Stretching the Limits – Modern Timber Bridge Case Studies Paul C. Gilham, P.E., S.E. Paul Gilham has worked at Western Chief Engineer Wood Structures, Inc. for the past 31 years. His responsibilities include Western Wood Structures, Inc. design of engineered timber structural Tualatin, Oregon USA systems including bridges, trusses
[email protected] arches and domes. He inspects and designs repairs and upgrades for existing timber structures. Summary The trends in timber bridge design during the past decade have been to: increase span lengths, increase loading requirements, and/or leverage the aesthetics of timber. Part of the trend toward increased span length is due to an added emphasis on protecting wetlands and flood plains. The time, effort and expense of permitting an encroachment into a flood plain often make a clear-span option the most cost-effective method of spanning a waterway. Additionally, removing abutments from the flood plain eliminates exposure to scour. In terms of increased loading requirements, the latest AASHTO LRFD Bridge Design Specification [1] increased the vehicle loading requirements by adding a 9.34kN/m (640 plf) lane load, and a multiple presence factor of 1.2. The multiple presence factor alone effectively increased the weight of the HS20 design vehicle from 320kN (72,000 lbs) to 384kN (86,400 lbs), and the addition of the lane load adds an additional 285 kN (64,000 lbs) to each lane of a 30.48m (100 ft) bridge. AASHTO also recently added guidelines and recommendations for bridge aesthetics. The specification states, “Bridges should complement their surroundings, be graceful in form and present an appearance of adequate strength.” [2] The following case studies illustrate how the Modern Timber Bridge design process has kept up with these trends, striding confidently past what was once considered the limits of timber bridge capabilities, while maintaining the functionality, economic advantages and stunning aesthetics inherent in timber construction.