UNIVERSITY of LATVIA FACULTY of CHEMISTRY Doctoral Thesis
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF LATVIA FACULTY OF CHEMISTRY Doctoral thesis Artūrs Zariņš FORMATION, ACCUMULATION AND ANNIHILATION OF RADIATION-INDUCED DEFECTS AND RADIOLYSIS PRODUCTS IN ADVANCED TWO-PHASE CERAMIC TRITIUM BREEDER PEBBLES Supervisor: Leading researcher, Dr. chem. Gunta Ķizāne Scientific advisors: Dr. chem. Arnis Supe Dr. rer. nat. Regina Knitter RIGA 2018 ABSTRACT Advanced lithium orthosilicate (Li4SiO4) pebbles with additions of lithium metatitanate (Li2TiO3) as a secondary phase are suggested as a potential candidate for the tritium breeding in future nuclear fusion reactors. In this doctoral thesis, for the first time the formation, accumulation and annihilation of radiation-induced defects (RD) and radiolysis products (RP) in the Li4SiO4 pebbles with various contents of Li2TiO3 are analysed and described under the simultaneous action of 5 MeV accelerated electrons and high temperature. To exclude the effects from technological factors, which could affect the formation and accumulation of RD and RP in the Li4SiO4 pebbles during irradiation, the influence of the noble metals, the pebble diameter, the grain size and the chemisorption products on the radiolysis is analysed and evaluated. Key words: Nuclear fusion, tritium breeding, lithium orthosilicate, lithium metatitanate, radiation-induced defects, radiolysis products. 2 TABLE OF CONTENT ABBREVIATIONS ......................................................................................................................... 5 INTRODUCTION ........................................................................................................................... 7 1. LITERATURE REVIEW .......................................................................................................... 12 1.1 Nuclear fusion reactors ........................................................................................................ 13 1.1.1 Background ................................................................................................................... 13 1.1.2 Principles of nuclear fusion .......................................................................................... 14 1.1.3 Technical design of ITER ............................................................................................. 16 1.1.4 Tritium breeding concept .............................................................................................. 18 1.2 EU proposed tritium breeding ceramics .............................................................................. 20 1.2.1 Li4SiO4 pebbles with excess of SiO2 – reference candidate ......................................... 21 1.2.2 Li2TiO3 pebbles – “back-up” solution .......................................................................... 25 1.2.3 Advanced Li4SiO4 pebbles with additions of Li2TiO3 – alternative candidate ............. 27 1.3 Radiation-induced processes in ceramic tritium breeder pebbles ....................................... 29 1.3.1 Radiolysis of Li4SiO4 pebbles with excess of SiO2 ...................................................... 29 1.3.2 Radiolysis of Li2TiO3 pebbles ...................................................................................... 32 1.3.3 Factors influencing the radiolysis ................................................................................. 33 2. EXPERIMENTAL .................................................................................................................... 35 2.1 Investigated samples ............................................................................................................ 35 2.2 Preparation and irradiation of samples ................................................................................ 37 2.3 Methods of characterisation................................................................................................. 40 3. RESULTS AND DISCUSSION ............................................................................................... 45 3.1 Formation, accumulation and annihilation of radiation-induced defects and radiolysis products in Li4SiO4 pebbles with various contents of Li2TiO3 .................................................. 45 3.1.1 Formation and accumulation of RD and RP ................................................................. 51 3.1.2 Thermal stability and annihilation of accumulated RD and RP ................................... 55 3.1.3 Summary of results ....................................................................................................... 63 3.2 Behaviour of Li4SiO4 pebbles with various contents of Li2TiO3 under simultaneous action of accelerated electrons and high temperature .......................................................................... 64 3.2.1 Microstructural changes and phase transitions after irradiation ................................... 65 3 3.2.2 Formation and accumulation of RD and RP ................................................................. 67 3.2.3 Thermal stability and annihilation of accumulated RD and RP ................................... 70 3.2.4 Summary of results ....................................................................................................... 73 3.3 Influence of noble metals on radiolysis ............................................................................... 74 3.3.1 Surface microstructure and chemical composition before irradiation .......................... 75 3.3.2 Chemical and phase composition before irradiation ..................................................... 76 3.3.3 Formation and accumulation of RD and RP ................................................................. 78 3.3.4 Summary of results ....................................................................................................... 80 3.4 Influence of pebble diameter and grain size on radiolysis .................................................. 81 3.4.1 Microstructure and phase composition after irradiation ............................................... 82 3.4.2 Formation, accumulation and annihilation of RD and RP ............................................ 83 3.4.3 Summary of results ....................................................................................................... 88 3.5 Influence of chemisorption products on high-temperature radiolysis ................................. 89 3.5.1 Influence of air atmosphere on radiolysis ..................................................................... 90 3.5.2 Influence of chemical composition on radiolysis in air ................................................ 91 3.5.3 Influence of irradiation temperature on radiolysis in air .............................................. 92 3.5.4 Summary of results ....................................................................................................... 93 RECOMMENDATIONS .............................................................................................................. 94 CONCLUSIONS ........................................................................................................................... 95 REFERENCES .............................................................................................................................. 97 APPENDIX ................................................................................................................................. 112 Appendix 1. Publications ......................................................................................................... 112 Appendix 1.1 Publications in international journals ............................................................ 112 Appendix 1.2 Attended international conferences ............................................................... 112 Appendix 1.3 Attended local conferences ........................................................................... 115 4 ABBREVIATIONS ATR Attenuated total reflectance CFC Carbon fibre composite CFQ Clear fused quartz CL Cathodoluminescence D Absorbed dose DEMO Demonstration fusion power plant DTA Differential thermal analysis Ea Activation energy EDX Energy dispersive X-ray spectrometry ESR Electron spin resonance spectrometry EXOTIC EXtraction Of Tritium In Ceramic EU European Union FTIR Fourier transform infrared spectrometry G Radiation chemical yield GC Gas chromatography HCCB Helium Cooled Ceramic Breeder HCCR Helium Cooled Ceramic Reflector HCLL Helium Cooled Lithium Lead HCPB Helium Cooled Pebble Bed HICU High neutron fluence Irradiation of pebble staCks for fUsion ICP-OES Inductively coupled plasma optical emission spectrometry ITER International Thermonuclear Experimental Reactor JET Joint European Torus KALOS KArlsruhe Lithium OrthoSlicate LL Lyoluminescence LLCB Lithium Lead Ceramic Breeder MCS Method of chemical scavengers NIF National Ignition Facility 5 P Dose rate PBA Pebble Bed Assemblies PIE Post irradiation examination p-XRD Powder X-ray diffractometry Q Fusion energy gain factor RAFM Reduced activation ferritic martensitic steel RD Radiation-induced defects RL Radioluminescence RP Radiolysis products SEM Scanning electron microscopy T Temperature TBM Test Blanket Module TBR Tritium breeding ratio TG Thermogravimetry TSL Thermally stimulated luminescence Tokamak Russian acronym: ТОроидальная КАмера с МАгнитными Катушками VV Vacuum vessel WCCB Water Cooled Ceramic Breeder W7-X Wendelstein 7-X XPS X-ray photoelectron spectrometry XRF X-ray fluorescence spectrometry XRL X-ray induced luminescence α Radiolysis degree β Heating rate ΔBpp Peak-to-peak