Timber Bridges Design, Construction, Inspection, and Maintenance

Total Page:16

File Type:pdf, Size:1020Kb

Timber Bridges Design, Construction, Inspection, and Maintenance Timber Bridges Design, Construction, Inspection, and Maintenance Michael A. Ritter, Structural Engineer United States Department of Agriculture Forest Service Ritter, Michael A. 1990. Timber Bridges: Design, Construction, Inspection, and Maintenance. Washington, DC: 944 p. ii ACKNOWLEDGMENTS The author acknowledges the following individuals, Agencies, and Associations for the substantial contributions they made to this publication: For contributions to Chapter 1, Fong Ou, Ph.D., Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For contributions to Chapter 3, Jerry Winandy, Research Forest Products Technologist, USDA Forest Service, Forest Products Laboratory. For contributions to Chapter 8, Terry Wipf, P.E., Ph.D., Associate Professor of Structural Engineering, Iowa State University, Ames, Iowa. For administrative overview and support, Clyde Weller, Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For consultation and assistance during preparation and review, USDA Forest Service Bridge Engineers, Steve Bunnell, Frank Muchmore, Sakee Poulakidas, Ron Schmidt, Merv Eriksson, and David Summy; Russ Moody and Alan Freas (retired) of the USDA Forest Service, Forest Products Laboratory; Dave Pollock of the National Forest Products Association; and Lorraine Krahn and James Wacker, former students at the University of Wisconsin at Madison. In addition, special thanks to Mary Jane Baggett and Jim Anderson for editorial consultation, JoAnn Benisch for graphics preparation and layout, and Stephen Schmieding and James Vargo for photographic support. iii iv CONTENTS CHAPTER 1 TIMBER AS A BRIDGE MATERIAL 1.1 Introduction .............................................................................. l- 1 1.2 Historical Development of Timber Bridges ............................. l-2 Prehistory Through the Middle Ages ....................................... l-3 Middle Ages Through the 18th Century ................................... l-5 19th Century ............................................................................. l-7 20th Century ............................................................................. l- 17 1.3 The Future of Timber as a Bridge Material .............................. l- 17 1.4 Selected References .................................................................. l-20 CHAPTER 2 TYPES OF TIMBER BRIDGES 2.1 Introduction ............................................................................ 2- 1 2.2 Beam Superstructures ............................................................... 2-2 Log Beams ................................................................................ 2-2 Sawn Lumber Beams ................................................................ 2-3 Glued-Laminated Timber Beams ............................................. 2- 5 Laminated Veneer Lumber Beams ........................................... 2- 6 2.3 Longitudinal Deck Superstructures .......................................... 2- 8 2.4 Trusses...................................................................................... 2- 10 2.5 Trestles ...................................................................................... 2- 12 2.6 Glulam Deck Arches ................................................................ 2- 13 2.7 Suspension Bridges ................................................................... 2- 15 2.8 Decks ........................................................................................ 2- 17 Sawn Lumber Planks ................................................................ 2- 17 Nail-Laminated Lumber ........................................................... 2- 18 Glued-Laminated Timber ......................................................... 2- 20 Composite Timber-Concrete .................................................... 2- 20 2.9 Stress-Laminated Timber ......................................................... 2- 22 2.10 Timber Substructures ............................................................... 2- 25 Abutments ............................................................................... 2- 25 Bents ........................................................................................ 2-25 2.11 Selected References ................................................................. 2- 28 v CHAPTER 3 PROPERTIES OF WOOD AND STRUCTURAL WOOD PRODUCTS 3.1 Introduction .............................................................................. 3- 1 3.2 Structure of Wood .................................................................... 3-1 Microstructure . .. 3-2 Macrostructure .......................................................................... 3-2 3.3 Physical Properties of Wood .................................................... 3-5 Directional Properties ............................................................... 3-6 Moisture Content ...................................................................... 3-6 Dimensional Stability ............................................................... 3-8 Density ...................................................................................... 3-11 Specific Gravity ........................................................................ 3-12 Thermal Expansion ................................................................... 3-12 Coefficients of Friction ............................................................. 3-13 Electrical Conductivity ............................................................. 3-13 Pyrolytic Properties .................................................................. 3-14 Natural Durability ..................................................................... 3-15 Chemical Resistance ................................................................. 3-16 3.4 Mechanical Properties .............................................................. 3-17 Elastic Properties ...................................................................... 3-17 Modulus of Elasticity.......................................................... 3-18 Shear Modulus .................................................................... 3-18 Poisson’s Ratio ................................................................... 3-18 Strength Properties . 3-18 Compression . 3-19 Tension . 3-20 Shear . 3-21 Bending . 3-22 Torsion . 3-22 Shock Resistance . 3-23 3.5 Factors Affecting the Strength and Other Properties of Wood . .. 3-23 Anatomical Factors . 3-23 Specific Gravity .................................................................. 3-23 Slope of Grain ..................................................................... 3-24 Knots ................................................................................... 3-24 Abnormal Wood ................................................................. 3-25 vi Compression Failures ........................................................ 3-27 Shake and Pitch Pockets ..................................................... 3-28 Environmental Factors .............................................................. 3-29 Moisture Content ................................................................ 3-29 Temperature ........................................................................ 3-30 Decay and Insect Damage .................................................. 3-30 Ultraviolet Degradation ...................................................... 3-31 Service-Factors ......................................................................... 3-31 Duration of Load ................................................................ 3-31 Creep ................................................................................... 3-32 Fatigue ................................................................................ 3-32 Treatment Factors ............................................................... 3-33 3.6 Properties of Sawn Lumber ...................................................... 3-33 Product Standards ..................................................................... 3-34 Lumber Manufacture ................................................................ 3-35 Lumber Species .................................................................. 3-35 Lumber Sizes ...................................................................... 3-36 Lumber Grading ....................................................................... 3-41 Visual Stress Grading ......................................................... 3-42 Mechanical Stress Grading ................................................. 3-46 Quality Control and Marking ................................................... 3-47 Material Specifications ............................................................. 3-48 3.7 Properties of Glued-Laminated Timber (Glulam) ................... .3-49 Product Standards ..................................................................... 3-50 Manufacturing Criteria for Glulam ........................................... 3-51 Standard Glulam Sizes ........................................................ 3-52 Adhesives ............................................................................ 3-53 Joints . .. 3-54 Appearance . 3-55 Grades of Glulam . 3-55 Bending Combinations . 3-56 Axial Combinations . 3-57 Quality Control and Marking . 3-57 Material Specifications . ....... 3-58 3.8 Selected References . 3-60 vii CHAPTER 4 PRESERVATION AND PROTECTION OF TIMBER BRIDGES 4.1 Introduction .............................................................................
Recommended publications
  • Timber Bridge History Booklet for Web.Qxp
    Printed on Member & recycled Supporter paper TimberTimber TrestleTrestle BridgesBridges inin Alaska Railroad Corporation P.O. Box 107500 • Anchorage, Alaska 99510-7500 (907) 265-2300 • Reservations • (907) 265-2494 AlaskaAlaska RailroadRailroad TTY/TDD • (907) 265-2620 www.AlaskaRailroad.com This History booklet is History also available online by visiting AlaskaRailroad.com Publication Table of Contents “The key to unlocking Alaska is a system of railroads.” — President Woodrow Wilson (1914) The Alaska Railroad at a Glance . 3 Alaska Railroad Historical Overview. 5 Early Development & Operations. 5 Revitalization & World War II . 6 Rehabilitation & Early Cold War . 7 Recent History . 7 About Timber Trestle Bridges . 8 History of Timber Trestle Bridges . 10 in the United States History of Timber Trestle Bridges . 13 on the Alaska Railroad Bridge under constructon at MP 54. (ARRC photo archive) Status of Timber Trestle Bridges . 18 on the Alaska Railroad Historical Significance of Alaska . … progress was immediately hindered 20 Railroad Timber Trestle Bridges by numerous water crossings and abundant muskeg. Representative ARR Timber Bridges . 20 Because a trestle was the easiest and cheapest way to negotiate these barriers, a great many of them were erected, Publication Credits . 22 only to be later replaced or Research Acknowledgements . 22 filled and then forgotten. — Alaska Engineering Commission (1915) Bibliography of References . 22 Cover photo: A train leaves Anchorage, crossing Ship Creek Bridge in 1922. (ARRC photo archive) 01 The Alaska Railroad at a Glance early a century ago, President Woodrow Wilson charged the Alaskan Engineering Commission with building a railroad connecting a southern ice-free harbor to the territory’s interior in order to open this vast area to commerce.
    [Show full text]
  • Timber Bridges in South America
    Timber Bridges in South America Carlito Calil Junior, Laboratory of Wood and Timber Structures, Sao Paulo University, Brazil Abstract Beam Superstructures Timber bridges in South America predate the 19th Longitudinal beams superstructures are the simplest century. This paper provides an introduction of the and most common timber bridge type and consist of a many types of timber bridges currently used in South deck system supported by a series of timber beams America. The five basic types used, which are, the between two or more supports. Bridge beams are longitudinal beam, frame, truss, arch and suspension constructed from logs and sawn lumber, single or superstructures, are presented. Research on new bridge composite elements. designs, using tropical and reforestation wood species, has been developed in the Laboratory of Wood and Log Beams Timber Structures, Sao Paulo University in Brazil, on The simplest type of timber bridge in South America is prestressed timber bridge and decks composed with the log beam. It is constructed by placing round logs two diagonal layers of sawn wood connected with alternately tip and butt sections. The span of log beam wood dowels over composed longitudinal beams. We is limited to sizes and truck loads. The clear span of 5 will construct the first prestressed timber bridge in to 12 meters are most common (Figure 1). South America in this year using Eucalyptus Citriodora specie. In order to support high truck loads, LaMEM developed a longitudinal beam with composite Keywords: timber, briges, South America, Brazil configuration of two logs alternately tip and butt sections and connected with split rings and bolts Introduction (Figure 2).
    [Show full text]
  • Cable Stayed Timber Bridges
    D)l D CTTO Anna Pousette Cable Stayed Timber Bridges Trätek INSTITUTET FÖR TRÄTEKNISK FORSKNI AnnaPousette CABLE STAYED TIMBER BRIDGES Trätek, Rapport 10112042 ISSN 1102-1071 ISRN TRÄTEK - R — 01/042 — SE Nyckelord dimensional analysis timber bridges Stockholm december 2001 Rapporter från Trätek - Institutet för träteknisk forsk• Trätek - Institutet för träteknisk forskning - betjänar ning-är kompletta sammanställningar av forsknings• sågverk, trämanufaktur (snickeri-, frähus-, möbel- och resultat eller översikter, utvecklingar och studier Pu• övrig träförädlande indusfri), skivtillverkare och bygg• blicerade rapporter betecknas med I eller P och num• industri. reras tillsammans med alla utgåvor från Trätek i lö• Institutet är ett icke vinstdrivande bolag med indust• pande följd. riella och institutionella kunder FoU-projekt genom• Citat tillätes om källan anges. förs både som konfidentiella uppdrag för enskilda företagskunder och som gemensamma projekt för grupper av företag eller för den gemensamma bran• schen. Arbetet utförs med egna, samverkande och ex• terna resurser Trätek har forskningsenheter i Stock• holm, Växjö och Skellefteå. Reports issued by the Swedish Institute for Wood The Swedish Institute for Wood Technology Research Technology Research comprise complete accounts serves sawmills, manufacturing (joinery, wooden for research results, or summaries, surveys and houses, furniture and other woodworking plants), studies. Published reports bear the designation I board manufacturers and building industry. or P and are numbered in consecutive order The institute is a non-profit company with industrial together with all the other publications from the and institutional customers. R&D projekcts are Institute. performed as contract work for individual indust• Extracts from the text may be reproduced provided rial customers as well as joint ventures on an the source is acknowledges.
    [Show full text]
  • Timber Bridges Design, Construction, Inspection, and Maintenance
    Timber Bridges Design, Construction, Inspection, and Maintenance Michael A. Ritter, Structural Engineer United States Department of Agriculture Forest Service Ritter, Michael A. 1990. Timber Bridges: Design, Construction, Inspection, and Maintenance. Washington, DC: 944 p. ii ACKNOWLEDGMENTS The author acknowledges the following individuals, Agencies, and Associations for the substantial contributions they made to this publication: For contributions to Chapter 1, Fong Ou, Ph.D., Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For contributions to Chapter 3, Jerry Winandy, Research Forest Products Technologist, USDA Forest Service, Forest Products Laboratory. For contributions to Chapter 8, Terry Wipf, P.E., Ph.D., Associate Professor of Structural Engineering, Iowa State University, Ames, Iowa. For administrative overview and support, Clyde Weller, Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For consultation and assistance during preparation and review, USDA Forest Service Bridge Engineers, Steve Bunnell, Frank Muchmore, Sakee Poulakidas, Ron Schmidt, Merv Eriksson, and David Summy; Russ Moody and Alan Freas (retired) of the USDA Forest Service, Forest Products Laboratory; Dave Pollock of the National Forest Products Association; and Lorraine Krahn and James Wacker, former students at the University of Wisconsin at Madison. In addition, special thanks to Mary Jane Baggett and Jim Anderson for editorial consultation, JoAnn Benisch for graphics preparation and layout, and Stephen Schmieding and James Vargo for photographic support. iii iv CONTENTS CHAPTER 1 TIMBER AS A BRIDGE MATERIAL 1.1 Introduction .............................................................................. l- 1 1.2 Historical Development of Timber Bridges ............................. l-2 Prehistory Through the Middle Ages ....................................... l-3 Middle Ages Through the 18th Century ................................... l-5 19th Century ............................................................................
    [Show full text]
  • The Development of Wooden Bridges Through the Ages – a Review of Selected Examples of Heritage Objects. Part 1 – the Milestones
    TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE CIVIL ENGINEERING BUDOWNICTWO 2-B/2016 DOI: 10.4467/2353737XCT.16.161.5772 DONCHO PARTOV*, MARIUSZ MAŚLAK**, RADAN IVANOV*, MILEN PETKOV*, DENISLAV SERGEEV*, ANTOANETA DIMITROVA* THE DEVELOPMENT OF WOODEN BRIDGES THROUGH THE AGES – A REVIEW OF SELECTED EXAMPLES OF HERITAGE OBJECTS. PART 1 – THE MILESTONES ROZWÓJ MOSTÓW DREWNIANYCH POPRZEZ WIEKI – PRZEGLĄD NA WYBRANYCH PRZYKŁADACH OBIEKTÓW DZIEDZICTWA KULTUROWEGO. CZĘŚĆ 1 – KAMIENIE MILOWE A b s t r a c t In this article, selected examples of heritage wooden bridges, which were built over the centuries in various parts of the world, are presented and briefly discussed. The overview allows the observation of not only the continuous progress in the techniques used to construct bridges of this type but also the variety of the design solutions applied. Keywords: wooden bridge, cultural heritage, historical testimonies, old design solutions Streszczenie W artykule zaprezentowano i krótko omówiono wybrane przykłady realizacji mostów drew- nianych, stanowiących obiekty dziedzictwa kulturowego i budowanych w różnych rejo- nach świata na przestrzeni wieków. Zamieszczony przegląd obrazuje nie tylko ciągły postęp w technikach wznoszenia tego typu mostów, ale również różnorodność zastosowanych roz- wiązań konstrukcyjnych. Słowa kluczowe: most drewniany, dziedzictwo kulturowe, świadectwa historyczne, dawne rozwiązania konstrukcyjne * Prof. Ph.D. Doncho Partov, Assoc. Prof. Ph.D. Radan Ivanov, Assist. Prof. Milen Petkov, D.Sc. Civ. Eng. Denislav Sergeev, Assist. Prof. Antoaneta Dimitrova, University of Structural Engineering and Architecture (VSU) “Lyuben Karavelov”, Sofia, Bulgaria. ** Ph.D. D.Sc. Mariusz Maślak, prof. CUT, Faculty of Civil Engineering, Cracow University of Technology, Cracow, Poland. 94 1. Introduction Wood, in addition to stone, was probably one of the first building materials intentionally used by man to construct bridges.
    [Show full text]
  • 2021 Bridge Program Budget Is Just Over $40 Million
    Bridge Program Project Scope Need, Purpose and Benefits The Alaska Railroad (ARRC) 500-plus miles The ARRC Bridge Program focuses on infra- of mainline and branch track includes 178 bridges structure integrity that underpins safe, reliable rail- and large culverts (10 or more feet in diameter) road transportation services. The Alaska Railroad that cross barriers ranging from streams to gulches. operates over the oldest transportation infra- Railroad bridges may be constructed from steel, structure in the state. Many rail system bridges concrete, wood or a combination of materials, with were constructed decades ago. The ARRC Bridge different span types included in a single bridge. Program pursues heavy maintenance, rehabilitation The ARRC Bridge Program identifies structures and replacement to maintain bridges in a state of requiring upgrade, overhaul or replacement. In good repair. pursuit of this program, ARRC’s current 5-year plan Program activities will address operational calls for 13 bridges to be replaced or rehabilitated efficiency. ARRC is forced to slow train speeds due by internal and contract workers. In addition to to bridge age and deterioration. ARRC must also these large projects, ARRC’s bridge crews accom- perform more preventive maintenance and repairs plish annual repair, rehabilitation and reconstruction in order to keep older bridges in safe and service- activities to ensure bridge structures continue to able condition. safely support ARRC operations. Existing rail bridge limitations also render the Some of the existing railroad bridges have Alaska Railroad’s freight business more costly to op- been identified as eligible, or potentially eligible, erate. ARRC must consistently limit loads on railcars for the National Register of Historical Places, either individually or as contributing elements to a poten- tial historic district.
    [Show full text]
  • Timber As a Bridge Material
    TIMBER AS A BRIDGE MATERIAL 1.1 INTRODUCTION The age of wood spans human history. The stone, iron, and bronze ages were dramatic interims in human progress, but wood-a renewable re- source-has always been at hand. As a building material, wood is abun­ dant, versatile, and easily obtainable. Without it, civilization as we know it would have been impossible. One-third of the area of the United States is forest land. If scientifically managed and protected from natural disasters caused by fire, insects, and disease, forests will last forever. As older trees are harvested, they are replaced by young trees to replenish the wood supply for future generations. The cycle of regeneration, or sustained yield, can equal or surpass the volume being harvested. Wood was probably the first material used by humans to construct a bridge. Although in the 20th century concrete and steel replaced wood as the major materials for bridge construction, wood is still widely used for short- and medium-span bridges. Of the bridges in the United States with spans longer than 20 feet, approximately 12 percent of them, or 71,200 bridges, are made of timber. In the USDA Forest Service alone, approxi­ mately 7,500 timber bridges are in use, and more are built each year. The railroads have more than 1,500 miles of timber bridges and trestles in service. In addition, timber bridges recently have attracted the attention of international organizations and foreign countries, including the United Nations, Canada, England, Japan, and Australia. Timber’s strength, light weight, and energy-absorbing properties furnish features desirable for bridge construction.
    [Show full text]
  • Box Canyon Bridge) Mount Rainier National Park
    MUDDY FORK COWLITZ RIVER BRIDGE HAER No. WA-60 (Box Canyon Bridge) Mount Rainier National Park. h -^^ Spanning Muddy Fork Cowlitz River on Stevens Canyon Highway H nt-lC Packwood Vicinity V^f&H Lewis County ' Washington ©? |- fi^clt , \^ H- KiOTOGRAFHS WRITTEN HISTORICAL AND DESCRIFTIVE DATA REDUCED COPIES OF MEASURED DRAWINGS HISTORIC AMERICAN ENGINEERING RECORD National Park Service U.S. Department of the Interior P.O. Box 37127 Washington, D.C. 20013-7127 HISTORIC AMERICAN ENGINEERING RECORD tyA&ft MUDDY FORK COWLITZ RIVER BRIDGE (Box Canyon Bridge) Mount Rainier National Park HAER No. WA-60 I. INTRODUCTION Location: Spanning Muddy Fork of the Cowlitz River at Box Canyon, Stevens Canyon Highway, Mount Rainier National Park, Lewis County, Washington. Quad: Mount Rainier East, Wash. UTM: 10/604280/5179825 Date of Construction; 1950-52 Structure type: Stone-faced reinforced concrete filled spandrel arch bridge FHwA Structure No.: n/a Designer: Bureau of Public Roads, U.S. Department of Commerce Contractor: Hawkins and Armstrong, Seattle, Washington Owner: Mount Rainier National Park, National Park Service Use: Park highway bridge Significance: The "rustic style" of architecture survived into the 1950s when the Muddy Fork Cowlitz River and Nickel Creek bridges on the Stevens Canyon Highway were constructed as stone-faced reinforced concrete spandrel arch structures, echoing designs employed by the National Park Service as early as 1920. The Muddy Fork Bridge, built over the deep Box Canyon of the Cowlitz, relates especially well to the site; the gently arched bridge seems to spring naturally from the rock cliffs. The nearby tunnel [HAER No. WA-70] is a plain bore through a mountain spur; unlike other tunnels in the park, it has no masonry portals at the ends.
    [Show full text]
  • A Context for Common Historic Bridge Types
    A Context For Common Historic Bridge Types NCHRP Project 25-25, Task 15 Prepared for The National Cooperative Highway Research Program Transportation Research Council National Research Council Prepared By Parsons Brinckerhoff and Engineering and Industrial Heritage October 2005 NCHRP Project 25-25, Task 15 A Context For Common Historic Bridge Types TRANSPORATION RESEARCH BOARD NAS-NRC PRIVILEGED DOCUMENT This report, not released for publication, is furnished for review to members or participants in the work of the National Cooperative Highway Research Program (NCHRP). It is to be regarded as fully privileged, and dissemination of the information included herein must be approved by the NCHRP. Prepared for The National Cooperative Highway Research Program Transportation Research Council National Research Council Prepared By Parsons Brinckerhoff and Engineering and Industrial Heritage October 2005 ACKNOWLEDGEMENT OF SPONSORSHIP This work was sponsored by the American Association of State Highway and Transportation Officials in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Research Council. DISCLAIMER The opinions and conclusions expressed or implied in the report are those of the research team. They are not necessarily those of the Transportation Research Board, the National Research Council, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program. i ACKNOWLEDGEMENTS The research reported herein was performed under NCHRP Project 25-25, Task 15, by Parsons Brinckerhoff and Engineering and Industrial Heritage. Margaret Slater, AICP, of Parsons Brinckerhoff (PB) was principal investigator for this project and led the preparation of the report.
    [Show full text]
  • Ontario Wood Bridge Reference Guide by Moses Structural Engineers and Brown & Co
    Ontario Wood Bridge Reference Guide By Moses Structural Engineers and Brown & Co. Engineering Ltd. for the Canadian Wood Council and the Ontario Ministry of Natural Resources and Forestry CONTACT Ontario Wood WORKS! 1350 Fisher Street, Unit 115 North Bay, ON P1B 2H1 Authors Moses Structural Engineers: David Moses, Mary Alexander, Katherine McAlister, Karen Mesa Brown & Co. Engineering Ltd.: Andrew Lehan, Stephen Brown, and Genaro Dulay Acknowledgements The Canadian Wood Council/Ontario Wood WORKS! wishes to thank the Ontario Ministry of Natural Resources and Forestry, FedNor, Natural Resources Canada, the Province of Québec, and cecobois. Their financial and in-kind contributions made the publication of this document possible. This report was prepared with the technical assistance of Professor Paul Gauvreau, Dr.sc. techn., P.Eng., Professor at the University of Toronto, Department of Civil Engineering. Thank you to the following individuals who provided interviews to the authors: Jasmine Wang, Ph.D., P.Eng. of the Canadian Wood Council, Andrew Lehan, P.Eng., M.A.Sc. of Brown and Company., Marshall Leslie of M.Leslie, Inc., Caroline Frenette, ing. Ph.D. of cecobois, Richard Krutzler of LEA Consulting Ltd., and James Wacker of the US FPL. Thank you to the following individuals who peer reviewed the document: Jasmine Wang, Ph.D., P.Eng. of the Canadian Wood Council and Caroline Frenette, ing. Ph.D. of cecobois. Thank you to the following individuals who peer reviewed the design examples: Tyler McQuaker, P.Eng., Sr. Structural Engineer from NWR Structural Section/Ministry of Transportation Ontario, Cory Zurell, PhD, P.Eng., Principal from Blackwell Structural Engineers and François Pelletier, ing, Direction générale des structures from Ministère des Transports, de la Mobilité durable et de l’Électrification des transports.
    [Show full text]
  • Water, Networks and Crossings Contents Contents
    WATER , NETWORKS AND CROSSINGS CONTENTS 3 Water, networks and crossings Contents Contents .............................................................................................................................................. 164 3.1 WATER BALANCE ............................................................................................................................ 166 3.1.1 Earth ....................................................................................................................................... 166 3.1.2 Evaporation and precipitation ................................................................................................. 167 3.1.3 Runoff ..................................................................................................................................... 169 3.1.4 Static balance ......................................................................................................................... 174 3.1.5 Movement ignoring resistance................................................................................................ 175 3.1.6 Resistance .............................................................................................................................. 178 3.1.7 Erosion and sedimentation ..................................................................................................... 184 3.1.8 Hydraulic geometry of stream channels ................................................................................. 186 3.1.9 River morphology...................................................................................................................
    [Show full text]
  • Chapter 16. Trail Bridges
    Chapter 16. Trail Bridges ...................................................................................... 16-1 16.1. Bridge Site Evaluation ................................................................................ 16-1 16.2. Selecting a Bridge Design .......................................................................... 16-7 16.2.1. Log Stringer Bridge ................................................................................. 16-9 16.2.1.1. Applications .................................................................................... 16-9 16.2.1.2. Attributes ........................................................................................ 16-9 16.2.1.3. Limitations ...................................................................................... 16-9 16.2.1. Milled Stringer Bridge ........................................................................... 16-11 16.2.1.1. Applications .................................................................................. 16-11 16.2.1.2. Limitations .................................................................................... 16-11 16.2.2. Glue-Laminated (Glulam) Stringer Bridge ............................................. 16-13 16.2.2.1. Applications .................................................................................. 16-13 16.2.2.2. Attributes ...................................................................................... 16-14 16.2.2.3. Limitations ...................................................................................
    [Show full text]