Ontario Wood Bridge Reference Guide by Moses Structural Engineers and Brown & Co

Total Page:16

File Type:pdf, Size:1020Kb

Ontario Wood Bridge Reference Guide by Moses Structural Engineers and Brown & Co Ontario Wood Bridge Reference Guide By Moses Structural Engineers and Brown & Co. Engineering Ltd. for the Canadian Wood Council and the Ontario Ministry of Natural Resources and Forestry CONTACT Ontario Wood WORKS! 1350 Fisher Street, Unit 115 North Bay, ON P1B 2H1 Authors Moses Structural Engineers: David Moses, Mary Alexander, Katherine McAlister, Karen Mesa Brown & Co. Engineering Ltd.: Andrew Lehan, Stephen Brown, and Genaro Dulay Acknowledgements The Canadian Wood Council/Ontario Wood WORKS! wishes to thank the Ontario Ministry of Natural Resources and Forestry, FedNor, Natural Resources Canada, the Province of Québec, and cecobois. Their financial and in-kind contributions made the publication of this document possible. This report was prepared with the technical assistance of Professor Paul Gauvreau, Dr.sc. techn., P.Eng., Professor at the University of Toronto, Department of Civil Engineering. Thank you to the following individuals who provided interviews to the authors: Jasmine Wang, Ph.D., P.Eng. of the Canadian Wood Council, Andrew Lehan, P.Eng., M.A.Sc. of Brown and Company., Marshall Leslie of M.Leslie, Inc., Caroline Frenette, ing. Ph.D. of cecobois, Richard Krutzler of LEA Consulting Ltd., and James Wacker of the US FPL. Thank you to the following individuals who peer reviewed the document: Jasmine Wang, Ph.D., P.Eng. of the Canadian Wood Council and Caroline Frenette, ing. Ph.D. of cecobois. Thank you to the following individuals who peer reviewed the design examples: Tyler McQuaker, P.Eng., Sr. Structural Engineer from NWR Structural Section/Ministry of Transportation Ontario, Cory Zurell, PhD, P.Eng., Principal from Blackwell Structural Engineers and François Pelletier, ing, Direction générale des structures from Ministère des Transports, de la Mobilité durable et de l’Électrification des transports. Thank you to the following individuals who supplied reference material for the document: Patrick Crabbe from Atlantic WoodWORKS!, Percy Champagne from FPInnovations, John Pineau from FPInnovations, Mohammad Mohammad from FPInnovations and NRCan, Dan Tingley from TRS/WRD, Gary Farnden from Government of BC, Ministry of Transportation and Infrastructure, Terry MacKay from Government of BC, Ministry of Transportation and Infrastructure, Brian Chow from Government of BC, Ministry of Transportation and Infrastructure, Keven Durand from Nordic Structures and Crawford Dewar from Guardian Bridge Rapid Construction. Copyright © 2017 Copyright notice: With the permission of Canadian Standards Association, (operating as “CSA Group”), 178 Rexdale Blvd., Toronto, ON, M9W 1R3, material is reproduced from CSA Group’s standard S6-14 – Canadian Highway Bridge Design Code. This material is not the complete and official position of CSA Group on the referenced subject, which is represented solely by the Standard in its entirety. While use of the material has been authorized, CSA Group is not responsible for the manner in which the data is presented, nor for any representations and interpretations. No further reproduction is permitted. For more information or to purchase standard(s) from CSA Group, please visit http://shop.csa.ca/ or call 1-800-463-6727. Disclaimer: It is intended that this guide is to be used in conjunction with competent engineering design. The authors, Moses Structural Engineers Inc., Brown & Co. Engineering Ltd., Ontario Wood WORKS!, the Canadian Wood Council, the Ministry of Natural Resources and Forestry and their contractors make no warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of and/or reference to the information included in this publication and/or omissions in this work, or for any engineering designs, plans, or construction prepared from it. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. This guide does not exempt applicants from obtaining any other authorization(s) required by any law or regulation, as the case may be. Photo credit for cover: Stephane Groleau Ontario Wood Bridge Reference Guide i FORWARD Timber bridges have a long history of construction and use throughout North America, including Ontario, for roadways, railways and logging roads. The Canadian Highway Bridge Design Code (CHBDC), together with the Canadian Wood Council publication Wood Highway Bridges from 1992 are typically referenced by designers of timber bridges in Ontario. This new reference is intended to provide updated background information for designers as they embark on proposing and designing timber highway bridges for primary and secondary roads. This reference is divided into three parts: Part 1 – Wood Bridges – Design and Use Part 2 – Opportunities & Current Limitations Part 3 – Design Examples Part 1 provides background information on topics including wood materials, bridge systems, prefabrication, durability and species availability. Details of costs, construction cycle and sustainability are also provided. Part 1 concludes with examples of a variety of completed highway bridges from North America and Europe. Part 2 of this reference is intended to provide designers and authorities with highlights of the current edition of the CHBDC on subjects related to the wood highway bridges, including areas that will require future development in the code. Additional references to other resources for advancing practitioner knowledge of and advancing the state of the art in wood bridge design are provided. Part 3 has two fully worked design examples of a two-lane 18-m span wood highway bridge designed in accordance with the latest provisions of the CHBDC and the best available information from current literature. Each example is based on a single-span, simply-supported glued-laminated girder bridge. One bridge has a glued-laminated deck and the other has a stress-laminated deck. These examples are intended to help designers understand the key issues as they undertake wood highway bridge design. Durability through detailing and choice of materials is discussed. ii Ontario Wood Bridge Reference Guide TABLE OF CONTENTS PART ONE – WOOD BRIDGES PART TWO – OPPORTUNITIES & DESIGN AND USE CURRENT LIMITATIONS 1.1. Introduction .................................................2 2.1. Introduction ...............................................56 1.1.1. Scope .........................................5 2.2. Review of CAN/CSA S6 – Canadian Highway Bridge Design Code ...................58 1.2. Wood Bridge Systems and Technology ......5 2.2.1. CAN/CSA S6 – 1.2.1. Wood Bridge Materials ...............5 Section 1 – General .................58 1.2.2. Wood Bridge Systems ...............7 2.2.2. CAN/CSA S6 – 1.2.2.1. Decks .........................................7 Section 2 – Durability ...............59 1.2.2.2. Super Structures ...................... 11 2.2.3. CAN/CSA S6 – 1.2.2.3. Sub-Structures .........................17 Section 3 – Loads ....................59 1.2.2.4. Other Systems .........................17 2.2.4. CAN/CSA S6 – Section 4 – Seismic Design .....59 1.3. Wood Bridge Design Considerations ..........17 2.2.5. CAN/CSA S6 – Section 5 – 1.3.1. Canadian Highway Bridge Methods of Analysis .................60 Design Code (CHBDC) ............18 2.2.6. CAN/CSA S6 – Section 6 – 1.3.2. MTO Ontario Provincial Foundations and Standard Specification .............18 Geotechnical Systems .............63 1.3.3. Ontario Heritage 2.2.7. CAN/CSA S6 – Section 7 – Bridge Guidelines .....................18 Buried Structures .....................63 1.3.4. Prefabrication ...........................19 2.2.8. CAN/CSA S6 – Section 8 – 1.3.5. Prestressing .............................20 Concrete Structures .................63 1.3.6. Service Life and Durability .......21 2.2.9. CAN/CSA S6 – Section 9 – Wood Structures ......................63 1.3.7. Species ....................................22 2.2.9.1 Clause 9.4 Limit States Design .64 1.3.8. International Recent Practices ..................................22 2.2.9.2. Clause 9.5 General Design ......64 1.4. Wood Bridge Protection ............................23 2.2.9.3. Clause 9.6 Flexure ...................64 1.5. Benefits of Wood Bridges..........................28 2.2.9.4. Clause 9.7 Shear .....................65 1.5.1. Cost ..........................................29 2.2.9.5. Clause 9.11 Solid wood ............65 1.5.2. Construction Cycle ...................30 2.2.9.6. Clause 9.12 Glulam timber .......66 1.5.3. Sustainability ............................30 2.2.9.7. Clause 9.15 Fastenings ............66 1.6. Wood Bridge Examples.............................33 2.2.9.8. Clause 9.17 Durability ..............67 1.6.1. Ontario Bridge Examples .........33 2.2.9.9. Clause 9.21 Nail-laminated Wood Decks .............................69 1.6.2. Other Canadian Bridge Examples ......................42 2.2.10. CAN/CSA S6 – Section 10 – Steel structures ........................70 1.6.3. American Bridge Examples .....46 2.2.11. CAN/CSA S6 – Section 11 – 1.6.4. International Bridge Joints and Bearings .................70 Examples .................................48 2.2.12. CAN/CSA S6 – Section 12 – 1.7. References ................................................52 Barriers and Highway Accessory Supports .................70 2.2.13. CAN/CSA S6 – Section 13 – Movable Bridges ......................70 Ontario Wood Bridge Reference Guide iii PART TWO – OPPORTUNITIES & PART THREE – CURRENT LIMITATIONS (cont’d) DESIGN EXAMPLES 2.2.14. CAN/CSA S6 – Section 14 – 3.2.3.3.3. Horizontal
Recommended publications
  • Steel Bridge Design Handbook Vol. 13
    U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Bracing System Design Publication No. FHWA-HIF-16-002 - Vol. 13 December 2015 FOREWORD This handbook covers a full range of topics and design examples intended to provide bridge engineers with the information needed to make knowledgeable decisions regarding the selection, design, fabrication, and construction of steel bridges. Upon completion of the latest update, the handbook is based on the Seventh Edition of the AASHTO LRFD Bridge Design Specifications. The hard and competent work of the National Steel Bridge Alliance (NSBA) and prime consultant, HDR, Inc., and their sub-consultants, in producing and maintaining this handbook is gratefully acknowledged. The topics and design examples of the handbook are published separately for ease of use, and available for free download at the NSBA and FHWA websites: http://www.steelbridges.org, and http://www.fhwa.dot.gov/bridge, respectively. The contributions and constructive review comments received during the preparation of the handbook from many bridge engineering processionals across the country are very much appreciated. In particular, I would like to recognize the contributions of Bryan Kulesza with ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don White with Georgia Institute of Technology, Jamie Farris with Texas Department of Transportation, and Bill McEleney with NSBA. Joseph L. Hartmann, PhD, P.E. Director, Office of Bridges and Structures Notice This document is disseminated under the sponsorship of the U.S.
    [Show full text]
  • Steel Bridge Design Handbook
    U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Design Example 4: Three-Span Continuous Straight Composite Steel Tub Girder Bridge Publication No. FHWA-HIF-16-002 - Vol. 24 December 2015 FOREWORD This handbook covers a full range of topics and design examples intended to provide bridge engineers with the information needed to make knowledgeable decisions regarding the selection, design, fabrication, and construction of steel bridges. Upon completion of the latest update, the handbook is based on the Seventh Edition of the AASHTO LRFD Bridge Design Specifications. The hard and competent work of the National Steel Bridge Alliance (NSBA) and prime consultant, HDR, Inc., and their sub-consultants, in producing and maintaining this handbook is gratefully acknowledged. The topics and design examples of the handbook are published separately for ease of use, and available for free download at the NSBA and FHWA websites: http://www.steelbridges.org, and http://www.fhwa.dot.gov/bridge, respectively. The contributions and constructive review comments received during the preparation of the handbook from many bridge engineering processionals across the country are very much appreciated. In particular, I would like to recognize the contributions of Bryan Kulesza with ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don White with Georgia Institute of Technology, Jamie Farris with Texas Department of Transportation, and Bill McEleney with NSBA. Joseph L. Hartmann, PhD, P.E.
    [Show full text]
  • Over Jones Falls. This Bridge Was Originally No
    The same eastbound movement from Rockland crosses Bridge 1.19 (miles west of Hollins) over Jones Falls. This bridge was originally no. 1 on the Green Spring Branch in the Northern Central numbering scheme. PHOTO BY MARTIN K VAN HORN, MARCH 1961 /COLLECTION OF ROBERT L. WILLIAMS. On October 21, 1959, the Interstate Commerce maximum extent. William Gill, later involved in the Commission gave notice in its Finance Docket No. streetcar museum at Lake Roland, worked on the 20678 that the Green Spring track west of Rockland scrapping of the upper branch and said his boss kept would be abandoned on December 18, 1959. This did saying; "Where's all the steel?" Another Baltimore not really affect any operations on the Green Spring railfan, Mark Topper, worked for Phillips on the Branch. Infrequently, a locomotive and a boxcar would removal of the bridge over Park Heights Avenue as a continue to make the trip from Hollins to the Rockland teenager for a summer job. By the autumn of 1960, Team Track and return. the track through the valley was just a sad but fond No train was dispatched to pull the rail from the memory. Green Spring Valley. The steel was sold in place to the The operation between Hollins and Rockland con- scrapper, the Phillips Construction Company of tinued for another 11/2 years and then just faded away. Timonium, and their crews worked from trucks on ad- So far as is known, no formal abandonment procedure jacent roads. Apparently, Phillips based their bid for was carried out, and no permission to abandon was the job on old charts that showed the trackage at its ' obtained.
    [Show full text]
  • Timber Bridges Design, Construction, Inspection, and Maintenance
    Timber Bridges Design, Construction, Inspection, and Maintenance Michael A. Ritter, Structural Engineer United States Department of Agriculture Forest Service Ritter, Michael A. 1990. Timber Bridges: Design, Construction, Inspection, and Maintenance. Washington, DC: 944 p. ii ACKNOWLEDGMENTS The author acknowledges the following individuals, Agencies, and Associations for the substantial contributions they made to this publication: For contributions to Chapter 1, Fong Ou, Ph.D., Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For contributions to Chapter 3, Jerry Winandy, Research Forest Products Technologist, USDA Forest Service, Forest Products Laboratory. For contributions to Chapter 8, Terry Wipf, P.E., Ph.D., Associate Professor of Structural Engineering, Iowa State University, Ames, Iowa. For administrative overview and support, Clyde Weller, Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For consultation and assistance during preparation and review, USDA Forest Service Bridge Engineers, Steve Bunnell, Frank Muchmore, Sakee Poulakidas, Ron Schmidt, Merv Eriksson, and David Summy; Russ Moody and Alan Freas (retired) of the USDA Forest Service, Forest Products Laboratory; Dave Pollock of the National Forest Products Association; and Lorraine Krahn and James Wacker, former students at the University of Wisconsin at Madison. In addition, special thanks to Mary Jane Baggett and Jim Anderson for editorial consultation, JoAnn Benisch for graphics preparation and layout, and Stephen Schmieding and James Vargo for photographic support. iii iv CONTENTS CHAPTER 1 TIMBER AS A BRIDGE MATERIAL 1.1 Introduction .............................................................................. l- 1 1.2 Historical Development of Timber Bridges ............................. l-2 Prehistory Through the Middle Ages ....................................... l-3 Middle Ages Through the 18th Century ................................... l-5 19th Century ............................................................................
    [Show full text]
  • Glulam Timber Bridges for Local Roads Zachary Charles Carnahan South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2017 Glulam Timber Bridges for Local Roads Zachary Charles Carnahan South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Civil and Environmental Engineering Commons Recommended Citation Carnahan, Zachary Charles, "Glulam Timber Bridges for Local Roads" (2017). Theses and Dissertations. 1173. http://openprairie.sdstate.edu/etd/1173 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. GLULAM TIMBER BRIDGES FOR LOCAL ROADS BY ZACHARY CHARLES CARNAHAN A thesis in partial fulfillment of the requirements for the Master of Science Major in Civil Engineering South Dakota State University 2017 iii DISCLAIMER The contents of this report, funded in part through grant(s) from the Federal Highway Administration, reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the South Dakota Department of Transportation, the State Transportation Commission, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. iv ACKNOWLEDGEMENTS This study was funded by the South Dakota Department of Transportation (SDDOT) and the Mountain Plains Consortium (MPC) University Transportation Center.
    [Show full text]
  • Steel Bridge Design Handbook
    U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Design Example 2A: Two-Span Continuous Straight Composite Steel I-Girder Bridge ArchivedPublication No. FHWA-IF-12-052 - Vol. 21 November 2012 Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for use of the information contained in this document. This report does not constitute a standard, specification, or regulation. Quality Assurance Statement The Federal Highway Administration provides high-quality information to serve Government, industry, and the publicArchived in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Steel Bridge Design Handbook Design Example 2A: Two-Span Continuous Straight Composite Steel I-Girder Bridge Publication No. FHWA-IF-12-052 - Vol. 21 November 2012 Archived Archived Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-IF-12-052 - Vol. 21 4. Title and Subtitle 5. Report Date Steel Bridge Design Handbook Design Example 2A: Two-Span November 2012 Continuous Straight Composite Steel I-Girder Bridge 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Karl Barth, Ph.D. (West Virginia University) 9. Performing Organization Name and Address 10. Work Unit No. HDR Engineering, Inc. 11 Stanwix Street 11. Contract or Grant No. Suite 800 Pittsburgh, PA 15222 12.
    [Show full text]
  • Effect of Skew Angle on the Behavior of Bowstring Girder Bridge
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072 Effect of Skew Angle on the Behavior of Bowstring Girder Bridge Santhosh Kumar R1, Dr. Mahadev Achar M2, Dr. H Eramma3 1Post Graduate Student, Dept. of Civil Engineering, University B D T College of Engineering, Karnataka, India 2Senior Vice-President, Transys Consulting Pvt. Ltd. Bengaluru, Karnataka, India 3Associate Professor, Dept. Civil Engineering, University B D T College of Engineering, Karnataka, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - The presence of Skew angle in the bridge plays 1.1 History of Bridge Development an important role. All the times it is not possible to have 0 degree skew bridge or straight bridge, therefore at certain Construction of bridges is not a new science. Since as situations it is necessary to provide certain amount of skew to per reference earliest bridge available across Nile-river built the bridge. In such situations special attention required to in about 2650 BC. The giant trees felling across natural understand the behavior of bridge. The stresses distribution in streams were the simple bridges to cross streams for ancient the bridge is not uniform and it varies with the skew angle. peoples and that was the basic idea for them to development Few studies shows that up to 20 degree skew angle the of bridges. From this idea they started using timber as basic behavior of the bridge is similar to the straight bridge, but material for bridge building and this has been followed by beyond 20 degree the behavior is quite different.
    [Show full text]
  • State of the Art for Long Span Prestressed Concrete Bridges of Segmental Construction
    STATE OF THE ART FOR LONG SPAN PRESTRESSED CONCRETE BRIDGES OF SEGMENTAL CONSTRUCTION Segmental prestressed concrete bridges are described in terms of cross-sectional shape, layout of tendons, casting procedures, jointing techniques, and design details. Techniques of analysis for structures of this type are reviewed. Prospects for use of this type of construction in the United States are discussed and current work outlined. Geoffrey C. Lacey John E. Breen Ned H. Burns University of New South Wales The University of Texas The University of Texas Sydney, Australia Austin, Texas Austin, Texas In highway bridge construction access and minimize obstruction. there is an increasing trend toward With stream crossings, even longer the use of longer spans. This trend is spans in the 300 ft. (90 m) range will the result of a number of different sometimes be necessary. When all requirements relating to safety, factors are considered the trend to- economy, function and esthetics. ward long span bridges seems irre- The February 1967 report(38> of versible. the special AASHO Traffic Safety Precast I-girders, of the type now Committee calls for the "adoption widely used for spans up to 120 ft. and use of two-span bridges for over- (37 m), will not be adequate for passes crossing divided highways .. these longer spans. It was pro- to eliminate the bridge piers normal- posed(48) that AASHO Type VII- ly placed adjacent to the outside girders might be used for simple shoulders." To comply with these spans up to 140 ft. (43 m) and con- safety criteria, two-span, three-span, tinuous spans up to 160 ft.
    [Show full text]
  • G 13.1 Guidelines for Steel Girder Bridge Analysis.Pdf
    G13.1 Guidelines for Steel Girder Bridge Analysis 2nd Edition American Association of State Highway Transportation Officials National Steel Bridge Alliance AASHTO/NSBA Steel Bridge Collaboration Copyright © 2014 by the AASHTO/NSBA Steel Bridge Collaboration All rights reserved. ii G13.1 Guidelines for Steel Girder Bridge Analysis PREFACE This document is a standard developed by the AASHTO/NSBA Steel Bridge Collaboration. The primary goal of the Collaboration is to achieve steel bridge design and construction of the highest quality and value through standardization of the design, fabrication, and erection processes. Each standard represents the consensus of a diverse group of professionals. It is intended that Owners adopt and implement Collaboration standards in their entirety to facilitate the achievement of standardization. It is understood, however, that local statutes or preferences may prevent full adoption of the document. In such cases Owners should adopt these documents with the exceptions they feel are necessary. Cover graphics courtesy of HDR Engineering. DISCLAIMER The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty of the part of the American Association of State Highway and Transportation Officials (AASHTO) or the National Steel Bridge Alliance (NSBA) or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents.
    [Show full text]
  • Bridge News January 2021
    State Aid Bridge News January 2021 (Carrolton Township Bridge 23536, Heron Rd. over the South Branch of the Root River, Fillmore County, Minnesota, a winner of the 2019 MnDOT - AGC Bridge Construction Awards.) Bridge Inspection General In the 2020 MnDOT Bridge Inspection Seminars, the afternoon session for Program Adminis- Contents: trators focused on a SIMS tutorial and a Bridge Inspection Program Administrator Checklist (PDF). Another thorough resource to supplement the PA checklist is the Bridge and Structure • Bridge Inspection General (pg. 1-2) Inspection Program Manual (BSIPM) (PDF). Also, at the PA session a presentation on “Stuff • Fatigue Study Update (pg. 2-3) You Should Now” as a PA was delivered. We would encourage all designated PA’s to revisit • Bridge Maintenance (pg. 3-4) this presentation and other available PA materials and resources before each new inspection season to assure your local bridge inspection program remains fully compliant from year to • Bridge Hydraulic News (pg. 4-5) year. But always remember MnDOT staff in the Bridge Inventory Management Unit and • MCEA County Engineers Bridge Committee Bridge Inspection Unit, along with State Aid Bridge and your DSAE are available to advise and Update (pg. 5-6) to help you through situations that can obstruct or distract your efforts to fulfill the NBIS • Local BRIM Update (pg. 6) regulations. And, our friendly FHWA Bridge Engineer, Tim Anderson is your key resource with related NBIS matters and other FHWA Bridge programs. Tim’s contact information can be • 2020 Featured Local Bridge Projects (pg. 7) found on the FHWA Minnesota Division Staff Directory webpage.
    [Show full text]
  • Timber Bridges Design, Construction, Inspection, and Maintenance
    Timber Bridges Design, Construction, Inspection, and Maintenance Michael A. Ritter, Structural Engineer United States Department of Agriculture Forest Service Ritter, Michael A. 1990. Timber Bridges: Design, Construction, Inspection, and Maintenance. Washington, DC: 944 p. ii ACKNOWLEDGMENTS The author acknowledges the following individuals, Agencies, and Associations for the substantial contributions they made to this publication: For contributions to Chapter 1, Fong Ou, Ph.D., Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For contributions to Chapter 3, Jerry Winandy, Research Forest Products Technologist, USDA Forest Service, Forest Products Laboratory. For contributions to Chapter 8, Terry Wipf, P.E., Ph.D., Associate Professor of Structural Engineering, Iowa State University, Ames, Iowa. For administrative overview and support, Clyde Weller, Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For consultation and assistance during preparation and review, USDA Forest Service Bridge Engineers, Steve Bunnell, Frank Muchmore, Sakee Poulakidas, Ron Schmidt, Merv Eriksson, and David Summy; Russ Moody and Alan Freas (retired) of the USDA Forest Service, Forest Products Laboratory; Dave Pollock of the National Forest Products Association; and Lorraine Krahn and James Wacker, former students at the University of Wisconsin at Madison. In addition, special thanks to Mary Jane Baggett and Jim Anderson for editorial consultation, JoAnn Benisch for graphics preparation and layout, and Stephen Schmieding and James Vargo for photographic support. iii iv CONTENTS CHAPTER 1 TIMBER AS A BRIDGE MATERIAL 1.1 Introduction .............................................................................. l- 1 1.2 Historical Development of Timber Bridges ............................. l-2 Prehistory Through the Middle Ages ....................................... l-3 Middle Ages Through the 18th Century ................................... l-5 19th Century ............................................................................
    [Show full text]
  • Difference Between Deck Type and Through Type Bridge and Their Components
    Difference between Deck Type and Through Type Bridge and their Components Naveen Choudhary 1 DEFERENCE BETWEEN DECK TYPE AND THROUGH TYPE RAILWAY BRIDGES • Deck-type bridges refer to those in which the road deck is carried on the top flange or on top of the supporting girders. • Through type bridge - The carriageway rests at the bottom level of the main load carrying members. In the through type plate girder bridge, the roadway or railway is placed at the level of bottom flanges. Mr. Naveen Choudhary, GEC Ajmer 2 DEFERENCE BETWEEN DECK TYPE AND THROUGH TYPE RAILWAY BRIDGES Mr. Naveen Choudhary,GEC Ajmer 3 DEFERENCE BETWEEN DECK TYPE AND THROUGH TYPE RAILWAY BRIDGES Through type deck bridge Mr. Naveen Choudhary,GEC Ajmer 4 DEFERENCE BETWEEN DECK TYPE AND THROUGH TYPE RAILWAY BRIDGES Mr. Naveen Choudhary,GEC Ajmer 5 DEFERENCE BETWEEN DECK TYPE AND THROUGH TYPE RAILWAY BRIDGES Mr. Naveen Choudhary,GEC Ajmer 6 Through Type Bridge Mr. Naveen Choudhary,GEC Ajmer 7 Through Type Bridge Mr. Naveen Choudhary,GEC Ajmer 8 Through Type Bridge Mr. Naveen Choudhary,GEC Ajmer 9 Deck Type Bridge Mr. Naveen Choudhary,GEC Ajmer 10 Deck Type Bridge Mr. Naveen Choudhary,GEC Ajmer 11 Deck Type Bridge Mr. Naveen Choudhary,GEC Ajmer 12 Cross-Section deck type bridge Mr. Naveen Choudhary,GEC Ajmer 13 Normal span ranges of bridge system Mr. Naveen Choudhary,GEC Ajmer 14 Normal span ranges of bridge system TYPE Maximum Span 500 m Steel arch bridge 240 m Steel bow-string girder bridge 1200 m Steel cable suspension bridge 30 m Steel plate girder 10 m Steel rolled beam bridge 180 m Steel truss bridge Mr.
    [Show full text]