Reproductive Biology of the Western King Prawn Penaeus (Melicertus) Latisulcatus (Kishinouye 1896) in Spencer Gulf and Gulf St Vincent, South Australia

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Biology of the Western King Prawn Penaeus (Melicertus) Latisulcatus (Kishinouye 1896) in Spencer Gulf and Gulf St Vincent, South Australia Reproductive biology of the western king prawn Penaeus (Melicertus) latisulcatus (Kishinouye 1896) in Spencer Gulf and Gulf St Vincent, South Australia Nadine Emily Hackett B. Science., Hons. Marine Biology A thesis submitted in fulfilment for the degree of Doctor of Philosophy School of Biological Sciences Faculty of Science and Engineering Flinders University of South Australia March 2017 Table of Contents Summary ............................................................................................................................... i Declaration .......................................................................................................................... iii Acknowledgements ............................................................................................................. iv Chapter 1: General Introduction 1.1 Diversity of life history strategies among marine invertebrates .................................... 6 1.2 Reproduction and general biology of penaeids ............................................................ 8 1.3 Biology of Penaeus (Melicertus) latisulcatus (Kishinouye 1896) ................................ 11 1.4 Environmental variation and reproductive strategies.................................................. 12 1.5 Thesis scope and outline ............................................................................................ 13 Part 1: Ovarian stages Chapter 2: Microscopic analysis of ovarian stages of the western king prawn Penaeus (Melicertus) latisulcatus (Kishinouye 1896) 2.1 Abstract ....................................................................................................................... 15 2.2 Introduction ................................................................................................................. 15 2.3 Materials and methods ............................................................................................... 16 2.3.1 Sample collection ................................................................................................. 16 2.3.2 Fixation and histological analysis of specimens .................................................. 17 2.4 Results ........................................................................................................................ 18 2.4.1 Histological stages ............................................................................................... 18 2.5 Discussion ................................................................................................................... 26 Chapter 3: Postovulatory follicles in a penaeid prawn: detection and histological classification of degeneration 3.1 Abstract ....................................................................................................................... 27 3.2 Introduction ................................................................................................................. 27 3.3 Materials and methods ............................................................................................... 30 3.3.1 Collection of P. latisulcatus .................................................................................. 30 3.3.2 Laboratory based experiments ............................................................................ 31 3.3.3 Histological analysis of ovaries ............................................................................ 34 3.3.4 Data analysis ....................................................................................................... 35 3.4 Results ........................................................................................................................ 35 3.4.1 Relationship between carapace length and ovary weight ................................... 35 3.4.2 Description of histological change in POF degeneration ..................................... 36 3.5 Discussion ................................................................................................................... 45 Chapter 4: Validity of visual determination of ovary development stages of the western king prawn Penaeus (Melicertus) latisulcatus (Kishinouye 1896) 4.1 Abstract ....................................................................................................................... 48 4.2 Introduction ................................................................................................................. 48 4.3 Materials and methods ............................................................................................... 52 4.3.1 Sample collection and macroscopic staging ....................................................... 52 4.3.2 Comparison of macroscopic and microscopic staging ........................................ 52 4.4 Results ........................................................................................................................ 53 4.4.1 Comparison between macroscopic and microscopic staging.............................. 53 4.4.2 Individual observer-validation .............................................................................. 54 4.5 Discussion ................................................................................................................... 57 Part II Reproductive biology Chapter 5 Reproductive biology of the western king prawn (Penaeus (Melicertus) latisulcatus Kishinouye, 1896) in a temperate environment 5.1 Abstract ....................................................................................................................... 61 5.2 Introduction ................................................................................................................. 61 5.3 Materials and methods ............................................................................................... 66 5.3.1 Sample collection ................................................................................................. 66 5.3.2 Histological determination of ovarian maturity stage ........................................... 69 5.3.3 Reproductive analyses ........................................................................................ 69 5.3.4 Data analysis ....................................................................................................... 70 5.4 Results ........................................................................................................................ 70 5.4.1 Length – weight relationship ................................................................................ 70 5.4.2 Gonadosomatic index and fecundity ................................................................... 72 5.4.3 Physiological maturity .......................................................................................... 73 5.4.4 Insemination rates ............................................................................................... 74 5.4.5 Percent ripe ......................................................................................................... 74 5.4.6 Histological validation of ovarian stage ............................................................... 78 5.5 Discussion ................................................................................................................... 79 5.5.1 Total length - weight relationship ......................................................................... 79 5.5.2 GSI and fecundity ................................................................................................ 80 5.5.3 Insemination and Physiological maturity ............................................................. 81 5.5.4 Percent ripe ......................................................................................................... 82 5.5.5 Histological Validation of ovarian stage ............................................................... 83 Chapter 6: Assessment of postovulatory follicle degeneration in wild caught western king prawns, Penaeus (Melicertus) latisulcatus (Kishinouye 1896), in Spencer Gulf, South Australia 6.1 Abstract ....................................................................................................................... 85 6.2 Introduction ................................................................................................................. 85 6.3 Materials and methods ............................................................................................... 88 6.3.1 Collection of P. latisulcatus .................................................................................. 88 6.3.2 Histological classification ..................................................................................... 89 6.3.3 Spawning Occurrence ......................................................................................... 90 6.3.4 Data analysis ....................................................................................................... 90 6.4 Results ........................................................................................................................ 91 6.4.1 Postovulatory follicle presence in female P. latisulcatus ..................................... 91 6.4.2 Spawning Occurrence ......................................................................................... 93 6.5 Discussion ................................................................................................................... 96 Chapter 7: General Discussion References 8.1 References ...............................................................................................................
Recommended publications
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Parentage Determination of Kuruma Shrimp Penaeus (Marsupenaeus) Japonicus Using Microsatellite Markers (Bate)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ResearchOnline at James Cook University Aquaculture 235 (2004) 237–247 www.elsevier.com/locate/aqua-online Parentage determination of Kuruma shrimp Penaeus (Marsupenaeus) japonicus using microsatellite markers (Bate) Dean R. Jerrya,*, Nigel P. Prestonb, Peter J. Crocosb, Sandy Keysb, Jennifer R.S. Meadowsc, Yutao Lic a CSIRO Livestock Industries, FD McMaster Laboratory-Chiswick, Armidale, NSW 2350, Australia b CSIRO Marine Research, Cleveland, QLD 4163, Australia c CSIRO Livestock Industries, Gehrmann Laboratories, University of Queensland, St. Lucia, QLD 4072, Australia Received 9 July 2003; received in revised form 14 January 2004; accepted 16 January 2004 Abstract The application of microsatellite markers for parentage determination is gaining both acceptance and popularity in aquaculture. In this study we used simulations and controlled matings to examine the potential of microsatellite markers in assigning parentage to Kuruma shrimp (Penaeus japonicus) progeny. Simulations based on allele frequency data from a captive population of P. japonicus demonstrated that at least five loci would be required to assign progeny to their correct maternal parent (with 95% confidence) when drawn from a breeding population of 30 dams and 150 putative sires. Based on this information, nauplii from 22 matings where maternal parents were known were typed at six microsatellite loci and subjected to parentage analysis. Assignment success of progeny to their ‘‘true’’ mother was lower than predicted by the simulations, with only 47% of progeny assigned correctly. Null alleles and allelic dropout resulting from poor quality DNA contributed to this disparity. The benefits of DNA parentage analysis as a tool to retain pedigree information in shrimp selective breeding programs are discussed.
    [Show full text]
  • Vitamin a Effects and Requirements on the Juvenile Kuruma Prawn Marsupenaeus Japonicus Efectos Y Requerimientos De Vitamina a En
    Hidrobiológica 2009, 19 (3): 217-223 Vitamin A effects and requirements on the juvenile Kuruma Prawn Marsupenaeus japonicus Efectos y requerimientos de vitamina A en los juveniles del camarón Kuruma Marsupenaeus japonicus Luis Héctor Hernandez Hernandez1, Shin-Ichi Teshima2, Manabu Ishikawa2, Shunsuke Koshio2, Francisco Javier Gallardo-Cigarroa3, Orhan Uyan4 and Md. Shah Alam5 1Laboratorio de Producción Acuícola, Facultad de Estudios Superiores Iztacala, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México 2Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan 3Yamaha Nutreco Aquatech Co. LTD, Suite 702 Abundant’95, Hakataekihigashi 3-12-1, Fukuoka 812-0013, Japan 4Aquaculture Research Group, DSM Nutritional Products France, Animal Nutrition & Health Research, CRNA- BP170, 68305 SAINT-LOUIS Cedex, France 5Center for Marine Science, Aquaculture Program, University of North Carolina at Wilmington, 7205 Wrightsville Ave., Wilmington, NC 28403, USA e mail: [email protected] Hernandez-Hernandez L. H., S. Ichi-Teshima, M. Ishikawa, S. Koshio, F. J. Gallardo-Cigarroa, O. Uyan and M.S. Alam. 2009. Vitamin A effects and requirements on the juvenile Kuruma Prawn Marsupenaeus japonicus. Hidrobiológica 19 (3): 217-223. ABSTRACT A 40-day feeding experiment was conducted to assess the effect and requirements of dietary vitamin A (vitA) of juvenile Kuruma Prawn Marsupenaenus japonicus. Nine semi-purified diets were prepared with supplementations of 0, 3,000, 6,000, 9,000, 12,000, 15,000, 18,000, 21,000 and 24,000 international units of vitA per kg (IU vitA/kg) and fed once a day to triplicate groups of 15 juveniles per tank (initial weight of 0.14 ± 0.001 g, mean ± standard error).
    [Show full text]
  • West Coast Prawn Penaeus (Melicertus) Latisulcatus Fishery 2012–13
    West Coast Prawn Penaeus (Melicertus) latisulcatus Fishery 2012–13 C.L. Beckmann, G. E. Hooper and C. J. Noell SARDI Publication No. F2007/000772-6 SARDI Research Report Series No. 808 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 November 2014 Fishery Assessment Report to PIRSA Fisheries and Aquaculture Beckmann et al., (2014) West Coast Prawn Fishery 2012–13 West Coast Prawn Penaeus (Melicertus) latisulcatus Fishery 2012–13 Fishery Assessment Report to PIRSA Fisheries and Aquaculture C. L. Beckmann, G. E. Hooper and C. J. Noell SARDI Publication No. F2007/000772-6 SARDI Research Report Series No. 808 November 2014 II Beckmann et al., (2014) West Coast Prawn Fishery 2012–13 This publication may be cited as: Beckmann, C. L., Hooper, G. E. and Noell, C. J. (2014). West Coast Prawn Penaeus (Melicertus) latisulcatus Fishery 2012–13. Fishery Assessment Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2007/000772-6. SARDI Research Report Series No. 808. 76pp. Front cover photo: West Coast Survey, March 2007 (Shane Roberts) South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Horizontal Transmission Dynamics of White Spot Syndrome Virus By
    Preventive Veterinary Medicine 117 (2014) 286–294 CORE Metadata, citation and similar papers at core.ac.uk Contents lists available at ScienceDirect Provided by Elsevier - Publisher Connector Preventive Veterinary Medicine j ournal homepage: www.elsevier.com/locate/prevetmed Horizontal transmission dynamics of White spot syndrome virus by cohabitation trials in juvenile Penaeus monodon and P. vannamei a,b,∗ c d a N.X. Tuyen , J. Verreth , J.M. Vlak , M.C.M. de Jong a Quantitative Veterinary Epidemiology Group, WU Animal sciences, Wageningen University, Radix Building, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands b Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu St., HoChiMinh City, Viet Nam c Aquaculture and Fisheries Group, WU Animal Sciences, Wageningen University, 6700AH Wageningen, The Netherlands d Laboratory of Virology, Wageningen University, Wageningen, The Netherlands a r t i c l e i n f o a b s t r a c t Article history: White spot syndrome virus (WSSV), a rod-shaped double-stranded DNA virus, is an infec- Received 17 December 2013 tious agent causing fatal disease in shrimp farming around the globe. Within shrimp Received in revised form 21 July 2014 populations WSSV is transmitted very fast, however, the modes and dynamics of trans- Accepted 14 August 2014 mission of this virus are not well understood. In the current study the dynamics of disease transmission of WSSV were investigated in small, closed populations of Penaeus monodon Keywords: and Penaeus vannamei. Pair cohabitation experiments using PCR as a readout for virus infec- White spot syndrome virus tion were used to estimate transmission parameters for WSSV in these two species.
    [Show full text]
  • IDENTIFICATION and TAXONOMIC STUDY of SHRIMPS in BARDAWIL LAGOON, NORTH SINAI, EGYPT Samar A
    SINAI Journal of Applied Sciences 10 (1) 2021 039-046 Available online at www.sinjas.journals.ekb.eg SINAI Journal of Applied Sciences Print ISSN 2314-6079 Online ISSN 2682-3527 IDENTIFICATION AND TAXONOMIC STUDY OF SHRIMPS IN BARDAWIL LAGOON, NORTH SINAI, EGYPT Samar A. Amin1*, G.D.I. Hassanen2 and M.S. Ahmed3 1. Post-Grad. Stud., Dept. Fish Res., Fac. Environ. Agric. Sci., Arish Univ., Egypt. 2. Dept. Fish Res., Fac. Environ. Agric. Sci., Arish Univ., Egypt. 3. Fac. Aquacul. and Marine Fisheries, Arish Univ., Egypt. ARTICLE INFO ABSTRACT Article history: Taxonomic study of shrimp on the Bardawil lagoon, were studied in Received: 14/03/2021 specimens of shrimp collected from Bardawil lagoon fishers from Seasonal Revised: 19/03/2021 occurrence of shrimp During, 2019. Identification of species was based on the Accepted: 01/04/2021 morphological characters of rostrum (dorsal and ventral teeth), remarks of Available online: 13/04/2021 carapace, antenna, sub apical spines on telson and the colored pattern of the Keywords: whole body based on standard keys and diagnoses available from the current Species, literature. Modified Key identify shrimp species from Bardawil lagoon, was Shrimps, prepared after morphometric analysis. A total of 5 species from belong to Taxonomic, three genus; Penaeus, Melicertus and Metapenaeus. Among these, two Bardawil lagoon species belong to the genus Penaeus (Penaeus semisulcatus (De Haan, 1844) and Penaeus (Marsupenaeus) japonicas (Bate, 1888). The species which taken from genus Metapenaeus namely Metapenaeus stebbingi (Nobili, 1904) and Metapenaeus monoceros. (Fabricus, 1798), One species belong to the genus Melicertus kerathurus. (Forskål, 1775). Additional research is needed Check for to more clearly define the distribution of shrimp species in Bardawil lagoon.
    [Show full text]
  • Virus Reviews and Research a BRIEF HISTORY of White Spot Syndrome Virus and ITS EPIDEMIOLOGY in BRAZIL
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281439431 Virus Reviews and Research A BRIEF HISTORY OF White spot syndrome virus AND ITS EPIDEMIOLOGY IN BRAZIL ARTICLE · DECEMBER 2013 READS 44 12 AUTHORS, INCLUDING: Raíssa Nunes Dos Santos Fernando Rosado Spilki Universidade Federal do Rio Grande do Sul Universidade Feevale 3 PUBLICATIONS 3 CITATIONS 165 PUBLICATIONS 646 CITATIONS SEE PROFILE SEE PROFILE Paulo Michel Roehe Lissandra Cavalli Universidade Federal do Rio Grande do Sul Fundação Estadual de Pesquisa Agropecuária 179 PUBLICATIONS 1,369 CITATIONS 20 PUBLICATIONS 27 CITATIONS SEE PROFILE SEE PROFILE Available from: Raíssa Nunes Dos Santos Retrieved on: 10 February 2016 Virus Reviews and Research Sociedade Brasileira de Virologia journal homepage: www.sbv.org.br/vrr/ Research Article A BRIEF HISTORY OF White spot syndrome virus AND ITS EPIDEMIOLOGY IN BRAZIL Raíssa N. Santos1, Ana Paula M. Varela1, Samuel Paulo Cibulski1, Francisco Esmaile S. Lima1, Fernando R. Spilki2, Larissa Schemes Heinzelmann2, Roger Bordin da Luz2, Paulo César Abreu3, Paulo M. Roehe1, Lissandra S. Cavalli1* 1. Laboratório de Virologia, Instituto de Pesquisas Veterinários Desidério Finamor, Fepagro Saúde Animal, Eldorado do Sul, Rio Grande do Sul, Brazil 2. Universidade Feevale, Rio Grande do Sul, Brazil 3. Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil ABSTRACT White spot syndrome virus (WSSV) is considered the most threatening infectious agent in shrimp aquaculture. Since its fi rst occurrence in 1992, this pathogen has caused economic losses approach one billion US dollars per year. WSSV is a tailed, rod-shaped nucleocapsid, double stranded DNA virus, which belongs to Nimaviridae family.
    [Show full text]
  • Seasonal Variation of Ectosymbiotic Ciliates on Farmed and Wild Shrimps from Coastal Yucatan, Mexico Norma A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 2-2009 Seasonal Variation of Ectosymbiotic Ciliates on Farmed and Wild Shrimps from Coastal Yucatan, Mexico Norma A. López-Téllez Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida Victor M. Vidal-Martínez Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, Marine Biology Commons, and the Parasitology Commons López-Téllez, Norma A.; Vidal-Martínez, Victor M.; and Overstreet, Robin M., "Seasonal Variation of Ectosymbiotic Ciliates on Farmed and Wild Shrimps from Coastal Yucatan, Mexico" (2009). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 889. http://digitalcommons.unl.edu/parasitologyfacpubs/889 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 287:3–4 (February 2009), pp. 271–277; doi: 10.1016/j.aquaculture.2008.11.003 Copyright © 2008 Elsevier B.V. Creative Commons Attribution Non-Commercial No Derivatives License. Submitted November 19, 2007; revised November 1, 2008; accepted November 3, 2008; published online November 11, 2008.
    [Show full text]
  • Comparative Transcriptomic Analysis of Marsupenaeus Japonicus Hepatopancreas in Response to Vibrio Parahaemolyticus and White Spot T Syndrome Virus
    Fish and Shellfish Immunology 87 (2019) 755–764 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Comparative transcriptomic analysis of Marsupenaeus japonicus hepatopancreas in response to Vibrio parahaemolyticus and white spot T syndrome virus ∗ Xianyun Rena,b, Ping Liua,b, Jian Lia,b, a Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China b Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China ARTICLE INFO ABSTRACT Keywords: Vibrio parahaemolyticus and white spot syndrome virus (WSSV) are pathogens that cause epidemics in kuruma Vibrio parahaemolyticus shrimp (Marsupenaeus japonicus) during aquaculture, resulting in severe economic losses to local farmers. To White spot syndrome virus characterise the mechanisms of the molecular responses to V. parahaemolyticus and WSSV infection in M. ja- Immune response ponicus, the transcriptome of hepatopancreas was sequenced using next-generation sequencing after infection. A Marsupenaeus japonicus total of 29,180 unigenes were assembled, with an average length of 1,151 bp (N50 = 1,951 bp). After BLASTX Transcriptomic analysis − searching against the Nr database (E-value cut-off =10 5), 15,176 assembled unigenes remained, with 3,039 Next-generation sequencing and 1,803 differentially expressed transcripts identified in the V. parahaemolyticus- and WSSV-infected groups, respectively. Of these, 1466 transcripts were up-regulated and 1573 were down-regulated in V. parahaemolyticus- infected shrimps, and 970 transcripts were up-regulated and 833 were down-regulated in the WSSV-infected shrimps.
    [Show full text]
  • Cellular Entry of White Spot Syndrome Virus and Antiviral Immunity Mediated by Cellular Receptors in Crustaceans T
    Fish and Shellfish Immunology 93 (2019) 580–588 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Cellular entry of white spot syndrome virus and antiviral immunity mediated by cellular receptors in crustaceans T Shu-cheng Zhenga, Jiao-yang Xua, Hai-peng Liua,b,* a State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China b Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China ARTICLE INFO ABSTRACT Keywords: Enveloped virus usually utilizes the receptor-mediated multiple endocytic routes to enter permissive host cells White spot syndrome virus for successful infection. Cellular receptors are cell surface molecules, either by helping viral attachment to cell Virus entry surface followed by internalization or by triggering antiviral immunity, participate in the viral-host interaction. Cellular receptor White spot syndrome virus (WSSV), the most lethally viral pathogen with envelope and double strand DNA Antiviral immunity genome in crustacean farming, including shrimp and crayfish, has been recently found to recruit various en- Crustaceans docytic routes for cellular entry into host cells. Meanwhile, other than the typical pattern recognition receptors for recognition of WSSV, more and more putative cellular receptors have lately been characterized to facilitate or inhibit WSSV entry. In this review, recent findings on the endocytosis-dependent WSSV entry, viral entry mediated by putative cellular receptors, the molecular interplay between WSSV and cellular receptors, and the following anti-WSSV immunity are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis and further possible antiviral control of white spot disease in crustacean farming.
    [Show full text]
  • Inland Prawn Farming
    Queensland the Smart State Inland Prawn Farming Studies into the Potential for Inland Marine Prawn Farming in Queensland Dr Adrian Collins Mr Benjamin Russell Mr Andrew Walls Dr Tung Hoang Inland Prawn Farming Studies into the Potential for Inland Marine Prawn Farming in Queensland Dr Adrian Collins Mr Benjamin Russell Mr Andrew Walls Dr Tung Hoang Queensland Department of Primary Industries and Fisheries~ August 2005. QI05051 ISSN 0727-6273 The Department of Primary Industries and Fisheries (DPl&F) seeks to maximise the economic potential of Queensland's primary industries on a sustainable basis. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this report. ©The State of Queensland, Department of Primary Industries and Fisheries 2005 Copyright protects this publication. The State of Queensland has no objection to this material being reproduced but asserts its right to be recognised as author of its original material and the right to have its material remain unaltered. Inquiries should be addressed to: Manager, DPl&F Publications Department of Primary Industries and Fisheries GPO Box 46 Brisbane Qld 4001 CONTENTS ACKNOWLEDGMENTS LIST OF FIGURES ii - v LIST OF TAB LES vi ABBREVIATIONS, UNITS AND ACRONYMS vii -viii SUMMARY ix 1. Introduction 1 - 12 1.1 Thailand 2-3 1.2 United States of America 3-5 1.3 Ecuador 5 1.4 India and Bangladesh 5-6 1.5 Australian Inland Saline Aquaculture 6-7 1.6 Fresh, Brackish and Saline Groundwater 7-8 1.7 Water Chemistry and Supply 8 1.8 Acclimation and Growth 8-9 1.9 Biosecurity 9 -10 1.10 Environmental Management 10 - 12 1.11 Inland Farming of Marine Prawns in Australia 12 1.12 Project Objectives 12 2.
    [Show full text]
  • Comparative Study of the Gut Contents of Penaeus Japonicus Bate 1888 (Decapoda: Penaeidae) in Semi-Intensive Culture and in Brackish Water Wild Environment
    Journal of Aquaculture & Marine Biology Research Article Open Access Comparative study of the gut contents of penaeus japonicus bate 1888 (decapoda: penaeidae) in semi-intensive culture and in brackish water wild environment Abstract Volume 4 Issue 6 - 2016 The trophic adaptability of a species may influence its dispersion potential and the ability 1 2 3 to invade foreign territories. Understanding the factors that facilitate trophic adaptability V Zupo, F Lumare, V Bisignano 1Stazione Zoologica Anton Dohrn IME Department, Benthic may help the provision of forecasts about the potential dispersion of allocthonous species, Ecology Center, Italy even in a warmer and acidified world, according to the current trends of global changes. 2Dipartimento di Biologia, Universit Various studies demonstrated the adaptability of Penaeus japonicus Bate to variable feeding 3CNRInstitute of Biosciences and Bioresources, National regimes under natural conditions. To optimize artificial diets for the aquaculture of Penaeid Research Council, Italy shrimps, gut content data of specimens cultured in ponds were compared to contents from shrimps fed on natural macro benthic communities in a brackish-water lagoon. In addition, Correspondence: V Zupo, Stazione Zoologica Anton Dohrn the feeding adaptability of this shrimp to scarcely diversified benthic associations was IME Department, Benthic Ecology Center, Italy, tested in aquaculture ponds. Our comparative analyses confirm that P. japonicus feeding Email pattern may be largely adapted to variations in the available benthic organisms, in different management conditions. Received: November 18, 2016 | Published: December 15, 2016 Keywords: Penaeus japonicus, Food, Brackish water, Culture, Adaptability, Marsupenaeus japonicus Introduction Zenetos.13 it was considered as a Lessepsian migrant in the Mediter- ranean waters since 1924.
    [Show full text]