<<

Myers -Halogen Exchange Chem 115

RLi + R'X RX + R'Li H H 1.1 eq n-BuLi H H

Br OEt Et2O, !80 °C Li OEt Lithium-halogen exchange reactions are kinetically controlled. The position of the equilibrium varies with the stabilities of the carbanion intermediates involved (sp >> sp2 >> sp3)

Lau, K. S.; Schlosser, M. J. Org. Chem. 1978, 43, 1595. n-PrLi + PhI n-PrI + PhLi

1:10,000 1. 2 eq t-BuLi 2. n-C8H17Br CH3 H3C Br H3C Li I THF-ethyl ether-pentane !120 °C 77% LiI I Li Keq << 1 I I Neumann, H.; Seebach, D. Tetrahedron Lett. 1976, 17, 4839.

Lithium-halogen exchange of vinyl is stereospecific, proceeding with retention of In the above example, internal trapping of the newly formed alkyllithium reagent by alkylation configuration. drives an otherwise unfavorable exchange reaction.

Alkyliodides are more reactive than the corresponding . Alkylchlorides are 1. 2.1 eq t-BuLi OH essentially inert. 2. !78 " 23 " !78 °C I 3. benzaldehyde

n-pentane-ethyl ether (3:2)

2 t-BuLi + RI t-BuI + RLi

t-BuLi isobutene + isobutane + LiI Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404.

Lithium-halogen exchange reactions using t-BuLi typically employ two or more equivalents of Aliphatic alkyllithium reagents are normally prepared from the corresponding primary t-BuLi. The first equivalent is used for the exchange and the second equivalent reacts with at low temperature in a pentane-ether system. the t-BuI produced, to form isobutene, isobutane, and lithium .

Dionicio Siegel

1 Myers Lithium-Halogen Exchange Chem 115

Mechanism of Lithium-Halogen Exchange: Lithium-halogen exchange is extremely fast. In some instances, the rate of lithium-halogen exchange can exceed the rate of proton transfer.

2 eq t-BuLi Review: I 2 CH3OH H pentane-ether Bailey, W.F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1. 93% !78 °C 5 min. Li+ BuI Bailey, W. F.; Patricia, J. J.; Nurmi, T. T.; Wang, W. Tetrahedron Lett. 1986, 27, 1861. Bu Li I I

Reich, H. J.; Phillips, N. H.; Reich, I. L. J. Am. Chem. Soc. 1985, 107, 4101. Lithium-halogen exchange is typically more rapid than addition reactions that might compete.

Added phenyl iodide slows the reaction of butyl iodide with phenyllithium, providing OCH 3 H CO evidence for the intermediacy of a less reactive "ate-complex." H CO 3 3 O 2 eq t-BuLi OCH3 H3CO O H3CO N THF, !78 °C OCH3 I CH3 64%

F F F F Aidhen, I. S.; Ahuja, J. R. Tetrahedron Lett. 1992, 33, 5431. F I F Li+ 2 TMEDA

F F F F O O Br O O O n-BuLi H N O NHR Ph Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. 1986, 108, 2449. THF, !100 °C H ~100% O

Paleo, M. R.; Castedo, L.; Dominguez, D. J. Org. Chem. 1993, 58, 2763. An X-ray crystal structure of lithium bis(pentafluorophenyl) iodinate complexed with TMEDA has been obtained, providing support for the intermediacy of ate The 9-phenylfluorenyl protecting is particularly useful in minimizing the rate of complexes during lithium-halogen exchange. epimerization of adjacent labile centers, such as the "-amino above.

Lubell, W. D.; Rapoport, H. J. Am. Chem. Soc. 1987, 109, 236.

Dionicio Siegel

2 Myers Lithium-Halogen Exchange Chem 115

Examples of Lithium-Halogen Exchange in Synthesis: N N H3C CH3 H3C CH3 Cl H 1. 1.05 eq LiHMDS Cl H H O O O O Br 2.6 eq t-BuLi Li I 2. 1.05 eq t-BuLi 1. MgBr2•OEt2 OH O 3. AcOH O H Et O, !78 °C Br OH OH 2 I TBSO THF, !96 °C CH3 CH3 OTBS TBSO 2. CH CHO 3 60% OTBS 79%

Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc. 1997, 119, 12031. Myers, A. G.; Goldberg, S. D. Angew. Chem., Int. Ed. Engl. 2000, 39, 2732.

Cyclopropyl bromides, unlike normal aliphatic bromides, can be reliably converted to the H3CO corresponding organolithium reagents. Pretreatment of the cyclopropyl anion with ethyl etherate in the example above prevents a second, unwanted lithium-halogen exchange reaction from occuring between the cyclopropyllithium reagent I OCH3 and the aryl iodide. 1. 2.2 eq t-BuLi H H H C CH3 3 CH TBDMSO 3 H OH 2. H CO CH3 3 H3C CH3 94%

Br OCH3 OCH H H 3 OH TBDMSO CH O Br 3 2.2 eq n-BuLi CHO O O OH O OH THF, !78 °C H C hexane-ethyl ether, !78 °C HO 3 N SO2Ph SO Ph 2 60% Morphine

Bogenstatter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L. J. Am. Chem. Soc. 1999, 121, 12206. Toth, J. E.; Fuchs, P. L. J. Org. Chem. 1986, 52, 473.

Consider the relative rates of the processes that must occur in the above transformation.

Dionicio Siegel

3