Variable Valve Trains

Total Page:16

File Type:pdf, Size:1020Kb

Variable Valve Trains VARIABLE VALVE TRAINS THE EVOLVING ENGINE Pierburg GmbH Alfred-Pierburg-Straße 1 41460 Neuss Germany www.kspg.com “We’re WORKING ON TOMORROW’s DOUBLY COMPLEMEntaRY AUTOMOBILE ENGINE.” 4-5 UniValve and FlexValve Dr. Dirk Hunkel, Director Business Unit Variable Valve Train Systems, Pierburg GmbH PRECISION FOR HIGH RPM 6-7 UniValve – Design and Function Gasoline or diesel? For years, these arch- inside the combustion chamber while BOTH ROBUst AND VERsatILE 8-9 rivals have charged ahead along their keeping the impact on the fuel con- FlexValve – Design and Function independent respective development sumption to a minimum. The fact that paths, each chiding the other with its variability in the air handling system 715/2007/EG 10 -11 own technical advances. Each system provides advantages for both engines is You want to see it in black and white? has its strengths, but also its weakness- undisputed. But variable valve trains es. The stoichiometric gasoline engine offer even more potential. Keywords are THE EVOLUTION OF YOUR ENGINE 12-13 features a highly efficient and cost displacement on demand, scavenging We work with you to produce a bespoke design. effective after-treatment system thanks and engine braking. to its three-way catalytic converter. But “VaRIABLE VALVE TRAIN SYstEMS ARE NOT 14-17 the fuel consumption has to be im- We’d like to show you what variable SOMETHING YOU JUst GET OFF THE SHELF.” proved. Diesel engines, on the other valve train systems can do. And we’d An interview with Heinrich Dismon, CTO hand, have already reached a very high like to assist you with your decision, efficiency. However, controlling their design concept and right on through KSPG IN A NUtsHELL 18 -19 emissions is more challenging and to SOP. We offer two different variable Who we are. What we do. mostly comes at the cost of reduced valve train systems, which we explain efficiency. The strategy here involves in the following. limiting the production of pollutants 2 3 DOUBLY COMPLEMENTARY UNIVALVE: MAKING FLEXVALVE: THE VALVE YOUR ENGINE FITTER TRAIN UPGRADE FOR FOR THE FUTURE. DIESEL AND HEAVY-DUTY ENGINES. Until now, the gas exchange of gasoline losses and pumping work lead to FlexValve is a compact, robust and including those for commercial vehicles, engines has always been associated favorable fuel consumption. efficient mechanical valve train system. which are sold in markets with differing with pumping losses. The reason is that It permits continuous variability emission standards. the throttle body has to be closed for An electrical actuator provides precise of valve lift over a broad range, even part load operation. and quick valve control from full valve lift allowing secondary opening of the valves, FlexValve offers the following down to zero valve lift. UniValve delivers if desired. This gives a lot of flexibility to advantages for diesel engines: UniValve fulfils engine designers’ outstanding fuel economy, dynamics influence the gas exchange process and faster warm up and improved longstanding goal of achieving adjust- and power. engine out exhaust gas temperature. after-treatment efficiency ment of cylinder filling to meet changing improved transient EGR control and/ operating conditions by means of UniValve provides the following In addition, FlexValve is modular, offering or faster T/C response thanks to variable valve timing. advantages for gasoline engines: various modules to change the function secondary valve opening high speed capability of the valve train system without having variable effective compression ratio UniValve has a compact, straightforward favourable frictional behaviour to change the cylinder head design adjustment of load and temperature design. The uncompromising use of good response and manufacture. This makes FlexValve for optimized combustion control roller contacts througout the system inherent cylinder deactivation an ideal solution for diesel engines, Compression release engine braking offers a high speed capability with low up to 12 % improvement in fuel mechanical losses. Reduced parasitic economy 4 Comparison 5 3 UNIVALVE: 4 PRECISION FOR HIGH RPM 1 Design and Function 5 UniValve features two mechanical cam How UniValve works 2 mechanisms in series. The UniValve The UniValve rocker (1), which rests rocker assembly is the heart of the on the control shaft (2), is guided by 6 system. The camshaft keeps it moving in the circular guide (3), and is set in an an oscillating motion and the assembly oscillating motion by the camshaft (4). subsequently transfers its movement to UniValve components the roller finger follower. Position and The UniValve rocker has a profile (5), Besides the typical valve train parts, such as a camshaft (4) and a orientation of the UniValve rocker are which is in contact to the roller finger roller finger follower (6), UniValve changed to give the desired family of follower (6). The profile includes a base has only three additional continuously variable valve lifts. circle and a lifting curve which together components: form a “swinging cam.” – UniValve rocker (1) UniValve can also completely deactivate – Control shaft (2) – Circular guide (3) individual valves, fully shutting down The control shaft (2) is shaped in a way, their respective cylinders. Now, that’s that its rotation controls the movement downsizing on demand. of the UniValve rocker. This varies the relative lengths of the base circle and Strong on every side the lifting curve used. Even greater potential is available with the use of UniValve on both the intake An electrical actuator steplessly turns and exhaust sides, particularly with turbo the control shaft, rapidly and precisely engines. to provide continuously variable position-control of the shaft and hence the valve lift. Contact: Dr. Michael Breuer All contact points are fitted with roller [email protected] bearings to minimise friction. 6 UniValve 7 4 FLEXVALVE: 3 BOTH ROBUST AND VERSATILE 5 Design and Function FlexValve is based on DuoCam, a twin Depending on the shapes and relative cam camshaft as the name indicates. angular positions of both cam groups, 6 An actuator, similar to a cam phaser, the FlexValve rocker either rotates about changes the angular relationship of the the pivot shaft (6) or generates a valve 7 shaft and tube and hence their associ- movement. Different cam contours are ated cam lobes, which are in contact with possible and through their design can the FlexValve rocker. The FlexValve rocker produce multiple valve openings. The “adds together” the two cam profiles. figures show two of the potential lift Thus, altering the angle between shaft curve families. and tube allows the valve lift to be varied. FlexValve is modular. This allows the FlexValve components FlexValve employs a DuoCam to The FlexValve system comprises a single engine to be built to different specifica- replace the conventional camshaft lobe (1), pinned to the inner shaft (2) of tions without cylinder head design and two other parts in addition to the the DuoCam shaft. The two outer cam changes. This provides the freedom to conventional valve train system components: lobes (4) are fixed to the tube (3). The implement conventional valve timing, – FlexValve upper rocker assembly (5) phasing between the lobes (1) and (4) a DuoCam version with variable valve – Return spring (7) may be varied via an actuator, (not shown timing of two groups of cam lobes, or for clarity). the full FlexValve system. The rollers of the FlexValve rocker (5) follow both cam profiles. This rocker pivots on a shaft (6), which connects it to both finger followers. The return spring Contact: (7) keeps all the parts in contact when Dr. Tim Lancefield the valves are closed. [email protected] 8 FlexValve 9 715/2007/EC 160 160 2500 This European Parliament regulation the penalty fees that will apply as of 2000 calls for the reduction of the average 2020 and the European fleet average 140 140 Actual in 2012: 135 g/km 1500 fleet consumption and the cutting of for 2012. 1000 carbon emissions produced by European 120 120 Target 2015: 130 g/km 500 automobile manufacturers to 95 g/km Our own surveys indicate up to 12 % by 2020. fuel reduction in the mapping area with 3.6 l Diesel the same or even improved full load and 4.1 l Gasoline 100 100 This chart shows the targeted values for emissions performance in g/km depicted emissions 2 Target 2020: 95 g/km penalty fee payment in for 2020 in for payment fee penalty O 2015 and 2020, as well as values that are 80 C 80 ISO in discussion for 2025. You’ll also find Proposal 2025: 68 – 78 g/km 1375* 60 60 2 4 6 1100 1200 1300 1400 1500 1600 1700 Fuel consumption kerb weight in kg shown as l/100 km * ∅ Mean kerb weight of European motor vehicles 12% Up to 12 % fuel consumption reduction This chart shows the targeted values for 2015 and 2020, as well as values that are in discussion for 2025. You’ll also find the penalty fees that will apply as of 2020 and the European fleet average for 2012. Our own surveys indicated a 12 percent reduction in consumption with the same or even improved full load and emissions performance. EU TARGETS FOR 2020 95 g/km CO2 4.1 l/100 km average Gasoline fleet consumption 3.6 l/100 km average Diesel fleet consumption 10 Facts and Figures 11 THE EVOLUTION We work with you to produce a OF YOUR ENGINE bespoke design for the future. A component can perform to its full No, we design your valve train system potential only if it integrates perfectly to meet your specific requirements. into its technical environment, which That’s only possible if we work closely is why we wouldn’t sell you an off-the- with you.
Recommended publications
  • Mean Value Modelling of a Poppet Valve EGR-System
    Mean value modelling of a poppet valve EGR-system Master’s thesis performed in Vehicular Systems by Claes Ericson Reg nr: LiTH-ISY-EX-3543-2004 14th June 2004 Mean value modelling of a poppet valve EGR-system Master’s thesis performed in Vehicular Systems, Dept. of Electrical Engineering at Linkopings¨ universitet by Claes Ericson Reg nr: LiTH-ISY-EX-3543-2004 Supervisor: Jesper Ritzen,´ M.Sc. Scania CV AB Mattias Nyberg, Ph.D. Scania CV AB Johan Wahlstrom,¨ M.Sc. Linkopings¨ universitet Examiner: Associate Professor Lars Eriksson Linkopings¨ universitet Linkoping,¨ 14th June 2004 Avdelning, Institution Datum Division, Department Date Vehicular Systems, Dept. of Electrical Engineering 14th June 2004 581 83 Linkoping¨ Sprak˚ Rapporttyp ISBN Language Report category — ¤ Svenska/Swedish ¤ Licentiatavhandling ISRN ¤ Engelska/English ££ ¤ Examensarbete LITH-ISY-EX-3543-2004 ¤ C-uppsats Serietitel och serienummer ISSN ¤ D-uppsats Title of series, numbering — ¤ ¤ Ovrig¨ rapport ¤ URL for¨ elektronisk version http://www.vehicular.isy.liu.se http://www.ep.liu.se/exjobb/isy/2004/3543/ Titel Medelvardesmodellering¨ av EGR-system med tallriksventil Title Mean value modelling of a poppet valve EGR-system Forfattare¨ Claes Ericson Author Sammanfattning Abstract Because of new emission and on board diagnostics legislations, heavy truck manufacturers are facing new challenges when it comes to improving the en- gines and the control software. Accurate and real time executable engine models are essential in this work. One successful way of lowering the NOx emissions is to use Exhaust Gas Recirculation (EGR). The objective of this thesis is to create a mean value model for Scania’s next generation EGR system consisting of a poppet valve and a two stage cooler.
    [Show full text]
  • Engine Block Materials and Its Production Processes
    ENGINE BLOCK MATERIALS AND ITS PRODUCTION PROCESSES 2.2 THE CAST IRON MONOLITHIC BLOCK The widespread use of cast iron monolithic block is as a result of its low cost and its formidability. This type of block normally comes as the integral type where the engine cylinder and the upper crankcase are joined together as one. The iron used for this block is the gray cast iron having a pearlite-microstructure. The iron is called gray cast iron because its fracture has a gray appearance. Ferrite in the microstructure of the bore wall should be avoided because too much soft ferrite tends to cause scratching, thus increasing blow-by. The production of cast iron blocks using a steel die is rear because its lifecycle is shortened as a result of the repeated heat cycles caused by the molten iron. Sand casting is the method widely used in the production of cast iron blocks. This involves making the mould for the cast iron block with sand. The preparation of sand and the bonding are a critical and very often rate-controlling step. Permanent patterns are used to make sand molds. Usually, an automated molding machine installs the patterns and prepares many molds in the same shape. Molten metal is poured immediately into the mold, giving this process very high productivity. After solidification, the mold is destroyed and the inner sand is shaken out of the block. The sand is then reusable. The bonding of sand is done using two main methods: (i) the green sand mold and (ii) the dry sand mold.
    [Show full text]
  • Section 02 - Block Basics
    Block Basics – Section 2 Section 02 - Block Basics 2.0 Small Block 330 & 350 Block Key Differences. The key differences between the 330 and 350 are the 350’s larger bore and the Generation 1 Cast Iron Small Block V-8 Facts 330’s forged crank. General. In 1964 Olds replaced their small block 215 V8 with 1964 – 1966 Valve Lifter Angle. All 1964–1966 blocks used a a cast iron block of completely new design. The 330 V-8 different valve lifter angle of attack on the cam (45). Thus shared none of its engine block architecture with that of the 1964–1966 330 blocks CANNOT USE 1967 AND LATER 215 V-8 and the 225 V-6 sourced from Buick. The engine CAMS. All 1964–1966 cams WILL NOT WORK in 1967 and was no longer aluminum, but cast iron, as weight became later blocks. Later blocks used a 39 lifter angle. Blocks with less of a factor with the engine going into both the larger a “1” or “1A” cast up near the oil filler tube used the 45 lifter mid-sized F-85s, Cutlasses and the full-size Jetstars angle and should be avoided, if possible. introduced in that year. The engine was designed as a replacement for the 215, but was cast iron and enlarged in Early 330 Rocker Arms. The first run of 330 blocks was anticipation of the growth in size of the mid-size cars, where equipped with rocker arms similar to the previous 394 block it was to be primarily used and as the workhorse for the that traces its heritage back to 1949.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,950,587 Sattler Et Al
    USOO5950587A United States Patent (19) 11 Patent Number: 5,950,587 Sattler et al. (45) Date of Patent: Sep. 14, 1999 54 CONTINUOUSLY WARIABLE RUNNER 2682431-A1 4/1993 France. LENGTH MANIFOLD 3825000 A1 2/1989 Germany .......................... 123/184.55 60-224923 11/1985 Japan .................... ... 123/184.55 75 Inventors: Eric R. Sattler, Trenton; Joel S. 2239899 7/1991 United Kingdom ...... ... 123/184.55 Myers, Southgate; Michael J. Haspel, Westland, all of Mich. Primary Examiner Erick R. Solis 73 Assignee: BASF Corporation, Mount Olive, N.J. ASSistant Examiner Brian Hairston Attorney, Agent, or Firm-Ryan W. Massey; James J. Drake 22 Filed: Jul. 22, 1998 A continuously variable runner length manifold is provided (51) Int. Cl. ................................................ FO2B 27/06 for an internal combustion engine. The continuously vari 52 U.S. Cl. .................. 123/184.55; 123/18453 able runner length manifold includes a housing having an 58 Field of Search ........................... 123/184.55, 18453 inlet port and a plurality of outlet ports defined by a plurality of Stacked manifold Sections. A plurality of runner members 56) References Cited are rotatably mounted within the housing. The runner mem bers include wall portions which combine with the housing U.S. PATENT DOCUMENTS to define a plurality of runners in communication with a 4,619,226 10/1986 Ueda et al. ........................ 123s2 MB plenum and a respective one of the outlet ports. The runners 4,699,630 10/1987 Lee et al. ............................... 48/1801 have a length which is continuously variable upon rotation of the runner members relative to the housing. FOREIGN PATENT DOCUMENTS 237755 A2 9/1987 European Pat.
    [Show full text]
  • Compacted Graphite Iron for Diesel Engine Cylinder Blocks
    Compacted Graphite Iron for Diesel Engine Cylinder Blocks Wilson Luiz Guesser, Dr Eng - Tupy Fundições and UDESC - Joinville, SC – Brazil – [email protected] Pedro Ventrela Duran, M Sc - Tupy Fundições - Joinville, SC – Brazil – [email protected] Walmor Krause, M Sc - Tupy Fundições - Joinville, SC – Brazil – [email protected] Abstract The recent trends in diesel engines are discussed, and also the consequences in materials selection for engine cylinder blocks. The increasing demand for higher specific power and the need for weight reduction and decrease of emissions require the use of stronger materials for cylinder blocks, opening a promising space for compacted graphite iron (CGI). The properties of CGI are described, in particular those required for engine cylinder blocks (fatigue strength and elastic modulus). Results of mechanical properties from actual castings are presented. As a result of the mechanical properties improvement, some design opportunities are suggested, in order to decrease the weight of the cylinder block. Keywords diesel engines, compacted graphite iron, cylinder blocks 1. Introduction: In a recent paper discussing CGI uses for engine cylinder blocks and heads, S. Dawson (2001) stated that “the Iron Age is just beginning” and we have taken this statement for the present paper. His point of view, added to those from Rizzo (2001), discloses the enormous CGI potential for manufacturing engine components, especially for diesel engines. The growth of diesel engines usage for passenger cars has been remarkable in Europe (see Fig. 1), especially after the introduction of the high-pressure common-rail technology (Buchholz, 2003). This growth is surrounded by requirements as: less fuel consumption, emissions reduction , larger power output and torque, and for passenger cars more compact engines are being required due to space limitations.
    [Show full text]
  • GM Engine Block
    A Design Study in Aluminum Casting Aluminum Cylinder Block for General Motors Truck/SUV Engines Design Study Outline -- Introduction -- Designing for Performance Alloy Selection -- Lost Foam Casting Pattern Design Pattern Production Chevy Trailblazer Metal Casting -- Finishing and Quality Assurance -- Lessons Learned and Summary Start the Design Study ! Next Acknowledgment -- The metalcasting design studies are a joint effort of the American Foundry Society and the Steel Founders' Society of America. Project funding was provided by the American Metalcasting Consortium Project, which is sponsored by the Defense Logistics Agency, Attn: DLSC-T, Ft. Belvoir, VA, 22060-6221 Copyright 2004 by the American Foundry Society In cooperation with All rights reserved. GM Powertrain Casting Address comments to: [email protected] Return to AFS Last Modified:August, 2004 by STG Development Home Page A Design Study in Aluminum Castings - GM Cylinder Block Engines for GM SUVs and Trucks The Application -- In 2002 General Motors introduced a new family of Sport Utility Vehicles (Chevy Trailblazer, Buick Rainier and GMC Envoy). In 2004 a family of mid-sized trucks (Chevy Colorado and GMC Canyon) was introduced. ● With the higher vehicle weight and additional load capability, the engineering challenge was to upgrade the powertrain with improvements in power, torque, fuel economy, emissions, and NVH (noise, vibration, harshness ) performance, while keeping the vehicle cost affordable and the weight down. ● A comprehensive engineering study was done to select the best engine configuration, considering V-8, V-6, and Inline 6 designs. The study determined that the Inline design had the following advantages -- simplest design, lowest number of parts, inherently balanced, lowest cost, and best manufacturing flexibility.
    [Show full text]
  • Rebuilding Your First Engine by Joe Mondello
    REBUILDING YOUR FIRST ENGINE BY JOE MONDELLO Rebuilding an engine is involved, particular steps must be taken and confidence in the professionalism of your machinist is most important. The first thing is to research the exact cubic inch displacement, year, and type of engine that is in your car. Our technical reference manual will be a great help to you when rebuilding your engine. Always take photos of the engine and engine compartment. Pay special attention to brackets, accessory head bolts, wire looms, AC hoses, belts and special headed or stud type-mounting bolts. Before starting to remove your engine, cover the fenders, front grill and sheet metal with good fender covers or heavy blankets. Then disconnect the battery, fuel lines and drain all the fluids. You should remove the radiator first remembering to disconnect radiator hoses and transmission oil cooler lines to eliminate a big mess of dripping transmission fluid. The carburetor and distributor should then be removed. Connect a chain, engine cradle stop or carburetor plate adapter to engine and prepare to remove the engine. Disconnect engine and transmission mounts and remove the hood. Scribe or use a marking pen around the mounting brackets so hood replacement will be easier. Sometimes the removal of the rear transmission crossover-mounting bar will allow more of a tilt for easier engine and transmission removal. Always block the rear wheels so the car cannot move fore and aft. Always make sure your engine hoist and removing device is securely bolted down and is tight. If you have a 4-speed car, disconnect the clutch cross shaft and all the linkage.
    [Show full text]
  • How to Use a Timer with Your Engine Block
    How to Use a Timer with Your Engine Block A timer is a convenient way to save energy when using your block heater. At 20o F or less, two to three hours of pre-heating reduces air pollution and engine wear. Set the timer to supply electricity two to three hours Prepare to mount the timer by confirming power to before your commute. It you normally leave at 7:15 your outlet; test with an outdoor appliance. Only use a AM, push in all gray trippers between 4:15 and 7:15 three conductor, GFCI-protected outlet. Set the timer to AM. The switch on the upper right of the timer face real time by rotating the face clockwise until the white should be toward the ‘checkmark’. arrow points to current time. Mount timer above your outlet with screws. Timer Plug in your car each evening to the outlet on the bot- must hang upright and above snow level. Plug it in right tom of the timer. The clock face will rotate once a day, after setting the time with the short cord attached to the but electricity will only flow to the heater during the timer. Keep timer plugged in to maintain time. time segment that trippers are pushed in. Re-set the timer’s clock after any power interruptions. During a typical morning commute more pollution is created by vehicles idling in driveways than driving on roadways. Block heaters reduce these emissions by warming engine compo- nents, allowing emission controls to work sooner. Vehicle emissions testing performed in Anchorage and Fairbanks proved that block heater use substantially reduces carbon monoxide (CO) and other pollu- tion from cold engines.
    [Show full text]
  • Piston Engine Fundamentals TC010-05-01S
    LEVEL F PPiissttoonn EEnnggiinnee FFuunnddaammeennttaallss TTCC001100--0055--0011SS Mazda Motor Corporation Technical Service Training Piston Engine Fundamentals CONTENTS TC010-05-01S 1 – INTRODUCTION ............................................................................1 Course Overview ..................................................................................1 Audience and Purpose...................................................................1 Course Content and Objectives .................................................2 How to Use This Guide .........................................................................3 Section Objectives .........................................................................3 Text and Illustrations......................................................................3 Review Exercises ..........................................................................4 2 – BASIC OPERATION.......................................................................5 Objectives .............................................................................................5 How Power is Developed......................................................................6 Harnessing Power..........................................................................6 Controlling Combustion..................................................................7 The Four-Stroke Cycle..........................................................................9 Intake Stroke...............................................................................
    [Show full text]
  • A Numerical Investigation of a Two-Stroke Poppet-Valved Diesel Engine Concept
    A NUMERICAL INVESTIGATION OF A TWO-STROKE POPPET-VALVED DIESEL ENGINE CONCEPT Philip Robert Teakle BE MEngSc Tribology and Materials Technology Group Mechanical, Manufacturing and Medical Engineering Queensland University of Technology Submitted for the degree of Doctor of Philosophy 2004 v Keywords Two-stroke, poppet valves, KIVA, thermodynamic modelling, zero-dimensional modelling, multidimensional modelling, engine modelling, scavenging models, scavenging simulations. Executive Summary Two-stroke poppet-valved engines may combine the high power density of two - stroke engines and the low emissions of poppet-valved engines. A two-stroke diesel engine can generate the same power as a four-stroke engine of the same size, but at higher (leaner) air/fuel ratios. Diesel combustion at high air/fuel ratios generally means hydrocarbons, soot and carbon monoxide are oxidised more completely to water and carbon dioxide in the cylinder, and the opportunity to increase the rate of exhaust gas recirculation should reduce the formation of nitrogen oxides (NOx). The concept is being explored as a means of economically modifying diesel engines to make them cleaner and/or more powerful. This study details the application of two computational models to this problem. The first model is a relatively simple thermodynamic model created by the author capable of rapidly estimating the behaviour of entire engine systems. It was used to estimate near-optimum engine system parameters at single engine operating points and over a six-mode engine cycle. The second model is a detailed CFD model called KIVA- ERC. It is a hybrid of the KIVA engine modelling package developed at the Los Alamos National Laboratory and combustion and emissions subroutines developed at the University of Wisconsin-Madison Engine Research Center.
    [Show full text]
  • The Dilemma Between Aluminum and Cast Iron
    energies Article Life-Cycle and Energy Assessment of Automotive Component Manufacturing: The Dilemma Between Aluminum and Cast Iron Konstantinos Salonitis , Mark Jolly * , Emanuele Pagone and Michail Papanikolaou Manufacturing Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK * Correspondence: m.r.jolly@cranfield.ac.uk; Tel.: +44 (0)1234 758347 Received: 6 June 2019; Accepted: 30 June 2019; Published: 3 July 2019 Abstract: Considering the manufacturing of automotive components, there exists a dilemma around the substitution of traditional cast iron (CI) with lighter metals. Currently, aluminum alloys, being lighter compared to traditional materials, are considered as a more environmentally friendly solution. However, the energy required for the extraction of the primary materials and manufacturing of components is usually not taken into account in this debate. In this study, an extensive literature review was performed to estimate the overall energy required for the manufacturing of an engine cylinder block using (a) cast iron and (b) aluminum alloys. Moreover, data from over 100 automotive companies, ranging from mining companies to consultancy firms, were collected in order to support the soundness of this investigation. The environmental impact of the manufacturing of engine blocks made of these materials is presented with respect to the energy burden; the “cradle-to-grave approach” was implemented to take into account the energy input of each stage of the component life cycle starting from the resource extraction and reaching to the end-of-life processing stage. Our results indicate that, although aluminum components contribute toward reduced fuel consumption during their use phase, the vehicle distance needed to be covered in order to compensate for the up-front energy consumption related to the primary material production and manufacturing phases is very high.
    [Show full text]
  • Basic Engine
    Version 2.0 Learning Objectives Understand Cummins engine operation and parts, including: • Engine Nomenclature • Identification and type • Fundamental of diesel engine operation • Major component of diesel engine • The block group • The head group • The end and pan group • The accessories group • Engine systems • Lubrication • Cooling • Air • Fuel CUMMINS PRODUCT LINE Cummins classifies its engines into three groups according to displacement: Midrange (below 9L) Heavy Duty (10-15L) High Horse Power (19L and above) Each grouping serves designated markets. however; there tends to be overlap. For example; the majority of engines used in power generation are the High Horsepower group. Some smaller power gen engines fall into the MidRange and Heavy Duty categories as well. •Engine Nomenclature Engine Families A Series B Series/ ISB/ QSB C8.3/ ISC/ QSC L10/ ISL/ QSL M11/ ISM/ QSM N Series ISX/ QSX K Series/ QSK QST30 QSV Natural Gas Engines Engine Nomenclature QS = Quantum System. Industrial engine Operates electrically; “off-highway.” Examples: QSB, QSC, QSL, QSM, QSX, QSK, QSV IS = Interact System. Automotive, operates electrically; “on-highway.” Example: ISB, ISC, ISL, ISM, ISX •Engine Nomenclature What engines do we sell? •Engine Nomenclature Engine Identification •Engine Nomenclature Identify Cummins® nomenclature & data plates location The Cummins® engine nomenclature provides the data as illustrated in the graphics. NOTE: The following letters designate some of the different market applications for a Cummins® engine. •Engine Nomenclature Cummins Applications in Thailand Example: •Engine Nomenclature Engine Identification (view from TOP side of Engine) Flywheel Right Side / Bank (for V-type) Rear Left Side / Bank (for V-type) D.O.R. Vibration Front Damper •Engine Nomenclature What is an Engine ? A mechanism for converting HEAT ENERGY (e.g.
    [Show full text]