West Coast Prawn Penaeus (Melicertus) Latisulcatus Fishery 2012–13

Total Page:16

File Type:pdf, Size:1020Kb

West Coast Prawn Penaeus (Melicertus) Latisulcatus Fishery 2012–13 West Coast Prawn Penaeus (Melicertus) latisulcatus Fishery 2012–13 C.L. Beckmann, G. E. Hooper and C. J. Noell SARDI Publication No. F2007/000772-6 SARDI Research Report Series No. 808 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 November 2014 Fishery Assessment Report to PIRSA Fisheries and Aquaculture Beckmann et al., (2014) West Coast Prawn Fishery 2012–13 West Coast Prawn Penaeus (Melicertus) latisulcatus Fishery 2012–13 Fishery Assessment Report to PIRSA Fisheries and Aquaculture C. L. Beckmann, G. E. Hooper and C. J. Noell SARDI Publication No. F2007/000772-6 SARDI Research Report Series No. 808 November 2014 II Beckmann et al., (2014) West Coast Prawn Fishery 2012–13 This publication may be cited as: Beckmann, C. L., Hooper, G. E. and Noell, C. J. (2014). West Coast Prawn Penaeus (Melicertus) latisulcatus Fishery 2012–13. Fishery Assessment Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2007/000772-6. SARDI Research Report Series No. 808. 76pp. Front cover photo: West Coast Survey, March 2007 (Shane Roberts) South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. The SARDI Report Series is an Administrative Report Series which has not been reviewed outside the department and is not considered peer-reviewed literature. Material presented in these Administrative Reports may later be published in formal peer-reviewed scientific literature. © 2014 SARDI This work is copyright. Apart from any use as permitted under the Copyright Act 1968 (Cth), no part may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any form whatsoever without such permission. Printed in Adelaide: November 2014 SARDI Publication No. F2007/000772-6 SARDI Research Report Series No. 808 Author(s): C. L. Beckmann, G. E. Hooper and C. J. Noell Reviewer(s): G. Fergusson, P. Rogers (SARDI), and B. Milic (PIRSA) Approved by: S. Mayfield Science Leader - Fisheries Signed: Date: 14 November 2014 Distribution: PIRSA Fisheries and Aquaculture, SAASC Library, University of Adelaide Library, Parliamentary Library, State Library and National Library Circulation: Public Domain III Beckmann et al., (2014) West Coast Prawn Fishery 2012–13 TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................... V LIST OF TABLES .............................................................................................................. VIII ACKNOWLEDGEMENTS .................................................................................................... IX EXECUTIVE SUMMARY ...................................................................................................... 1 1. INTRODUCTION .............................................................................................................. 2 1.1. Overview ...................................................................................................................................... 2 1.2. Description of the fishery.............................................................................................................. 3 1.3. Management of the fishery ........................................................................................................ 10 1.4. Biology of the western king prawn ............................................................................................. 13 1.5. Previous fishery assessments ................................................................................................... 27 1.6. Research program ..................................................................................................................... 28 1.7. Information used for assessment ............................................................................................... 28 2. METHODS ...................................................................................................................... 29 2.1. Stock assessment surveys ........................................................................................................ 29 2.2. Catch and effort statistics ........................................................................................................... 31 2.3. Environmental variables ............................................................................................................. 34 2.4. Performance indicators .............................................................................................................. 34 2.5. Quality assurance of data .......................................................................................................... 35 3. RESULTS ....................................................................................................................... 37 3.1. Stock Assessment Surveys........................................................................................................ 37 3.2. Catch and effort statistics ........................................................................................................... 43 3.3. Environmental variables ............................................................................................................. 52 3.4. Fishery performance .................................................................................................................. 54 4. DISCUSSION .................................................................................................................. 59 4.1. Current status of the West Coast Prawn Fishery ....................................................................... 59 4.2. Harvest strategy for the WCPF .................................................................................................. 60 4.3. Future research needs ............................................................................................................... 64 5. REFERENCES ............................................................................................................... 65 6. APPENDIX ..................................................................................................................... 72 IV Beckmann et al., (2014) West Coast Prawn Fishery 2012–13 LIST OF FIGURES Figure 1.1 Location of South Australia’s three commercial prawn fisheries. .......................................... 3 Figure 1.2 Upper panel: A schematic of some key circulation features for winter in the Great Australian Bight. The Leeuwin Current (LC), Leeuwin Undercurrent (LUC), Flinders Current (FC) and shelf-edge South Australian Current (SA Current) are show. Dense salty water is downwelled from the Gulfs. Lower panel: summertime circulation and upwelling occurs of Kangraroo Island and the Bonney Coast. Shelf-edge downwelling may occur in the western GAB. Figure adapted from Middleton and Bye (2007). ................................................................... 4 Figure 1.3 Mean monthly sea surface temperatures for the South Australian and Western Australian (WA) prawn fisheries that target western king prawn. .................................................................... 5 Figure 1.4 Sea surface temperatures (ºC) of the continental shelf and gulf waters of South Australia during January 2012. Source: Physical Oceanography Distributed Active Archive Center (NASA, 2013) ............................................................................................................................................... 6 Figure 1.5 Important juvenile nursery habitat, mangrove forest and tidal flats, around the West Coast. ........................................................................................................................................................ 7 Figure 1.6 Double rig trawl gear and location of hopper sorting and prawn grading systems used in the WCPF. Figure from Carrick (2003). .......................................................................................... 9 Figure 1.7 Trawl net configuration showing trawl boards, head rope, ground chain and cod end with crab bag. Figure from Carrick (2003). ............................................................................................. 9 Figure 1.8 Logistic relationship between carapace length and sexual maturity for female western king prawns in Spencer Gulf. Source: Noell et al., (2013). ................................................................... 15 Figure 1.9 Relationship between carapace length and fecundity for female western king prawns in Gulf St Vincent (GSV) and Shark Bay, Western Australia (WA). Source: Noell et al., (2013). .... 15 Figure 1.10 Life cycle of a penaeid prawn. Source: Kailola et al., (1993). ..........................................
Recommended publications
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • IDENTIFICATION and TAXONOMIC STUDY of SHRIMPS in BARDAWIL LAGOON, NORTH SINAI, EGYPT Samar A
    SINAI Journal of Applied Sciences 10 (1) 2021 039-046 Available online at www.sinjas.journals.ekb.eg SINAI Journal of Applied Sciences Print ISSN 2314-6079 Online ISSN 2682-3527 IDENTIFICATION AND TAXONOMIC STUDY OF SHRIMPS IN BARDAWIL LAGOON, NORTH SINAI, EGYPT Samar A. Amin1*, G.D.I. Hassanen2 and M.S. Ahmed3 1. Post-Grad. Stud., Dept. Fish Res., Fac. Environ. Agric. Sci., Arish Univ., Egypt. 2. Dept. Fish Res., Fac. Environ. Agric. Sci., Arish Univ., Egypt. 3. Fac. Aquacul. and Marine Fisheries, Arish Univ., Egypt. ARTICLE INFO ABSTRACT Article history: Taxonomic study of shrimp on the Bardawil lagoon, were studied in Received: 14/03/2021 specimens of shrimp collected from Bardawil lagoon fishers from Seasonal Revised: 19/03/2021 occurrence of shrimp During, 2019. Identification of species was based on the Accepted: 01/04/2021 morphological characters of rostrum (dorsal and ventral teeth), remarks of Available online: 13/04/2021 carapace, antenna, sub apical spines on telson and the colored pattern of the Keywords: whole body based on standard keys and diagnoses available from the current Species, literature. Modified Key identify shrimp species from Bardawil lagoon, was Shrimps, prepared after morphometric analysis. A total of 5 species from belong to Taxonomic, three genus; Penaeus, Melicertus and Metapenaeus. Among these, two Bardawil lagoon species belong to the genus Penaeus (Penaeus semisulcatus (De Haan, 1844) and Penaeus (Marsupenaeus) japonicas (Bate, 1888). The species which taken from genus Metapenaeus namely Metapenaeus stebbingi (Nobili, 1904) and Metapenaeus monoceros. (Fabricus, 1798), One species belong to the genus Melicertus kerathurus. (Forskål, 1775). Additional research is needed Check for to more clearly define the distribution of shrimp species in Bardawil lagoon.
    [Show full text]
  • Spencer Gulf Prawn Penaeus (Melicertus) Latisulcatus Fishery
    Spencer Gulf Prawn Penaeus (Melicertus) latisulcatus Fishery C. J. Noell and G. E. Hooper SARDI Publication No. F2007/000770-10 SARDI Research Report Series No. 1029 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 August 2019 Fishery Assessment Report to PIRSA Fisheries and Aquaculture Noell, C. J. and Hooper, G. E. (2019) Spencer Gulf Prawn Fishery Assessment Report Spencer Gulf Prawn Penaeus (Melicertus) latisulcatus Fishery Fishery Assessment Report to PIRSA Fisheries and Aquaculture C. J. Noell and G. E. Hooper SARDI Publication No. F2007/000770-10 SARDI Research Report Series No. 1029 August 2019 II Noell, C. J. and Hooper, G. E. (2019) Spencer Gulf Prawn Fishery Assessment Report This publication may be cited as: Noell, C. J. and Hooper, G. E. (2019). Spencer Gulf Prawn Penaeus (Melicertus) latisulcatus Fishery. Fishery Assessment Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2007/000770-10. SARDI Research Report Series No. 1029. 60pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5415 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Director, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability and currency or otherwise.
    [Show full text]
  • (Melicertus) Kerathurus in Amvrakikos Gulf, Western Greece
    ISSN: 0001-5113 ACTA ADRIAT., UDC: 595.384.1: 591.16 (262.2) (495-15) AADRAY 49(2): 97 - 106, 2008 Study of the reproduction of the Karamote shrimp Peneaus (Melicertus) kerathurus in Amvrakikos Gulf, western Greece Alexis CONIDES1, Branko GLAMUZINA2, jakov dulČIĆ3*, kostas kapIrIs1, jurica juG-dujakovIĆ4 and Costas PAPACONSTANTINOU1 1Hellenic Centre for Marine Research, Kampani 12, GR-112 52 Athens, Greece e-mail: [email protected]; [email protected] 2 Aquaculture Department, University of Dubrovnik, Ćira Carića 4, 20 000 Dubrovnik, Croatia e-mail: [email protected] 3Institute of Oceanography and Fisheries, P.O. Box 500, 21 000 Split, Croatia *Corresponding author, e-mail: [email protected] 4Research and Development Center for Mariculture, Bistrina b.b., 20 230 Ston, Croatia e-mail: [email protected] The reproduction of the karamote prawn, Penaeus (Melicertus) kerathurus (Forskål 1775), was studied for the native population in Amvrakikos Gulf (Ionian Sea; western Greece). Sampling was carried out on a monthly basis between June 1999 and May 2001. The results showed that the shrimp Penaeus (Melicertus) kerathurus reproduction period spans between late April and late September. The size-at-maturity was estimated at a size of 45.23 mm carapace length (or 156.2 mm in total length). The smallest mature female in the samples was found to have 30 mm CL or 113.95 mm TL. Maximum gonadosomatic index (GSI) was estimated to be 9.62% for female shrimps at stage IV gonad maturity stage. The population gonadosomatic index peaks in May with an average value of 6.895%. Potential fecundity was estimated to be 154600 of oocytes per g of gonad tissue at the stage IV (mature female).
    [Show full text]
  • HCMR TEYXOS 5 Ergasia
    Research Article Mediterranean Marine Science Volume 10/1, 2009, 25-34 Studies on the allometric growth of the caramote prawn Melicertus kerathurus (Decapoda, Penaeidae) in Western Greece (E. Mediterranean) K. KAPIRIS and A. CONIDES Hellenic Centre for Marine Research, Institute of Marine Biological Resources, 47o km Athens-Sounio, Mavro Lithari P.O. Box 712, 19013, Anavissos, Attica, Greece e-mail: [email protected] Abstract The relative growth of eleven body parts (carapace length, height, width, abdominal length, height and width, rostral length and telson length) of males and females of the caramote prawn Melicertus kerathurus was studied in samples from the Amvrakikos Gulf (Western Greece, E. Mediterranean). In addition to this, the relative growth of the length and the maximum width – and consequently the surface - of the appendix masculina of males was also studied. In general, both sexes showed similar patterns of relative growth. How- ever, the females’ body appendages were significantly greater than those of the males. A negative allometry of escaping appendages (telson), abdomen (related to the metabolic processes, rapid locomotion and repro- duction), rostrum, appendix masculina (related to mating and sperm transfer) and carapace height and width was found in both sexes. The biometric studies in this species in the central and western Mediterranean are in agreement with those from the eastern part of the basin, suggesting that all the populations through- out the Mediterranean could be considered as uniform. Keywords: Caramote
    [Show full text]
  • UNEP-MAP RAC/SPA 2010. the Mediterranean Sea Biodiversity: State of the Ecosystems, Pressures, Impacts and Future Priorities
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts and future priorities A September, 2010 CA D C Note: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP or RAC/SPA concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. ©2010 United Nations Environment Programme (UNEP) Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat BP 337 –1080 Tunis Cedex –TUNISIA E-mail : [email protected] This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP-MAP-RAC/SPA would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication maybe made for resale of for another commercial purpose what over without permission in writing from UNEP-MAP-RAC/SPA. This report should be quoted as: UNEP-MAP RAC/SPA 2010. The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts and future priorities. By Bazairi, H., Ben Haj, S., Boero, F., Cebrian, D., De Juan, S., Limam, A., Lleonart, J., Torchia, G., and Rais, C., Ed. RAC/SPA, Tunis; 100 pages. © Art drawings by Alberto Gennari CONTENTS INTRODUCTORY NOTE ....................................................................................................................................
    [Show full text]
  • С. S. R a F I N E S Q U E a S a C a R C I N O L O G I S T , a N a N N O T a T E D C O M P I L a T I O N O F T H E I N F O R
    С. S. RAFINESQUE AS A CARCINOLOGIST, AN ANNOTATED COMPILATION OF THE INFORMATION ON CRUSTACEA CONTAINED IN THE WORKS OF THAT AUTHOR by L. B. HOLTHUIS I. INTRODUCTION In the last tens of years more and more attention has been paid to the much neglected and ignored publications written by the eccentric early American naturalist Constantine Samuel Rafinesque. Until now, however, Rafinesque's work in the field of carcinology has received but little attention from modern authors. In 1905 Ortmann (1905, p. 107) pointed out that the name Astacus limosus Rafinesque, 1817, is older than the name Astacus affinis Say, 1817, for the same species, and that consequently the former name has to be used. In the same year Richardson (1905, p. 10) replaced the invalid generic name Ligia Fabricius, 1798, by Ligyda Rafinesque, 1815. M. J. Rathbun (1937, p. 63) substituted the generic name Thelxiope Rafi- nesque, 1814, for the name Homola Leach, 1815. Finally, in 1949 Hubricht & Mackin (1949, p. 334) dropped the generic name Mancasellus Harger, 1876, in favour of Lirceus Rafinesque, 1820, at the same time changing the species name Mancasellus macrourus Garman, 1890, to Lirceus fontinalis Rafinesque, 1820. I know of no other names given by Rafinesque to Crus- tacea that have been adopted by modern authors, though many of the names given by him to genera and species of that group antedate names which now are currently in use. Since the acceptance of most of Rafinesque's valid generic and specific names would greatly upset the stability of carcinological nomenclature, the present author has submitted to the International Com- mission on Zoological Nomenclature a proposal in which is asked the suppression of those of Rafinesque's Decapod and Stomatopod names that might cause undesirable nomenclatorial confusion.
    [Show full text]
  • First Record of the Northern Brown Shrimp Penaeus Aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) from Libyan Waters
    BioInvasions Records (2021) Volume 10, Issue 2: 287–294 CORRECTED PROOF Rapid Communication First record of the northern brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) from Libyan waters Abdulrraziq A. Abdulrraziq1, Abdulghani Abdulghani2, Sami M. Ibrahim1, Bruno Zava3,4 and Alan Deidun5,* 1Department of Biology, Faculty of Education, Tobruk University, Libya 2Department of Marine Resources, Omar Al-Moukhtar University, El Bayda, Libya 3Wilderness studi ambientali, via Cruillas 27, 90146 Palermo, Italy 4Museo Civico di Storia Naturale, via degli Studi 9, 97013 Comiso (RG), Italy 5Department of Geosciences, University of Malta, Msida MSD 2080, Malta *Corresponding author E-mail: [email protected] Citation: Abdulrraziq AA, Abdulghani A, Ibrahim SM, Zava B, Deidun A (2021) Abstract First record of the northern brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, The first record of the northern brown shrimp, Penaeus aztecus Ives, 1891, from Decapoda, Penaeidae) from Libyan waters. Libyan nearshore waters is hereby documented. Thirteen individuals of the species BioInvasions Records 10(2): 287–294, were caught by artisanal fishers using a mixture of gill and trammel nets in https://doi.org/10.3391/bir.2021.10.2.06 September 2020 within the Umm-Hufayn Lagoon. This lagoon is situated within Received: 13 October 2020 the Gulf of Bomba along the Libyan Cyrenaica coast, and this discovery extends Accepted: 26 February 2021 the known Mediterranean distribution of this western Atlantic species. Published: 31 March 2021 Key words: allochthonous species, southern Mediterranean, artisanal fishers, lagoon Handling editor: Agnese Marchini Thematic editor: Amy Fowler Copyright: © Abdulrraziq et al. Introduction This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0).
    [Show full text]
  • DNA Barcoding of Marine Metazoa
    MA03CH18-Bucklin ARI 9 August 2010 20:58 V I E E W R S I E N C N A D V A DNA Barcoding of Marine Metazoa Ann Bucklin,1 Dirk Steinke,2 and Leocadio Blanco-Bercial3 1Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340; email: [email protected] 2Biodiversity Institute of Ontario, University of Guelph, Ontario, N1G 2W1 Canada; email: [email protected] 3Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340; email: [email protected] Annu. Rev. Mar. Sci. 2011. 3:18.1–18.38 Key Words The Annual Review of Marine Science is online at DNA barcode, marine biodiversity, taxonomy, species identification, marine.annualreviews.org mitochondrial DNA This article’s doi: 10.1146/annurev-marine-120308-080950 Abstract Copyright c 2011 by Annual Reviews. More than 230,000 known species representing 31 metazoan phyla populate All rights reserved the world’s oceans. Perhaps another 1,000,000 or more species remain to 1941-1405/11/0115-0001$20.00 be discovered. There is reason for concern that species extinctions may out- pace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recogni- tion and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review fo- cuses on the usual barcode region for metazoans: a ∼648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, foren- sics, and seafood safety.
    [Show full text]
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H.!J.!M. Fransen9, Laura Y.!D. Goulding1, Rafael Lemaitre10, Martyn E.!Y. Low11, Joel W. Martin2, Peter K.!L. Ng11, Carrie E. Schweitzer12, S.!H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected][email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected][email protected][email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P.!O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected][email protected][email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Diet Composition of the Penaeid Shrimp, Melicertus Kerathurus (Forskål, 1775) (Decapoda, Penaeidae) in the Aegean Sea
    DIET COMPOSITION OF THE PENAEID SHRIMP, MELICERTUS KERATHURUS (FORSKÅL, 1775) (DECAPODA, PENAEIDAE) IN THE AEGEAN SEA BY I. KARANI1,2), M.-S. KITSOS1),N.CHARTOSIA1) and A. KOUKOURAS1) 1) Department of Zoology, School of Biology, Aristoteleio University of Thessaloniki, GR-541 24 Thessaloniki, Greece ABSTRACT The diet composition of adult and juvenile individuals of the penaeid shrimp, Melicertus kerathurus was determined, based on the analysis of 145 and 48 specimens, respectively, collected off and inside Pinios estuary (N.W. Aegean Sea). The adult individuals displayed a diversified diet, mainly based on Mollusca, Crustacea, and Polychaeta. The diet of the juvenile individuals is also diverse, with Crustacea being the most dominant prey category. Feeding activity of the juvenile M. kerathurus, which are also active predators, seems to be higher than that of the adults. Multidimensional analyses demonstrated that the diets of the juvenile and adult individuals were significantly different. This should probably be attributed to corresponding differences in the composition of the benthic assemblages of the open sea (adult individuals) and inside Pinios estuary (juveniles), as well as to developmental differences between the adults and the juveniles that affect their feeding behaviour. RÉSUMÉ Le régime alimentaire des adultes et des juvéniles de la crevette pénéide Melicertus kerathurus a été établi à partir de 145 et 48 spécimens provenant, respectivement, du large et de l’intérieur de l’estuaire de Pinios (partie nord-ouest de la mer Egée). Les adultes ont montré un régime alimentaire diversifié, contenant principalement des mol- lusques, des crustacés et des polychètes. Le régime alimentaire des juvéniles est également diver- sifié, les crustacés étant la catégorie dominante de proies.
    [Show full text]
  • Decapod Crustacean Phylogenetics
    CRUSTACEAN ISSUES ] 3 II %. m Decapod Crustacean Phylogenetics edited by Joel W. Martin, Keith A. Crandall, and Darryl L. Felder £\ CRC Press J Taylor & Francis Group Decapod Crustacean Phylogenetics Edited by Joel W. Martin Natural History Museum of L. A. County Los Angeles, California, U.S.A. KeithA.Crandall Brigham Young University Provo,Utah,U.S.A. Darryl L. Felder University of Louisiana Lafayette, Louisiana, U. S. A. CRC Press is an imprint of the Taylor & Francis Croup, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, Fl. 33487 2742 <r) 2009 by Taylor & Francis Group, I.I.G CRC Press is an imprint of 'Taylor & Francis Group, an In forma business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 109 8765 43 21 International Standard Book Number-13: 978-1-4200-9258-5 (Hardcover) Ibis book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid­ ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Faw, no part of this book maybe reprinted, reproduced, transmitted, or uti­ lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy­ ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]