Insulin-Like Factor 3 As a Monitor of Endocrine Disruption

Total Page:16

File Type:pdf, Size:1020Kb

Insulin-Like Factor 3 As a Monitor of Endocrine Disruption REPRODUCTIONREVIEW Insulin-like factor 3 as a monitor of endocrine disruption Ravinder Anand-Ivell1,2 and Richard Ivell3,4 1School of Biosciences, University of Nottingham, Sutton Bonington, UK, 2School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5000, Australia, 3Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany and 4School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia Correspondence should be addressed to R Anand-Ivell at School of Biosciences, University of Nottingham; Email: [email protected] Abstract Insulin-like factor 3 (INSL3) is generated and secreted by differentiated interstitial Leydig cells of the testes in both fetal and adult males of all mammalian species so far analyzed. All evidence to date suggests that it is produced constitutively, independently of acute regulation by the hypothalamo-pituitary–gonadal (HPG) axis, in amounts which reflect the numbers and differentiation status of the Leydig cells. This Leydig cell functional capacity is otherwise monitored only by androgen output, which, however, is massively confounded by acute regulation from the HPG axis and other factors leading to substantial and irregular short-term variation. Leydig cells are a primary target of endocrine-disrupting agents in the context of the testicular dysgenesis syndrome in the fetal male, as well as in the adult. In the male fetus, INSL3 is responsible for the first phase of testicular descent, and hence is directly linked to the etiology of cryptorchidism. In this study, by measuring INSL3 production, for example, during fetal life via amniotic fluid, or as secretions from fetal testis explants, or in adult peripheral blood, we and others have shown that INSL3 represents a useful quantitative and sensitive endpoint for assessing the impact of endocrine-disrupting agents and their mechanisms of action. Reproduction (2014) 147 R87–R95 Introduction fetus is indeed vulnerable to a range of intrinsic (maternal nutrition and metabolism) and extrinsic Until relatively recently, the growing embryo in agents, mostly man-made chemicals which appear to viviparous mammals was considered to be protected be able to interfere with the establishment of fetal organ from external influences by a combination of the fetal systems and their endocrine or paracrine control membranes and the placenta, together with the catabolic mechanisms (Swanson et al.2009, Barouki et al. capacity of the maternal physiology, where the liver and 2012). The DOHaD concept is reinforced by our modern kidney act as first lines of defense against noxious understanding of the important role played by epige- environmental agents. Since the construction of the netics, not only in determining cell fates and lineage DOHaD hypothesis (Developmental Origins of Health phenotypes in the embryo, but also by acting as a and Disease), we now know that in spite of these memory for extrinsic insults, which may impact on adult maternal and fetal defense mechanisms the growing physiology long after the exposure has ceased (Sinclair et al. 2007). One of the most vulnerable periods during the life of This paper forms part of a special issue of Reproduction on Endocrine the fetus is in the transition from first to second trimester. Disrupters. This article was presented at the 7th Copenhagen Workshop This is the time when most organ systems are developing on Endocrine Disrupters, 28–31 May 2013. The meeting was supported by the Danish Ministry of the Environment – Environmental Protection rapidly, both anatomically as well as in the establishment Agency as an activity under the Danish Centre on Endocrine Disrupters. of their endocrine control systems. It is also a time Publication of this special issue has been supported by the Society for when the fetal skin is still relatively permeable, such Reproduction and Fertility. The opinions or views expressed in this that amniotic fluid largely comprises fetal serum exudate special issue are those of the authors, and do not necessarily reflect (Underwood et al. 2005, Beall et al. 2007), and thus the opinions or recommendations of the Danish Ministry of the offers very little protection against exogenous chemical Environment – Environmental Protection Agency or the Society for insult. Moreover, at this time the placenta is establishing Reproduction and Fertility. The Guest Editors for this special issue were Anna-Maria Andersson, Hanne Frederiksen, Niels Erik Skakkebæk, its vascular bed and functional dimensions. Typical for Rigshospitalet, Denmark, Kenneth M Grigor, Western General Hospital, this period is the differentiation of the male organs Edinburgh, UK and Jorma Toppari, University of Turku, Finland. of reproduction, the testes and Wolffian derivatives. q 2014 Society for Reproduction and Fertility DOI: 10.1530/REP-13-0486 ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org Downloaded from Bioscientifica.com at 09/28/2021 11:36:45PM via free access R88 R Anand-Ivell and R Ivell Very shortly after SRY-induced sex determination in the expression of the SRY gene by the Sertoli cells to signal male fetus, the somatic cells of the fetal testes proliferate sex determination. In humans, this occurs at around and differentiate into Sertoli and steroidogenic Leydig week 7 of pregnancy and in mice at around day 11 (Viger cells, providing both a niche for the developing et al. 2005, Sekido & Lovell-Badge 2013). Latest totipotent germ cell stem cells (gonocytes) as well as evidence suggests that the fetal Leydig cells (at least in delivering the hormones essential for adequate develop- the mouse) may have a dual origin, in that they appear ment of the male genitalia and reproductive organs not only to differentiate from mesenchymal cells within (androgens, AMH, and insulin-like factor 3 (INSL3)). the gonadal ridge but also migrate in from close to the In contrast, the ovary of the female fetus at this time is mesonephros (De Falco et al. 2011). In either case they relatively less active as an endocrine organ, with a lack of begin to express the transcription factor SF1 almost hormones determining the female phenotype. Therefore, immediately after Sry expression in the Sertoli cells at because the testes are very actively differentiating at this around day e10.5 in the mouse (Sekido & Lovell-Badge vulnerable time, and because they are both producing 2008). INSL3 is a gene which in the adult testis is and are themselves regulated by a very active hormonal regulated via multiple SF1-responsive elements in its system in this period of early gestation, environmental promoter, but is a marker for a relatively late stage of endocrine disruption by extrinsic hormone-like factors Leydig cell differentiation (Sadeghian et al. 2005). If its has been most emphatically observed in regard to the expression is similarly regulated in the fetus, then this male reproductive phenotype. Consequently, symptoms would imply that INSL3 in fetal Leydig cells should of the testicular dysgenesis syndrome (TDS; i.e. cryp- become detectable soonest after about day e12.5 in the torchidism, hypospadias, testis cancer, reduced sperm mouse, or by weeks 8–10 in the human. Indeed, the earliest counts, and adult androgen production) are among the evidence for Insl3 mRNA detection in the mouse is on commonest manifestations of endocrine disruption day e12.5 (Sarraj et al.2010) and, for the human, INSL3 during pregnancy (Skakkebaek et al. 2001, Sharpe & peptide has been measured in the amniotic fluid Skakkebaek 2008). Nevertheless, other organ systems are at gestational week 11 (R Anand-Ivell, unpublished also likely to be affected, though possibly less obviously. observations). There is less evidence available for other Unfortunately, the transition from first to second species, although sporadic measurements of INSL3 in the trimester of pregnancy in humans is one of the most bovine (Anand-Ivell et al.2011), porcine, or rat systems difficult physiological time points to access. The fetus is (Anand-Ivell, Vernunft, Barthol & Ivell, unpublished still very small and fragile, and maternal serum offers few observations) confirm that high levels of INSL3 are clues as to how the pregnancy is progressing. Moreover, detectable in fetal blood, or in fetal fluids, at the time of of the endogenous hormones being produced by the the first transabdominal phase of testicular descent (Fig. 1). fetus in measurable amounts, few have the required All evidence so far indicates that the Leydig cells of the specificity to be able to offer any conclusive diagnostic testes are the only source of INSL3 in the fetus. Female outcome. So, for example, androgens are generated by fetuses consequently appear to express no or only very both adrenal glands and gonads at this time, and thus are low levels of INSL3, the origin of which is obscure expressed by both male and female fetuses in not very (Anand-Ivell, unpublished observations). Thus the detec- different amounts (Anand-Ivell et al. 2008, Scott et al. tion of INSL3 in fetal blood or amniotic fluid during 2009). An exception is provided by the small peptide mid-gestation is a very reliable indication of male fetal hormone INSL3, which is produced in large amounts gender (at least in monotocous species). Moreover, in by the fetal testis shortly after sex determination some species, e.g. cows, where maternal circulating (Anand-Ivell et al. 2008). It is produced by no other fetal organ, consequently does not appear to be Rodent F TA IS produced by the female fetus (Anand-Ivell et al. 2008, Bay et al. 2008), and is made in only very low amounts Pig F TA IS by the maternal ovary (Anand-Ivell et al. 2013). It thus Bovine F TA IS has the potential to be a highly specific monitor for any Human F TA IS events impacting on the normal differentiation and development of the fetal testis during the important window for endocrine disruption at the transition from 0 20406080100 first to second trimesters (in the human).
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Cannabinoid CB1R Receptor Mediates Metabolic Syndrome in Models of Circadian and Glucocorticoid Dysregulation Nicole Bowles
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2013 Cannabinoid CB1R Receptor Mediates Metabolic Syndrome in Models of Circadian and Glucocorticoid Dysregulation Nicole Bowles Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Bowles, Nicole, "Cannabinoid CB1R Receptor Mediates Metabolic Syndrome in Models of Circadian and Glucocorticoid Dysregulation" (2013). Student Theses and Dissertations. Paper 232. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CANNABINOID CB1R RECEPTOR MEDIATES METABOLIC SYNDROME IN MODELS OF CIRCADIAN AND GLUCOCORTICOID DYSREGULATION A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Nicole Bowles June 2013 Copyright by Nicole Bowles 2013 CANNABINOID CB1R RECEPTOR MEDIATES METABOLIC SYNDROME IN MODELS OF CIRCADIAN AND GLUCOCORTICOID DYSREGULATION Nicole Bowles, Ph.D. The Rockefeller University 2013 The most recent projections in the growing obesity rates across the nation show an increase to 60% by the year 2030. These growing rates of obesity are paralleled by an increased rates of depressive conditions, anxiety, and sleep loss, often with environmental factors at the root of the cause. Stress and the stress response is a dynamic system that reflects one’s ability to cope with events, behaviorally or physiologically, as stressors occur over a lifetime. While many key players mediate the effects of stress exposure on disease outcomes including the sympathetic nervous system, parasympathetic, inflammatory cytokines and metabolic hormones, this dissertation focuses on glucocorticoids because of the extensive regulatory role they play in mounting the adaptative response to stress.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Study the Levels of Adiponectin, FSH, LH and Sex Hormones In
    Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.2, 2013 Study the levels of adiponectin, FSH, LH and Sex hormones in Type 2 diabetes (NIDDM) Tahrear Mohammed Natah 1* , Moshtak Abdul- Adheem Wtwt 2, Haider Kamil Al-Saadi 3, Ali Hmood Al-Saadi 4, Hadeel Fadhil Farhood 5 1, 3, 4. Biology Department, College of Science, Babylon University, Iraq. 3,5. Biology Department, Medicine College, Babylon University, Iraq. * E-mail: [email protected] Abstract The hypothalamic/pituitary/gonadal (HPG)axis is central to the mammalian reproductive system . Pulsatile release of GnRH from neurons in the hypothalamus stimulates the secretion of LH and FSH from gonadotropes in the anterior pituitary. It has long been recognized that reproductive function is closely associated with energy balance, and metabolic dysregulation is linked with reproductive abnormalities (Lu et al .,2008). Compare the differences in levels of adiponectin, FSH, LH, testosterone and estradiol between the diabetic patients and control group and in diabetic patients according to the durations of disease for both males and females groups .Also study the relationship between adiponectin and hormones for both gender and for both diabetic groups and control also in diabetic patients according to the durations of disease. About five milliliters of venous blood were collected from each subject in the study. The blood was separated by centrifugation at (3000 rpm) for 15 min. The sera were stored frozen at (-20 ºC) until
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • REVIEW ARTICLE Relaxin Family Peptides: Structure–Activity Relationship Studies
    British Journal of British Journal of Pharmacology (2017) 174 950–961 950 BJP Pharmacology Themed Section: Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors REVIEW ARTICLE Relaxin family peptides: structure–activity relationship studies Correspondence Mohammed Akhter Hossain, PhD, and Prof Ross A. D. Bathgate, PhD, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia. E-mail: akhter.hossain@florey.edu.au; bathgate@florey.edu.au Received 5 August 2016; Revised 25 November 2016; Accepted 28 November 2016 Nitin A Patil1,2,KJohanRosengren3, Frances Separovic2 ,JohnDWade1,2, Ross A D Bathgate1,3 and Mohammed Akhter Hossain1,2 1The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia, 2School of Chemistry, University of Melbourne, Parkville, VIC, Australia, and 3Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia The human relaxin peptide family consists of seven cystine-rich peptides, four of which are known to signal through relaxin family peptide receptors, RXFP1–4. As these peptides play a vital role physiologically and in various diseases, they are of considerable importance for drug discovery and development. Detailed structure–activity relationship (SAR) studies towards understanding the role of important residues in each of these peptides have been reported over the years and utilized for the design of antag- onists and minimized agonist variants. This review summarizes the current knowledge of the SAR of human relaxin 2 (H2 relaxin), human relaxin 3 (H3 relaxin), human insulin-like peptide 3 (INSL3) and human insulin-like peptide 5 (INSL5). LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors.
    [Show full text]
  • Somatostatin 4 Regulates Growth and Modulates Gametogenesis in Zebrafish
    Aquaculture and Fisheries 4 (2019) 239–246 Contents lists available at ScienceDirect Aquaculture and Fisheries journal homepage: http://www.keaipublishing.com/en/journals/ aquaculture-and-fisheries Somatostatin 4 regulates growth and modulates gametogenesis in zebrafish ∗ Chenchao Suia,b,c, Jie Chena,b,c, Jing Maa,b,c, Wenting Zhaoa,b,c, Adelino V.M. Canárioa,b,c,d, , Rute S.T. Martinsd a International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China b Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China c National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China d CCMAR/CIMAR Centre of Marine Sciences, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal HIGHLIGHTS • Zebrafish carrying a somatostatin 4 loss of function mutation grow 25% larger at puberty. • Loss of function of sst4 stimulates igf production in the liver. • Mutant fish have delayed gametogenesis and compromised steroid production. ARTICLE INFO ABSTRACT Keywords: Somatostatin (SST) plays important roles in growth and development. In teleost fishes six SST encoding genes Somatostatin 4 (sst1 to sst6) have been identified although few studies have addressed their function. Here we aim to determine Gametogenesis the function of the teleost specific sst4 in the zebrafish. A CRISPR/Cas9 sst4 zebrafish mutant with loss of fi − − Zebra sh function (sst4 / ) was produced which grew significantly faster and was heavier at the onset of gonadal ma- Gonadotrophin turation than the wild type (WT). Consistent with their faster growth, liver igf1, igf2a and igf2b expression was Puberty − − significantly upregulated in the sst4 / fish compared to the WT.
    [Show full text]
  • From Gene to Gender - What We’Ve Learned and What We Need to Learn - New Prospects in DSD Research
    3rd International Symposium on Disorders of Sex Development 20 – 22 May 2011 · Universität zu Lübeck Programme & Abstracts From Gene to Gender - What we’ve learned and what we need to learn - New Prospects in DSD Research Sessions on Genetics, Hormones & Action, Morphologic Variation in DSD and Clinical Aspects · Round Table · Poster Session and Oral Sessions 20 – 22 May 2011, Lübeck, Germany 1 Contents Contents...................................................................................................................................1 Welcome Remarks ...................................................................................................................3 About EuroDSD........................................................................................................................4 General Information..................................................................................................................5 Scientific Programme ...............................................................................................................6 Social Programme....................................................................................................................9 Speakers’ List.........................................................................................................................10 Poster Presentation................................................................................................................12 Abstracts Keynote Lectures ...................................................................................................15
    [Show full text]
  • Copy Number Alteration of Neuropeptides and Receptors In
    www.nature.com/scientificreports OPEN Copy number alteration of neuropeptides and receptors in multiple cancers Received: 30 November 2016 Min Zhao1, Tianfang Wang 1, Qi Liu2,3 & Scott Cummins1 Accepted: 22 May 2017 Neuropeptides are peptide hormones used as chemical signals by the neuroendocrine system to Published: xx xx xxxx communicate between cells. Recently, neuropeptides have been recognized for their ability to act as potent cellular growth factors on many cell types, including cancer cells. However, the molecular mechanism for how this occurs is unknown. To clarify the relationship between neuropeptides and cancer, we manually curated a total of 127 human neuropeptide genes by integrating information from the literature, homologous sequences, and database searches. Using human ligand-receptor interaction data, we first identified an interactome of 226 interaction pairs between 93 neuropeptides and 133 G-protein coupled receptors. We further identified four neuropeptide-receptor functional modules with ten or more genes, all of which were highly mutated in multiple cancers. We have identified a number of neuropeptide signaling systems with both oncogenic and tumour-suppressing roles for cancer progression, such as the insulin-like growth factors. By focusing on the neuroendocrine prostate cancer mutational data, we found prevalent amplification of neuropeptide and receptors in about 72% of samples. In summary, we report the first observation of abundant copy number variations on neuropeptides and receptors, which will be valuable for the design of peptide-based cancer prognosis, diagnosis and treatment. The nervous system is the superordinate structure in the body, controlling the functions and activities of virtually all other tissues and organs, including cancer tissues1.
    [Show full text]
  • Transcriptomic Analysis Reveals That Bromodomain Containing 9 Controls Signaling Pathways in Gastric Cancer
    Transcriptomic analysis reveals that bromodomain containing 9 controls signaling pathways in gastric cancer Yuan Wang Guangzhou Medical University https://orcid.org/0000-0002-6941-4397 Chen Wang Guangzhou Medical University Yu-Ting Mo Guangzhou Medical University Wen Yi Tan Guangzhou Medical University Xi-Yong Yu ( [email protected] ) Guangzhou Medical University Research article Keywords: BRD9, gastric cancer, bioinformation, RNA-seq, signaling pathway, The protein–protein interaction (PPI) Posted Date: July 7th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-39785/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background According to the Cancer Genome Atlas, gastric cancers involve 30% BRD9 changes. Studying the signaling net controlled by BRD9 is important and provides useful information for the treatment of patients with gastric cancer and BRD9 alteration. Objective We performed this study to nd the signaling pathways controlled by BRD9 in gastric cancer cells. Methods MGC-803 and AGS cells were selected as BRD9 overexpression and normal expression models, respectively, and added with BRD9 inhibitors BI9564 and BI7273, respectively. RNA-seq and limma R language were used to obtain differentially expressed genes (DEGs), and heatmap R language was employed for cluster analysis. Database for Annotation, Visualization and Integrated Discovery (DAVID) was applied to identify the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments, and STRING database was utilized to construct the protein–protein interaction (PPI) networks. Analysis was performed through Cytoscape software to determine the possible signaling pathway and target genes.
    [Show full text]
  • Effects of Acute Hcg Stimulation on Serum INSL3 and 25‐OH Vitamin D
    DR DANIELE SANTI (Orcid ID : 0000-0001-6607-7105) DR CARLA PELUSI (Orcid ID : 0000-0002-6390-2146) PROFESSOR VINCENZO ROCHIRA (Orcid ID : 0000-0001-8169-0696) ALBERTO FERLIN (Orcid ID : 0000-0001-5817-8141) DR MANUELA SIMONI (Orcid ID : 0000-0002-2133-4304) Article type : Original Article Corresponding author mail id : [email protected] Effects of acute hCG stimulation on serum INSL3 and 25-OH vitamin D in Klinefelter syndrome Authors: Daniele Santi1,2, Richard Ivell3, Ravinder Anand-Ivell3, Luca De Toni4, Flaminia Fanelli5, Marco Mezzullo5, Carla Pelusi5, Uberto Pagotto5, Serena Belli1, Antonio R M Granata1, Laura Roli6, Vincenzo Rochira1,2, Tommaso Trenti6, Alberto Ferlin7, Manuela Simoni1,2 Affiliations: 1Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy. 2Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. 3School of Biosciences, University of Nottingham, Nottingham, United Kingdom. 4Department of Medicine, University of Padova, Padova, Italy 5Unit of Endocrinology and Prevention and Care of Diabetes and Centre for Applied Biomedical Research, Sant’Orsola Hospital; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy. This article has been accepted for publication and undergone full peer review but has not been throughAccepted Article the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ANDR.12851 This article is protected by copyright. All rights reserved 6Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Italy. 7Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia, Brescia, Italy.
    [Show full text]
  • Neural Mechanisms of Cancer Cachexia
    cancers Review Neural Mechanisms of Cancer Cachexia Brennan Olson 1,2 , Parham Diba 1,2,† , Tetiana Korzun 1,2,† and Daniel L. Marks 2,3,* 1 Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; [email protected] (B.O.); [email protected] (P.D.); [email protected] (T.K.) 2 Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA 3 Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA * Correspondence: [email protected] † These authors contributed equally to this work. Simple Summary: Cancer cachexia is a devastating wasting syndrome that occurs in many illnesses, with signs and symptoms including anorexia, weight loss, cognitive impairment and fatigue. The brain is capable of exerting overarching homeostatic control of whole-body metabolism and is increasingly being recognized as an important mediator of cancer cachexia. Given the increased recognition and discovery of neural mechanisms of cancer cachexia, we sought to provide an in- depth review and update of mechanisms by which the brain initiates and propagates cancer cachexia programs. Furthermore, recent work has identified new molecular mediators of cachexia that exert their effects through their direct interaction with the brain. Therefore, this review will summarize neural mechanisms of cachexia and discuss recently identified neural mediators of cancer cachexia. Abstract: Nearly half of cancer patients suffer from cachexia, a metabolic syndrome characterized by progressive atrophy of fat and lean body mass. This state of excess catabolism decreases quality of Citation: Olson, B.; Diba, P.; Korzun, T.; Marks, D.L.
    [Show full text]