. Absolute dating of the Middle Ordovician------------------------------------------­ 184-29 Adams, W. M. , and Allen, D. C. Reading seismograms with digital computers - 186-203 Adams, W.
    [Show full text]
  • Thumbnail Index
    Thumbnail Index The following five pages depict each plate in the book and provide the following information about it: • Longitude and latitude of the main feature shown. • Sun’s angle (SE), ranging from 1°, with grazing illumination and long shadows, up to 72° for nearly full Moon conditions with the Sun almost overhead. • The elevation or height (H) in kilometers of the spacecraft above the surface when the image was acquired, from 21 to 116 km. • The time of acquisition in this sequence: year, month, day, hour, and minute in Universal Time. 1. Gauss 2. Cleomedes 3. Yerkes 4. Proclus 5. Mare Marginis 79°E, 36°N SE=30° H=65km 2009.05.29. 05:15 56°E, 24°N SE=28° H=100km 2008.12.03. 09:02 52°E, 15°N SE=34° H=72km 2009.05.31. 06:07 48°E, 17°N SE=59° H=45km 2009.05.04. 06:40 87°E, 14°N SE=7° H=60km 2009.01.10. 22:29 6. Mare Smythii 7. Taruntius 8. Mare Fecunditatis 9. Langrenus 10. Petavius 86°E, 3°S SE=19° H=58km 2009.01.11. 00:28 47°E, 6°N SE=33° H=72km 2009.05.31. 15:27 50°E, 7°S SE=10° H=64km 2009.01.13. 19:40 60°E, 11°S SE=24° H=95km 2008.06.08. 08:10 61°E, 23°S SE=9° H=65km 2009.01.12. 22:42 11.Humboldt 12. Furnerius 13. Stevinus 14. Rheita Valley 15. Kaguya impact point 80°E, 27°S SE=42° H=105km 2008.05.10.
    [Show full text]
  • Orbital Motion, Fourth Edition
    Orbital Motion © IOP Publishing Ltd 2005 © IOP Publishing Ltd 2005 © IOP Publishing Ltd 2005 © IOP Publishing Ltd 2005 Contents Preface to First Edition xv Preface to Fourth Edition xvii 1 The Restless Universe 1 1.1 Introduction.….….….….….….….….……….….….….….….….….….….….….….…1 1.2 The Solar System.….….….….….….….….…...................….….….….….….…...........1 1.2.1 Kepler’s laws.….….….….….….….… ….….….….….….…......................4 1.2.2 Bode’s law.….….….….….….….….….….….….….….…..........................4 1.2.3 Commensurabilities in mean motion.….….….….…….….….….….….…..5 1.2.4 Comets, the Edgeworth-Kuiper Belt and meteors.….….…….….….….…..7 1.2.5 Conclusions.….….….….….….….…….….….….….….….........................9 1.3 Stellar Motions.….….….….….….….….….….….….….….….….….….….….….…...9 1.3.1 Binary systems.….….….….….….…… ….….….….….….…..................11 1.3.2 Triple and higher systems of stars.….….….….….….….….….….….…...11 1.3.3 Globular clusters.….….….….….….…… ….….….….….….…...............13 1.3.4 Galactic or open clusters.….….….….….…..….….….….….….…...........14 1.4 Clusters of Galaxies.….….….….….….….…..….….….….….….….….….….….…..14 1.5 Conclusion.….….….….….….….….……….….….….….….….….….….….….…....15 Bibliography.….….….….….….….….…..….….….….….….….….….….….….…....15 2 Coordinate and Time-Keeping Systems 16 2.1 Introduction.….….….….….….….….…… ….….….….….….….….….….................16 2.2 Position on the Earth’s Surface.….….….….….….… ….….….….….….…................16 2.3 The Horizontal System.….….….….….….….….….….….….….….….......................18 2.4 The Equatorial
    [Show full text]
  • Galactic Observer
    alactic Observer John J. McCarthy Observatory GVolume 5, No. 9 September 2012 As Curiosity Rover makes its first baby steps for mankind, NASA is already planning for future missions to Mars. Cutting to The InSight lander ("Interior Exploration using Seismic Investigations, Geodesy and Heat the Core Transport" will employ a German-made internal hammer - or "tractor mole" - to probe the Martian crust and descend up to 16 feet (five meters) below the surface. The mission will attempt to find out why Earth and its half-sister have evolved so differently. For more information, go to http://discovery.nasa.gov/index.cfml Image credit: NASA/JPL-Caltech The John J. McCarthy Observatory Galactic Observvvererer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 Allan Ostergren www.mccarthyobservatory.org Website Development JJMO Staff John Gebauer It is through their efforts that the McCarthy Observatory Marc Polansky has established itself as a significant educational and Josh Reynolds recreational resource within the western Connecticut Technical Support community. Bob Lambert Steve Barone Allan Ostergren Dr. Parker Moreland Colin Campbell Cecilia Page Dennis Cartolano Joe Privitera Mike Chiarella Bruno Ranchy Josh Reynolds Jeff Chodak Route Bill Cloutier Barbara Richards Charles Copple Monty Robson Randy Fender Don Ross John Gebauer Gene Schilling Elaine Green Diana Shervinskie Tina Hartzell Katie Shusdock Tom Heydenburg Jon Wallace Jim Johnstone Bob Willaum Bob Lambert Paul Woodell Parker Moreland, PhD Amy Ziffer In This Issue SILENCED FOOTFALLS ................................................... 3 SUNRISE AND SUNSET .................................................. 13 END OF THE YEAR OF THE SOLAR SYSTEM ......................
    [Show full text]