REVISION 2 1 Laser-Induced Breakdown Spectroscopy (LIBS) as a tool for in situ mapping and textural 2 interpretation of lithium in pegmatite minerals 3 4 Sweetapple, Marcus T.1*, Tassios, Steven2 5 6 1 CSIRO, Earth Science and Resource Engineering, PO Box 1130, Perth, Western Australia, 7 6102 8 2CSIRO, Process Science and Engineering, Gate 1, Normanby Rd, Clayton, Victoria, 3169 9 Australia 10 11 Abstract 12 Laser-Induced Breakdown Spectroscopy (LIBS) offers an efficient method for qualitative and 13 semi-quantitative analysis of light elements (Z < 10), including lithium. This relatively 14 inexpensive analytical tool provides very rapid analysis with little sample damage, requiring 15 minimal sample preparation. In principle, LIBS is a form of atomic emission spectroscopy, 16 relying on characteristic spectra emitted from plasma generated by a high energy laser pulse 17 striking a sample (solid, liquid or gas). 18 19 In this study LIBS mapping was applied to petrographically characterised samples of 20 hydrothermally altered spodumene from the Neoarchaean Mt. Cattlin lithium pegmatite deposit. 21 Spodumene (LiAlSi2O6) is the ore mineral in this deposit, but lithium is distributed in variety of 22 minerals including primary micas and tourmaline, as well as in the alteration mineralogy of * Present Address: Centre for Exploration Targeting, University of Western Australia, 35 Stirling Highway, Crawley, Perth, W.A., Australia 6009. Email:
[email protected] 1 Sweetapple & Tassios – LIBS mapping lithium REVISION 2 23 spodumene. Mapping was carried out using a grid of analysis spots of 125 µm diameter, spaced 24 at 200 µm intervals, on a sample surface cut by a diamond saw blade without further preparation.