JOURNAL of NEMATOLOGY Molecular And

Total Page:16

File Type:pdf, Size:1020Kb

JOURNAL of NEMATOLOGY Molecular And JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2019-034 e2019-34 | Vol. 51 Molecular and morphological characterization of Paurodontella composticola n. sp. (Nematoda: Hexatylina, Sphaerulariidae) from Iran Mehrab Esmaeili1, Ramin Heydari1,*, Ahmad Kheiri1 and Weimin Ye2 1Department of Plant Protection, Abstract College of Agriculture and natural resources, University of Tehran, A new species of the genus Paurodontella, P. composticola n. sp., Karaj, Iran. collected from Nazar Abad City, Alborz Province, Iran, is described 2Nematode Assay Section, North and illustrated. The new species has a body length of 803–1053 μ m Carolina Department of Agriculture (females n = 10) and 620 and 739 μ m (males n = 2). The cuticle is and Consumer Services, Agronomic weakly annulated with four lateral lines. Cephalic region is annulated Division, Raleigh, NC, 27607, USA. and continuous with body contour. The stylet is 8.0 to 9.0 μ m long *E-mail: [email protected] with asymmetrical knobs. Esophageal basal bulb is present with a small posterior extension projecting into the intestine. Excretory pore This paper was edited by Zafar is situated at the level of esophageal basal bulb region. Post-uterine Ahmad Handoo. sac is 5 to 8 μ m long and uterus is without diverticulum. Tails of both Received for publication November sexes are similar, short and sub-cylindrical. Males have 24 to 25 μ m 20, 2018. long bursa leptoderan and spicules 24 or 25 µm long. A non-branch- ing oviduct is present to form a uterine diverticulum; the new spe- cies is closely related to five known species of the genus, namelyP . asymmetrica, P. balochistanica, P. densa, P. iranica and P. niger. It most closely resembles P. iranica, but differs from it morphological- ly by a shorter stem-like extension projecting into lumen of intestine and male with sub-cylindrical tail vs conoid. In addition to morpho- logical comparisons, the molecular phylogenetic analyses based on 733 bp of the partial sequence of 28S D2/D3 expansion segments of the large subunit rDNA gene (LSU) revealed this as a new species. Key words 28S D2/D3, Molecular phylogeny, Morphology, New species, Taxonomy. The genus Paurodontella (Husain and Khan, 1968) ca (Handoo et al., 2010), P. myceliophaga (Handoo et is a diverse and worldwide distributed Paurodontid al., 2010), P. iranica (Golhasan et al., 2016), P. persica taxon. To date, Paurodontella contains 14 nominal (Esmaeili et al., 2017a), P. parapitica (Esmaeili et al., species (Handoo et al., 2010; Esmaeili et al., 2016b; 2016b), and P. gilanica (Yaghoubi et al., 2018). Among Yaghoubi et al., 2018), including P. aberrans (Nanda- these, P. iranica, P. persica, P. gilanica and P. parapitica kumar and Khera, 1969; Sumenkova, 1975), P. apitica were described from Iran. (Thorne, 1941; Husain and Khan, 1968), P. asymme- Paurodontella is mainly characterized by the tricus (Tikyani and Khera, 1968; Sumenkova, 1975), presence of basal stylet knobs, the location of excre- P. densa (Thorne, 1941; Husain and Khan, 1968), tory pore near the nerve ring, the esophageal bulb P. minuta (Husain and Khan, 1968), P. niger (Thorne, being present with long/or short stem-like exten- 1941; Husain and Khan, 1968), P. sohaili (Maqbool, sion, the absence of post uterine sac (PUS) or pres- 1982), P. auriculata (Anderson, 1985), P. balochistani- ent only in rudimentary form, simple vulval lips and 1 © 2019 Authors. This is an Open Access article licensed under the Creative Commons CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/ Molecular and morphological characterization of Paurodontella composticola n. sp. Table 1. Species used for the analysis of phylogenetic relationships and the accession numbers for LSU sequences deposited in GenBank Species. Accession Accession Authors Species Authors number number Abursanema KF885742 Yaghoubi et al. Howardulla sp. JX291131 Chizhov et al. iranicum (2014) (2012) Anguina sp. KU317615 unpublished data Litylenchus GU727547 Zhao et al. (2012) coprosma Anguina tritici DQ328723, Subbotin et al. Nothotylenchus KT149799 Esmaeili et al. KC818620 (2006) persicus (2015) Anguinata KY067443 unpublished data Nothotylenchus KX549319 Esmaeili et al. phoneixae (2017c) Cephalenchus KU723245 Pereira and Baldwin Nothotylenchus MH243749 unpublished data sp. (2016) sp. Cephalenchus KX685166 Pereira et al. (2017) Paurodontella MH427864 Present study cephalodiscus composticolla n. sp. Cephalenchus KX462033 Pereira et al. (2017) Paurodontella MF543010 Yaghoubi et al. daisuce gilanica (2018) Cephalenchus KU723245 Pereira and Baldwin Paurodontella KP642168 Golhasan et al. nemoralis (2016) iranica (2016) Deladenus AY633444 Ye et al. (2007) Paurodontella KU522237 Esmaeili et al. siricidicola parapitica (2016b) Deladenus sp. JX104332 unpublished data Paurodontella KP000034 Esmaeili et al. persica (2017a) Deladenus sp. JX104322 Morris et al. (2013) Paurodontoides MG836264 Esmaeili et al. sp. (2018) Ditylenchus KX426052, Wang et al. (2017) Rubzovinema KF155283 Koshel et al. (2014) arachis KX426054 sp. Ditylenchus EU400626 Wang et al. (2017) Rubzovinema KF373736 Koshel et al. (2014) destructor sp. Ditylenchus FJ707363, Douda et al. (2013) Sphaerularia cf. AB733664, Ye et al. (2007) dipsaci KT806479, bombi AB733665, JF327763, DQ328726 JF327765, Ditylenchus gigas HQ219217, Vovlas et al. (2011) Sphaerularia AB300596 Ye et al. (2007) KC310734 vespae Ditylenchus KF612015 Vovlas et al. (2016) Sphaerularioidea KR920361 unpublished data oncogenus Ditylenchus KX463285 Esmaeili et al. Subanguina JN885540 Yao et al. (2012) persicus (2016a) moxae Ditylenchus KX400577 Esmaeili et al. Subanguina JN885539 Yao et al. (2012) stenurus (2017b) radicicola Ditylenchus MG551886 Madani and Tenuta Subanguina sp. KT205566, unpublished data weischeri (2017) KT205560, KX776479 Continued 2 JOURNAL OF NEMATOLOGY Fergusobia sp. AY633446 Ye et al. (2007) Travassosinema KX844645 Morffe and claudiae Hasegawa (2017) Tylenchida sp. FJ661086 unpublished data Travassosinema LC214839 unpublished data sp. Tylenchomorpha LC147027 unpublished data – – – sp. bursa not being leptoderan (Siddiqi, 2000). Accord- Material and methods ing to the classification by Siddiqi (2000), Pauro- dontella belongs to the subfamily Paurodontinae Sampling, extraction, mounting, and (Thorne, 1941), family Paurodontidae (Thorne, 1941), drawing superfamily Sphaerularioidea (Lubbock, 1861), suborder Hexatylina (Siddiqi, 1980) in the order of Specimens of Paurodontella composticola n. sp. Tylenchida (Thorne, 1949). Siddiqi (2000) consid- were obtained from compost collected in Nazar Abad ered the family Paurodontidae a junior synonym of City, Alborz Province, Iran in August 2017. To obtain Sphaerulariidae, since the genera included in these a cleaner suspension of nematodes, the tray of ex- families are morphologically similar and have similar traction was employed (Whitehead and Hemming, life cycles. However, there is not enough available 1965). Specimens for light microscopy were killed by molecular data to support these statements. Biolog- gentle heat, fixed in a solution of 4% formaldehyde ically, in Paurodontidae, a fungus-feeding generation + 2% glycerol and transferred to anhydrous glycer- is well known and nothing is known about entomo- in, according to De Grisse (1969), and mounted on parasitic forms, whereas in Sphaerulariidae, an en- permanent slides. Specimens were examined using tomoparasitic form is present. Some other nema- an Olympus BH-2 (Japan) compound microscope tologists (Chizhov, 2004; Andrássy, 2007; Handoo at magnifications up to 1,000× magnification. Meas- et al., 2010) followed Siddiqi’s opinion considering urements were carried out using a drawing tube at- Paurodontidae as a synonym of Sphaerulariidae. In tached to a Nikon E200 light microscope (Japan). All this study, Siddiqi’s (2000) scheme was followed. measurements were expressed in micrometers (μ m) A history of the taxonomic studies on mem- and photographs of nematodes were taken by a digi- bers of the superfamily Sphaerularioidea and a list tal camera attached with the same microscope. of species occurring in Iran were given by Esmaeili et al. (2016b). In order to study the species diversi- DNA extraction, PCR, and sequencing ty of this superfamily in Iran, we conducted several samplings in cultivated and natural areas of Iran dur- Nematode DNA was extracted from single live indi- ing August 2017 and, as a result, a population of a viduals. Single nematode specimen was transferred Paurodontella species has been found in compost to an Eppendorf tube containing 16 µl ddH2O, 2 µl 10× from a few places where mushrooms failed to grow. PCR buffer and 2 µl proteinase K (600 µg/ml) (Pro- This population morphologically resembled a group mega, Benelux, The Netherlands) and crushed for of Paurodontella species by having a short stylet 2 min with a micro-homogeniser, Vibro Mixer (Zürich, with asymmetrical knobs at the base, the subventral Switzerland). The tubes were incubated at 65°C for knobs larger than dorsal, a short stem-like extension 1 hr, then at 95°C for 10 min. In total, 1 µl of extracted projecting and extended immediately behind the DNA was transferred to an Eppendorf tube containing base of esophageal basal bulb, short PUS and four 2.5 µl 10× NH4 reaction buffer, 0.75 µl MgCl2 (50 mM), incisures in the lateral fields. These traits prompt- 0.25 µl dNTPs mixture (10 mM each), 0.75 µl of each ed us to perform much detailed morphological and primer (10 mM), 0.2 µl BIOTAQ DNA Polymerase (BIO- molecular study to compare with all previously
Recommended publications
  • Symbiosis of the Millipede Parasitic
    Nagae et al. BMC Ecol Evo (2021) 21:120 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01851-4 RESEARCH ARTICLE Open Access Symbiosis of the millipede parasitic nematodes Rhigonematoidea and Thelastomatoidea with evolutionary diferent origins Seiya Nagae1, Kazuki Sato2, Tsutomu Tanabe3 and Koichi Hasegawa1* Abstract Background: How various host–parasite combinations have been established is an important question in evolution- ary biology. We have previously described two nematode species, Rhigonema naylae and Travassosinema claudiae, which are parasites of the xystodesmid millipede Parafontaria laminata in Aichi Prefecture, Japan. Rhigonema naylae belongs to the superfamily Rhigonematoidea, which exclusively consists of parasites of millipedes. T. claudiae belongs to the superfamily Thelastomatoidea, which includes a wide variety of species that parasitize many invertebrates. These nematodes were isolated together with a high prevalence; however, the phylogenetic, evolutionary, and eco- logical relationships between these two parasitic nematodes and between hosts and parasites are not well known. Results: We collected nine species (11 isolates) of xystodesmid millipedes from seven locations in Japan, and found that all species were co-infected with the parasitic nematodes Rhigonematoidea spp. and Thelastomatoidea spp. We found that the infection prevalence and population densities of Rhigonematoidea spp. were higher than those of Thelastomatoidea spp. However, the population densities of Rhigonematoidea spp. were not negatively afected by co-infection with Thelastomatoidea spp., suggesting that these parasites are not competitive. We also found a positive correlation between the prevalence of parasitic nematodes and host body size. In Rhigonematoidea spp., combina- tions of parasitic nematode groups and host genera seem to be fxed, suggesting the evolution of a more specialized interaction between Rhigonematoidea spp.
    [Show full text]
  • Changes in the Body Mass of Megaphyllum Kievense (Diplopoda, Julidae) and the Granulometric Composition of Leaf Litter Subject to Different Concentrations of Copper
    JOURNAL OF FOREST SCIENCE, 61, 2015 (9): 369–376 doi: 10.17221/36/2015-JFS Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper V. Brygadyrenko, V. Ivanyshyn Department of Zoology and Ecology, Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine ABSTRACT: This article discusses the results of a 30-day experiment investigating the influence of copper which was introduced into the natural diet of Megaphyllum kievense (Lohmander, 1928) at concentrations of 10–1, 10–2, 10–3, 10–4, 10–5, 10–6, 10–7 and 10–8 mg Cu·g–1 dry leaf litter upon the body mass of the species. With copper contamination at a concentration 10–1 mg Cu·g–1 leaf litter the gain in body mass of M. kievense decreased by 69.8% (from 2.45 ± 1.28 to 0.74 ± 1.73 mg/individual per month). With an enrichment of the food substrate to 10–2–10–7 mg Cu·g–1 litter the increase in body mass of the millipedes did not differ from the control value (it was 88–146% of the control). However, the gain in body mass for 10–8 mg Cu·g–1 dry leaf litter was twice higher than in the control. The results of the experiment do not permit us to claim that the food consumption of M. kievense changed in response to varying concentrations of copper in the litter samples. The mass of the largest litter fragments (> 2.05 mm) decreased by 8.5% as a result of consump- tion by M.
    [Show full text]
  • Apheloria Polychroma, a New Species of Millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1*
    Apheloria polychroma, a new species of millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1*, JACKSON C. MEANS1, DEREK A. HENNEN1 1Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, Virginia 24061, U.S.A. *Corresponding author, email: [email protected] Abstract Millipedes of the genus Apheloria occur in temperate broadleaf forests throughout eastern North America and west of the Mississippi River in the Ozark and Ouachita Mountains. Chemically defended with toxins made up of cyanide and benzaldehyde, the genus is part of a community of xystodesmid millipedes that compose several Müllerian mimicry rings in the Appalachian Mountains. We describe a model species of these mimicry rings, Apheloria polychroma n. sp., one of the most variable in coloration of all species of Diplopoda with more than six color morphs, each associated with a separate mimicry ring. Keywords: aposematic, Appalachian, Myriapoda, taxonomy, systematics Introduction Millipedes in the family Xystodesmidae are most diverse in the Appalachian Mountains where about half of the family’s species occur. In the New World, the family is distributed throughout eastern and western North America and south to El Salvador (Marek et al. 2014, Marek et al. 2017). Xystodesmidae occur in the Old World in the Mediterranean, the Russian Far East, Japan, western and eastern China, Taiwan and Vietnam. Taxa include species that are bioluminescent (genus Motyxia) and highly gregarious (genera Parafontaria and Pleuroloma); some form Müllerian mimicry rings. Despite their fascinating biology and critical ecological function as native decomposers in broadleaf deciduous forests in the U.S., their alpha-taxonomy is antiquated, and scores of new species remain undescribed.
    [Show full text]
  • 熊本大学学術リポジトリ Kumamoto University Repository System
    熊本大学学術リポジトリ Kumamoto University Repository System Title Complex Copulatory Behavior and the Proximate Effect of Genital and Body Size Differences on Mechani… Author(s) Tsutomu, Tanabe; Teiji, Sota Citation American Naturalist, 171(5): 692-699 Issue date 2008-05 Type Journal Article URL http://hdl.handle.net/2298/15449 Right © 2008 by The University of Chicago. vol. 171, no. 5 the american naturalist may 2008 ൴ Natural History Note Complex Copulatory Behavior and the Proximate Effect of Genital and Body Size Differences on Mechanical Reproductive Isolation in the Millipede Genus Parafontaria Tsutomu Tanabe1,* and Teiji Sota2,† 1. Faculty of Education, Kumamoto University, Kurokami, Arnqvist and Rowe 2005). Although diversified genital Kumamoto 860-8555, Japan; morphology can be involved in prezygotic reproductive 2. Department of Zoology, Graduate School of Science, Kyoto isolation between related species, the role of genitalia in University, Sakyo, Kyoto 606-8502, Japan reproductive isolation is not well understood (Coyne and Submitted August 5, 2007; Accepted December 10, 2007; Orr 2004). Species-specific differences in genital mor- Electronically published March 17, 2008 phology among related species have been considered ef- fective in preventing interspecific fertilization (Dufour Online enhancements: videos. 1844). Although there is little empirical evidence for this classic idea (Eberhard 1985, 1992; Shapiro and Porter 1989), the mechanical “lock and key” do function as a partial mechanism of reproductive isolation in parapatric abstract: The role of species-specific genitalia in reproductive iso- species that lack effective premating isolation (Sota and lation is unclear. Males of the millipede genus Parafontaria use gon- Kubota 1998; reviewed in Coyne and Orr 2004).
    [Show full text]
  • Genetic Diversity of Populations of a Southern African Millipede, Bicoxidens Flavicollis (Diplopoda, Spirostreptida, Spirostreptidae)
    Genetic diversity of populations of a Southern African millipede, Bicoxidens flavicollis (Diplopoda, Spirostreptida, Spirostreptidae) by Yevette Gounden 212502571 Submitted in fulfillment of the academic requirements for the degree of Master of Science (Genetics) School of Life Sciences, University of KwaZulu-Natal Westville campus November 2018 As the candidate’s supervisor I have/have not approved this thesis/dissertation for submission. Signed: _____________ Name: _____________ Date: _____________ ABSTRACT The African millipede genus Bicoxidens is endemic to Southern Africa, inhabiting a variety of regions ranging from woodlands to forests. Nine species are known within the genus but Bicoxidens flavicollis is the most dominant and wide spread species found across Zimbabwe. Bicoxidens flavicollis individuals have been found to express phenotypic variation in several morphological traits. The most commonly observed body colours are brown and black. In the Eastern Highlands of Zimbabwe body colour ranges from orange- yellow to black, individuals from North East of Harare have a green-black appearance and a range in size (75–110 mm). There is disparity in body size which has been noted with individuals ranging from medium to large and displaying variation in the number of body rings. Although much morphological variation has been observed within this species, characterization based on gonopod morphology alone cannot distinguish or define variation between phenotypically distinct individuals. Morphological classification has been found to be too inclusive and hiding significant genetic variation. Taxa must be re-assessed with the implementation of DNA molecular methods to identify the variation between individuals. This study aimed to detect genetic divergence of B. flavicollis due to isolation by distance of populations across Zimbabwe.
    [Show full text]
  • Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis
    Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Monica A. Farfan, B.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2010 Thesis Committee: Hans Klompen, Advisor John W. Wenzel Andrew Michel Copyright by Monica A. Farfan 2010 Abstract The focus of this thesis is the ecology of invasive millipedes (Diplopoda) in the family Julidae. This particular group of millipedes are thought to be introduced into North America from Europe and are now widely found in many urban, anthropogenic habitats in the U.S. Why are these animals such effective colonizers and why do they seem to be mostly present in anthropogenic habitats? In a review of the literature addressing the role of millipedes in nutrient cycling, the interactions of millipedes and communities of fungi and bacteria are discussed. The presence of millipedes stimulates fungal growth while fungal hyphae and bacteria positively effect feeding intensity and nutrient assimilation efficiency in millipedes. Millipedes may also utilize enzymes from these organisms. In a continuation of the study of the ecology of the family Julidae, a comparative study was completed on mites associated with millipedes in the family Julidae in eastern North America and the United Kingdom. The goals of this study were: 1. To establish what mites are present on these millipedes in North America 2. To see if this fauna is the same as in Europe 3. To examine host association patterns looking specifically for host or habitat specificity.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • 11Th International Congress of Myriapodology, Białowieża, Poland, July 20-24, 1999
    tglafowiexA 2 0 - 24^ul{| 1999 1999 http://rcin.org.pl FRAGMENTA FAUNISTICA An International Journal of Faunology Warsaw FRAGMENTA FAUNISTICA is a specialist journal published by the Museum and Institute of Zoology of the Polish Academy of Sciences. The journal, first published in 1930, appered under the title Fragmenta Faunistica Musei Zoologici Polonici until 1953. Now the journal is issued as a semi-annual and publishes the papers devoted to knowing fauna, its differentiation, distribution and transformation. These are the results of oiyginal studies, review articles and syntheses dealing with faunology and related sciences as zoogeography or zoocenology. By way of exchange, FRAGMENTA FAUNISTICA is sent to over 350 institutions in 80 countries. It has been cited in the Zoological Record, Biological Abstracts. Biosis, Pascal Thiema and Referativnyj Zhurnal and indexed by Polish Scientific Journal Contents - AGRIC.&BIOL.SCI. available through INTERNET under WWW address: http://saturn.ci.uw.edu.pl/psjc Editorial Office: Muzeum i Instytut Zoologii Polskiej Akademii Nauk (Museum and Institute of Zoology of Polish Academy of Sciences) Wilcza 64, 00-679 Warszawa Editor-in Chief: Prof. Dr. Regina Pisarska Editorial Secretary:Dr. Jolanta Wytwer Editorial Board:Dr. Elżbieta Chudzicka, Dr. Waldemar Mikoląjczyk, Dr. Irmina Pomianowska-Pilipiuk, Dr. Ewa Skibińska, Dr. Maria Sterzyńska Advisory Board: Prof. Dr. Józef Banaszak (Bydgoszcz) Prof. Dr. Sędzimir Klimaszewski (Katowice) Prof. Dr. Czeslaw Blaszak (Poznań) Prof. Dr. Andrzej Leśniak (Kielce) Dr. Wiesław Bogdanowicz (Warszawa) Prof. Dr. Wojciech Niedbała (Poznań) Dr. Thomas Bolger (Dublin) Dr. Bogusław Petryszak (Kraków) 1 Prof. Dr. Michał Brzeski](Skierniewice) Prof. Dr. Adolf Riedel (Warszawa) Prof. Dr. Jarosław Buszko (Toruń) Dr.
    [Show full text]
  • Apheloria Polychroma, a New Species of Millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae)
    Zootaxa 4375 (3): 409–425 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4375.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:10892E3E-B6E5-4118-8E15-CA1B10ADCCA9 Apheloria polychroma, a new species of millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1,2, JACKSON C. MEANS1 & DEREK A. HENNEN1 1Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, Virginia 24061, U.S.A. 1Corresponding author. E-mail: [email protected] Abstract Millipedes of the genus Apheloria Chamberlin, 1921 occur in temperate broadleaf forests throughout eastern North Amer- ica and west of the Mississippi River in the Ozark and Ouachita Mountains. Chemically defended with toxins made up of cyanide and benzaldehyde, the genus is part of a community of xystodesmid millipedes that compose several Müllerian mimicry rings in the Appalachian Mountains. We describe a model species of these mimicry rings, Apheloria polychroma n. sp., one of the most variable in coloration of all species of Diplopoda with more than six color morphs, each associated with a separate mimicry ring. Keywords: aposematic, Appalachian, Myriapoda, taxonomy, systematics Introduction Millipedes in the family Xystodesmidae are most diverse in the Appalachian Mountains where about half of the family’s species occur. In the New World, the family is distributed throughout eastern and western North America and south to El Salvador (Marek et al. 2014, Marek et al. 2017). Xystodesmidae occur in the Old World in the Mediterranean, the Russian Far East, Japan, western and eastern China, Taiwan and Vietnam.
    [Show full text]
  • On Mass Migrations in Millipedes Based on A
    ZOOLOGICAL RESEARCH New observations - with older ones reviewed - on mass migrations in millipedes based on a recent outbreak on Hachijojima (Izu Islands) of the polydesmid diplopod (Chamberlinius hualienensis, Wang 1956): Nothing appears to make much sense Victor Benno MEYER-ROCHOW1,2,* 1 Research Institute of Luminous Organisms, Hachijo, 2749 Nakanogo (Hachijojima), Tokyo, 100-1623, Japan 2 Department of Biology (Eläinmuseo), University of Oulu, SF-90014 Oulu, P.O. Box 3000, Finland ABSTRACT individuals occurring together at close proximity. It is concluded that mass migrations and aggregations in Mass aggregations and migrations of millipedes millipedes do not have one common cause, but despite numerous attempts to find causes for their represent phenomena that often are seasonally occurrences are still an enigma. They have been recurring events and appear identical in their reported from both southern and northern outcome, but which have evolved as responses to hemisphere countries, from highlands and lowlands different causes in different millipede taxa and of both tropical and temperate regions and they can therefore need to be examined on a case-to-case involve species belonging to the orders Julida and basis. Spirobolida, Polydesmida and Glomerida. According Keywords: Myriapoda; Spawning migration; Aggregation to the main suggestions put forward in the past, 1 mass occurrences in Diplopoda occur: (1) because behaviour; Diplopod commensals and parasites of a lack of food and a population increase beyond sustainable levels; (2) for the purpose of INTRODUCTION reproduction and in order to locate suitable oviposition sites; (3) to find overwintering or Mass aggregations of millipedes are not a recent phenomenon aestivation sites; (4) because of habitat disruption (Hopkin & Read, 1992).
    [Show full text]
  • Interspecific Interactions Between Native and Non-Native Forest Floor Detritivores and Temperature: Implications for Ecosystem Functioning
    INTERSPECIFIC INTERACTIONS BETWEEN NATIVE AND NON-NATIVE FOREST FLOOR DETRITIVORES AND TEMPERATURE: IMPLICATIONS FOR ECOSYSTEM FUNCTIONING Eric A. Moore A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Shannon Pelini, Advisor Paul Moore Michael Weintraub ii ABSTRACT Shannon Pelini, Advisor Macroinvertebrate detritivores directly and indirectly affect ecosystem processes and nutrient cycling, but the effects of detritivore interactions on ecosystem processes remain poorly understood. Furthermore, mounting evidence emphasizes the importance of understanding the effects and implications of environmental disturbance on interactions between soil organisms, including invasive species and climate change. In this study, we asked: Is there evidence of competitive or complementary interactions between a native detritivore and two non-native detritivores? Additionally, can detritivore species-specific and interspecific interaction effects on soil ecosystem processes and microbial activity, be moderated by temperature? To answer these questions, we performed a mesocosm experiment which included three detritivore species, a millipede native to North America (N. americanus) and two introduced earthworm species (L. rubellus and L. terrestris). We fully replicated a Simplex mixture design using these species under two temperature treatments, ambient and warmed 3.3°C. We expected to observe species-specific and complementary effects of the study organisms due to differences in functional traits. Furthermore, we anticipated that temperature would alter species interactions, and warming would exert a disproportionately greater negative effect on surface dwelling millipedes. Overall, we expected invasive earthworm effects to overwhelm the effects of millipede presence. An interaction between L.
    [Show full text]
  • JOURNAL of NEMATOLOGY Four Pristionchus Species Associated
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-115 e2020-115 | Vol. 52 Four Pristionchus species associated with two mass-occurring Parafontaria laminata populations Natsumi Kanzaki1,*, Minami Ozawa2, 2 3 Yuko Ota and Yousuke Degawa Abstract 1Kansai Research Center, Forestry and Forest Products Research Phoretic nematodes associated with two mass-occurring populations Institute, 68 Nagaikyutaroh, of the millipede Parafontaria laminata were examined, focusing on Momoyama, Fushimi, Kyoto Pristionchus spp. The nematodes that propagated on dissected 612-0855, Japan. millipedes were genotyped using the D2-D3 expansion segments of the 28S ribosomal RNA gene. Four Pristionchus spp. were detected: 2College of Bioresource Sciences, P. degawai, P. laevicollis, P. fukushimae, and P. entomophagus. Of the Nihon University, Fujisawa, four, P. degawai dominated and it was isolated from more than 90% Kanagawa 252-0880, Japan. of the millipedes examined. The haplotypes of partial sequences 3Sugadaira Research Station, of mitochondrial cytochrome oxidase subunit I examined for Mountain Science Center, Pristionchus spp. and P. degawai showed high haplotype diversity. University of Tsukuba, 1278-294 Sugadairakogen, Ueda, Nagano Keywords 386-2204, Japan. Ecology, Genotyping, Millipede, Parafontaria laminata, Phorecy, *E-mail: [email protected] Pristionchus. This paper was edited by Ralf J. Sommer. Received for publication September 9, 2020. The genus Pristionchus (Kreis, 1932) is a satellite from relatively nutrient-rich substrates in European model system in many different fields of biology countries, partially because the taxonomy of (Sommer, 2015). The flagship speciesP . pacificus Pristionchus has not been conducted in other areas (Sommer et al., 1996) is used to study phenotypic of the world (e.g., Herrmann et al., 2015; Ragsdale plasticity, kin recognition, and chemical biology et al., 2015).
    [Show full text]