THESISFORTHEDEGREEOFDOCTOROFPHILOSOPHY TailoringofTransitionMetalSilicidesas ProtectiveThinFilmsonAusteniticStainlessSteel PUILAMTAM

DepartmentofMaterialsandManufacturingTechnology CHALMERSUNIVERSITYOFTECHNOLOGY Gothenburg,Sweden2011 TailoringofTransitionMetalSilicidesasProtectiveThinFilmsonAusteniticStainlessSteel PUILAMTAM ISBN9789173855600 ©PUILAMTAM 2011 DoktorsavhandlingarvidChalmerstekniskahögskola Nyseriesnr3241 ISSN0346718X DepartmentofMaterialsandManufacturingTechnology ChalmersUniversityofTechnology SE41296Gothenburg Sweden Tel: +46(0)317721000 Fax:+46(0)317721310 www.chalmers.se PrintedbyChalmersReproservice Göteborg,Sweden2011 Abstract

Transitionmetalsilicideisanimportantmaterialusedinmicroelectronicdevicesandapossible candidate for high temperature application. The objectiveofthisstudy istryingtomakeuseofthis materialinanewwayasprotectivethinfilmsonengineeringmaterials.Thebrittlenatureofthesilicides can thus be compensated by the ductile bulk material and the surface corrosion resistance can be improved.Thechoicesofthinfilmconstituentsaretargetedatthetransitionmetalelementsincluding titanium(Ti,Z=22),chromium(Cr,Z=24),iron(Fe,Z=26)andnickel(Ni,Z=28)incombination with(Si,Z=14)toformthebinarycomponentcompoundsbymeansofionbeam sputterdeposition,whichwascarriedoutinanultrahighvacuum(UHV)chamberat10 6Pa.Thechosen substratematerialisAISI304stainlesssteel.Thinfilmcharacterisationswereconductedbymeansof surface analysing instruments: Xray photoelectron spectrometer (XPS) and grazing incidence Xray diffractometer(GIXRD).Silicideproperties,includingthedegreeofcrystallinity,theformedphases,the electronicstructures,thechemicalcompositionsandthechemicalstatesofeachcharacterisedelement, wereanalysed.Forthefilmsincrystallineform,silicideswerewellcharacterisedbybothtechniques.In casethecrystallinephasedidnotdevelopandthe phase(s)couldnotbeanalysedthroughXRD,the possiblesilicidephases inshortrangeorderor noorderingcanbeestimatedinaccordancewiththe corelevelXPSbindingenergystateofthetransitionmetalpeakdefinedbythecrystallineform.Onthe otherhand,thephaseformationsequenceofthesilicidesduringannealingprocessescanbepredictedby a theoretical method of Pretorius’ effective heat of formation (EHF) model provided that the initial chemicalconcentrationsweredeterminedinadvance.Thecorrosionpropertiesofthesilicidefilmsand the uncoated stainless steel specimens were assessed and compared by means of potentiodynamic polarisation measurements in hydrochloric acid (HCl) and sulphuric acid (H 2SO 4), respectively. The polarisationcurvesofallthesilicidecoatedspecimensshowlowercurrentdensitiesalongthemeasured potentialsthantheuncoatedsteelandtherebythesilicideshavelowerreactivity.Inthesametest,itwas found that binarycomponent silicides with Si content above 60 at.%, independent of the choice of transitionmetalelement,facilitatethehighintegritySioxidelayerformationatthetopofthetested specimens,andtherebyabettercorrosionresistivityisguaranteed.Amongthefourtestedsilicides,TiSi andNiSifilmsarefoundtobebettercandidates.Inanotherstudy,corrosiontestswereperformedon the coated specimens that were thermally annealed after deposition with the purpose of promoting silicide phase development and film crystallisation. However, the polarisation results do not show significantbenefitfromthistreatment.Asaresult,compositionofthetransitionmetalsilicidethinfilms is a more important design factor compared to the film structure. When considering the silicides as protectivethinfilms,theirtribologicalpropertiessuchasadhesivenessandwearresistancecannotbe neglected.TheresultsfromtheRockwellCadhesiontestandthereciprocaldryslidingweartestproved thatthesilicidefilmsarewelladheredonthesubstratesandtheirwearpropertiesareslightlybetterthan the stainless steel by showing a lower specific wear rate from 10 12 m 3/N ⋅m to 10 13 m 3/N ⋅m. It is believedthattransitionmetalsilicides,besidesdepositedonstainlesssteels,canalsobetheprotective thinfilmsonotherengineeringmaterials,asfaraswelladhesivenessisguaranteed.

Keywords: Transition metal silicides; Thin films; Stainless steels; Ionbeam sputter deposition (IBSD); Xray photoelectron spectroscopy (XPS); Xray diffractrometry (XRD); Pretorius’ effective heat of formation (EHF) model; Corrosion; Potentiodynamic polarisation measurements; Tribology; RockwellC adhesion test; Reciprocatingslidingweartest

Preface

This thesis is submitted for the degree of Doctor of Philosophy at Chalmers University of Technology.TheresearchdescribedhereinwasmostlyconductedintheDepartmentofMaterialsand ManufacturingTechnologyunderthesupervisionofProfessorLarsNyborg(Principalsupervisor)and Dr.MatsNorell(Assistantsupervisor)fromApril2007toSeptember2011.Dr.YuCaoalsotookpartin theworkandcontributedtotheresearch.PartoftheresearchwasconductedintheAdvancedCoatings AppliedResearchLaboratory(ACARL)directedbyDr.LawrenceKwokYanLiintheDepartmentof ManufacturingEngineeringandEngineeringManagementattheCityUniversityofHongKong.

Theworkreportedinthisthesisisoriginalandtothebestoftheauthor’sknowledge.Thisthesis hasnotbeenorisbeingsubmittedtoanyotheruniversityorinstitutionforanyotherdegree,diploma, certificateorprofessionalqualification.Partofthisworkhasbeenwrittenintomanuscripts,publishedin orsubmittedtothefollowingjournals:

Paper1 SputterDepositionandXPSAnalysisofNickelSilicideThinFilms P.L.TamandL.Nyborg SurfaceandCoatingsTechnology203(2009)2886–2890

Paper2 XRDandXPSCharacterisationofTransitionMetalSilicideThinFilms P.L.Tam,Y.CaoandL.Nyborg SubmittedtoSurfaceScience,August2011

Paper3 CorrosionPropertiesofAmorphousNiSiThinFilmsonAISI304LStainlessSteel P.L.Tam,U.JelvestamandL.Nyborg MaterialsatHighTemperature26(2009)177–184

Paper4 CorrosionPropertiesofThermallyAnnealedandCosputteredNickelSilicideThinFilms P.L.Tam,Y.Cao,U.JelvestamandL.Nyborg AcceptedforpublicationinSurfaceandCoatingsTechnology,August2011

Paper5 CorrosionPropertiesofSputterdepositedTransitionMetalSilicideThinFilmsonAustenitic StainlessSteelsinDiluteSulphuricandHydrochloricAcids P.L.TamandL.Nyborg SubmittedtoMaterialsandCorrosion,August2011

Paper6 TribologicalBehaviourofSputterdepositedNickelSilicideThinFilmsonAISI304Stainless Steel P.L.Tam,P.W.Shum,K.C.Kian,K.Y.LiandL.Nyborg SubmittedtoWear,June2011

i Otherpublicationsnotincludedinthisthesis

1. SubstrateBiasEffectsonMechanicalandTribologicalPropertiesofNanoscaleMultilayerCrTiAlN CoatingsPreparedbyClosedFieldUnbalancedMagnetronSputteringIonPlatingMethod P.L.Tam,P.W.Shum,Z.F.ZhouandK.Y.Li KeyEngineeringMaterials334–335(2007)885–888

2. Structural,Mechanical,andTribologicalStudiesofCrTiAlNCoatingwithDifferentChemical Compositions P.L.Tam,P.W.Shum,Z.F.ZhouandK.Y.Li ThinSolidFilms516(2008)5725–5731

3. OxidationResistanceofMulticomponentCrTiAlNHardCoatingsatElevatedTemperatures P.L.Tam,Z.F.Zhou,P.W.ShumandK.Y.Li AdvancedMaterialsResearch75(2009)37–42

4. HighTemperatureOxidationofCrTiAlNHardCoatingspreparedbyUnbalancedMagnetron Sputtering Z.F.Zhou,P.L.Tam,P.W.ShumandK.Y.Li ThinSolidFilms517(2009)5243–5247

ii Acknowledgements

IwouldliketogivemyhighestgratitudetoProfessorLarsNyborg forgivingmethisopportunity topursuemydoctoralstudyunderhissupervisionintheDepartmentofMaterialsandManufacturing TechnologyatChalmersUniversityofTechnology.Ihaveahighregardforhiscontagiousenthusiasm atworkandhisallroundadroitcapabilityonproblemsolving.Manyinspiringdiscussionsbetweenus contributealottothedevelopmentofthepresentwork.Ofcourse,theresearchfreedomhehasgivenall these years is definitely showing his openmindedness. Frankly, this work would hardly be accomplished without his unfailing support. And importantly, the financial support granted by the SwedishFoundationforInternationalCooperationinResearchandHigherEducation(STINT,Stiftelsen förInternationaliseringavHögreUtbildningochForskning) for the collaboration between Chalmers andtheCityUniversityofHongKonginthefirsthalfoftheresearchperiod(April2007–June2009)is gratefullyacknowledged. BesidesProfessorNyborg,mydeepestindebtedness goes our experienced, efficient and modest research engineer (forskningsingenjör), Mr. Urban Jelvestam, for his kindliness, patience, persistent guidance and competent assistance all these years. Countless sharing and coworking experience are definitelyinvaluable. I owe both Dr. Emmy Yu Cao and Dr. Sergio Alfonso PérezGarcía adebtofgratitudetoofor inspiring me to pick silicide materials as my research focus. Many predecessors in our former DepartmentofEngineeringMetalsincludingProf.IngemarOlefjord,Dr.BengtOlofElfström,Prof.Bill Brox,Dr.HåkanMattsson,Dr.Lena Wegrelius,Prof. DanQing Yi and Dr. Fredrik Falkenberg are deeply respected for their contribution relating to the metal silicides and the corrosion research on engineeringmaterialsinthepastdecades.Allofyourwellorganisedthesesdevelopsolidfoundationsin thesetwosubjectsandshedmealightinthiswork. HereIwouldliketosaythankyoutomyformercolleagues,Dr.SamPoWanShum and Mr.Kwok Cheung Kian in the Advanced Coatings Applied Research Laboratory (ACARL) for assisting me to accomplish the tribological experiments. I may also express my high esteem to many respected professors,doctors,lecturers,researchstaff,aswellastechnicians,friendsandstudentsIhavemetin myuniversitylife bothinSwedenandHongKong.Tonameafew, Dr.LawrenceKwokYanLi,Dr.Zhi FengZhou,Prof.JosephKeiLuekLai,Dr.WilsonKamWaWong,Dr.YaoGenShen,Dr.ZhengKui Xu,Prof.WingYimTam,Prof.TongYiZhang,Dr.PeterSotkovszki,Mr.GöranFritz,Prof.Vratislav Langer, Prof. LarsGunnar Johansson, Prof. JanErik Svensson, Prof. Elisabet Ahlberg, Dr. Zareen Abbas , Dr.MatsNorelland thestudentsintheM2classes(2009,2010)thanksforevolvingmyinterest, broadeningmyvision,anddeepeningmyknowledgeinthefieldofmaterialsscienceandengineering. Last,butfarfromleast,myverysincerethanksgotomyfamilyfortheirpatience,unconditional loveandsupportallthetime.Mybelovedgirlfriend, Emily ,thanksforbringingintheartisticelements intomywriting.Thisthesiscannotbefinishedwithoutyourcontribution! EricPuiLamTam(談沛霖) July2011 Gothenburg,Sweden.

iii Abbreviations, Symbols and Constants

AFM Atomicforcemicroscope ARXPS AngleresolvedXrayphotoelectronspectroscopy BE Bindingenergy FWHM Fullwidthathalfmaximum GIXRD Grazing/GlancingincidenceXraydiffraction IBSD Ionbeamsputterdeposition PVD Physicalvapourdeposition SEM Scanningelectronmicroscope/microscopy SHE Standardelectrode TEM Transmissionelectronmicroscope/microscopy UHV Ultrahighvacuum XPS Xrayphotoelectronspectrometer/spectroscopy XRD Xraydiffractometer/diffraction Hº Standardheatofformation (kJ mol 1at. 1) H' Effectiveheatofformation (kJ mol 1at. 1) E Electrochemicalpotential (mV) Eº Standardpotential (V) Ecorr Corrosionpotential (mV) Epass Passivationpotential (mV) Epit Pittingpotential (mV) Etrans Transpassivepotential (mV) E* Effectiveelasticmodulus (GPa) EIT Indentationmodulus (GPa) Er Reducedmodulus (GPa) Esam Specimenmodulus (GPa) Efilm Thinfilmmodulus (GPa) Esub Substratemodulus (GPa) H Indentationhardness (GPa) Hfilm Thinfilm/Toplayerhardness (GPa) Hsub Substratehardness (GPa) HF Adhesionstrengthlevel i Currentdensity (A/cm 2)

f Frictioncoefficient Ra Arithmeticroughness (nm) Rq Rootmeanssquareroughness (nm) F Faraday’sconstant =96485 C⋅mol 1 k Boltzmann’sconstant =1.38×10 23 J⋅K1 23 1 N Avogadro’snumber =6.02×10 mol R Universalmolargasconstant =8.314 J⋅mol 1⋅K1

iv Table of Contents

1. ResearchBackgroundandScopeofThesis...... 1 2. SurfaceProtectionagainstCorrosiveEnvironment...... 3 2.1 CorrosionIssues–StainlessSteels...... 3 2.2 ProtectiveCoatings...... 6 2.3 PotentialUseofTransitionMetalSilicidesasProtectiveThinFilms...... 7 3. ElectrochemicalApproachtoAssessCorrosionPropertiesofMaterials...... 12 3.1 ThePolarisationDiagram ...... 12 3.2 AnodicDissolution ...... 13 3.3 AnodicOxidation(Passivation)...... 14 3.4 Transpassivation...... 15 3.5 PittingCorrosion...... 15 4. ThinFilmFabricationandMaterialsCharacterisation ...... 17 4.1 IonBeamSputterDeposition(IBSD)...... 17 4.2 SilicideCharacterisation...... 19 5. ThinFilmsProperties...... 24 5.1 CorrosionProperties ...... 24 5.2 TribologicalProperties...... 27 6. Conclusions...... 32 7. FutureWorks ...... 33 References...... 34 Appendices–ATheoreticalModel,Equipment,andCharacterisationTechniquesAppliedinthisResearch A. ElectrochemicalInterface:Potentiostat ...... 39 B. EffectiveHeatofFormation(EHF)ModelforPhasePrediction ...... 43 C. XrayCharacterisationInstruments:XPSandXRD ...... 46 D. ElectronBeamCharacterisationInstrument:SEM...... 52 E. TribologicalTestingInstruments:RockwellHardnessTesterandSlidingWearTester...... 53 F. NanomechanicalTestingSystem:Nanoindenter ...... 54 G. SurfaceTopographicalInstruments:OpticalInterferometer,StylusProfilometerandAFM ...... 56

v

Chapter1ResearchBackgroundandScopeofThesis

Longerservicinglifeofengineeringsystemsisalwaysdesiredinallengineeringdesign.Thekey factorofthelonglifetimelargelydependsonthecorrectusageoftheengineeringmaterials.Sincethe workingenvironmentinpracticevariesalotandnomaterialcanperfectlyfitforallconditions,research onmaterialsreengineeringandadvancedmaterialsdevelopmentis,infact,neverended.Somehow,in order to keep the usefulness of some widelyused engineering materials under some specific environment, an alternative way is to modify their surface properties through surface engineering processing such as thin film/coating development, ion/plasma implantation, heat treatment and cold working. A modified and improved surface means not only better materials functionality, but also a loweroperatingcost,lessmaterialwasteandfewerrecyclingprocessesinlongrun.Theimportanceof this work is indisputable in views of engineering, economics, energy, and environment concerns. Therefore, in this thesis, research focus on surface properties reengineering of chloridesusceptible austeniticstainlesssteelthroughthinfilmdepositionofsometransitionmetalsilicidesisproposedand conducted.Themainobjectiveistoimprovethecorrosionresistanceofthismaterial,especiallyinan acidic and chloridecontaining environment, and to find out other potential benefits gain from the developedandstudiedsurfaceengineeringprocess. The development of the research is as follow: the work was commenced with the thin film fabricationofvariousbinarycomponenttransitionmetalsilicideincludingTiSi,CrSi,FeSiandNiSi byusingsputterdepositiontechnique.Thesurfacechemicalandstructuralcharacterisationsofthethin filmswereconductedbymeansofXrayphotoelectronspectroscopy (XPS)andXraydiffractometry (XRD). The resulting silicide phases in the individual specimens are then further considered and predictedusingatheoreticalapproachbymeansofPretorius’effectiveheatofformation(EHF)model (Papers1and2).Inordertoevaluateandcomparethecorrosionpropertiesofdifferentsilicidethinfilms, electrochemicalpotentiodynamicpolarisationmeasurementswerecarriedoutinhydrochloricacidand sulphuric acid, respectively. The results show that some of these films can slightly improve the corrosion resistance of AISI 304 stainless steel by driving the corrosion potential (E corr , unit: mV) towards a nobler state and reducing the current density (i, unit: A/cm 2) throughout the measured potentialrange(Papers3to5).Concurrently,theresultsshowthatbettercorrosionresistancecanbe achievedbyincreasingsiliconcontentinthebinarycomponentsystem(Paper3)andbychoosingTiSi 2 as the protective thin films (Paper 5). Meanwhile, the impact of the thin film structural design (i.e. degreeofcrystallinity)isnotsignificant(Paper4).Asthethinfilmadhesivenessisalwaystheprimarily concerninengineeringpractice,thetribologicalbehaviourofoneofthesilicidesystems,i.e.NiSi,was investigated. The results show that the sputterdeposited thin films, independent to the degree of crystallinity,adherewellonthestainlesssteelsubstrate.Thecorrespondingweartestalsoshowsthatthe silicidecoatedstainlesssteelhasslightlylowerwearratethantheuncoatedspecimen(Paper6).Overall, thedepositionsofbinarycomponenttransitionmetalsilicidethinfilmsonthestainlesssteelsurfaces giveconsiderablebeneficialeffectsoncorrosionandwearresistanceenhancement. In the appendices, technical background about each testing instrument and the individual characterisation method are introduced in individual subsection. Fundamental theories behind each techniquearealsobrieflycovered.

1

To improve the corrosion resistance of an engineering material through coating deposition, what tasks should be done to tailor and to test the usability of a novel recipe?

*Themajorresearchactivitiesincludingthinfilmfabrication(Author),surfacecharacterisation(Cao,Nyborg andauthor)andcorrosionpropertiesinvestigation(Nyborgandauthor)wereconductedatChalmersUniversity ofTechnology;thetribologicalexperiments(Shum,KianandLi)wererunattheCityUniversityofHongKong andthedataanalyseswerecarriedoutbythethesisauthor.

Figure1 Scopeofthesis.

2 Chapter2SurfaceProtectionagainstCorrosiveEnvironment

2.1CorrosionIssues–StainlessSteels

Stainlesssteelisnowadaysanomnipresentengineering material in domestic applications and industryafteracenturylongdevelopment.Thepropertiesofstainlesssteelcanbeeasilymanipulated throughalloyingand/ordifferentheattreatmentprocesses.Foritsvastamountofdifferentapplicable areas, commercialised stainless steels are nowadays classified into six grades to fit into different purposes.Theyinclude ferriticstainlesssteels(α),austeniticstainlesssteels(γ),martensiticstainless steels(ε),duplexstainlesssteels(α+γ),precipitationhardeningstainlesssteelsandMnNsubstituted austeniticstainlesssteels[1].Amongallgrades,theyshareonecommoncharacteristic,i.e.achemically stablepassivelayerformsandadheresontheirsurfaceswhentheyareexposedtotheatmosphere.For thisreason,thisbehaviourmakesstainlesssteels“stainless”intheambientconditionaswellasother kindsofenvironment[16]. Thepassivelayerplaysanimportantroleinenhancingthecorrosionresistanceofstainlesssteel. Itactsasaphysicalbarriertoisolatethealloyedmaterialfromthechemicalspecies(maybecorrosive) intheatmosphere.Consequently,theinteractionbetweenthecorrosivespeciesandtheunderlyingbulk metallic species is minimised, and the steel deteriorating reactions (i.e. metallic corrosion) unlikely occur. The nature of passive layer is environmentally dependent. For instance, at room temperature, compositionsofthepassivelayersonausteniticstainlesssteeldependontherelativehumidity(R.H.)in thesurroundingasforexampleaddressedbyOlefjordetal.[711](Fig.2).Inadryenvironment,the passive layer is analysed to be iron oxide; in a wet environment developed by clean water vapour, chromiumoxideispreferentiallyformed[11].Inahightemperatureenvironment,thedifferentpossible oxidesformedonthestainlesssteelsurfacesaresummarisedinTable1[1116].Infact,thecomposition oftheoxidefilmisalsorelatedtothealloycomposition.Basically,stainlesssteelisanironbasedalloy thatcontainsatleast12wt.%chromium.InanenvironmentatacertainR.H.level,themostabundant constituents,likeCrandFe,canreadilyreactwith water vapour (H 2O) and (O 2) to form the abovementionedoxides.ItisknownthatachromiumrichoxideofCr 2O3typeispreferableforabetter corrosion resistivity [3,11]. This oxide readily creates a coherent, adherent and regenerating thin protective film on the surface with a uniform thickness of around 20 Å [8]. This layer resists the chemicalattacksfromnitricacid(HNO 3),phosphoricacid(H 3PO4),and/oraceticacid(CH 3COOH)and ispracticallyimpermeabletomaterialsdiffusion[6,17].Still,theoxideofthistypedoesnotresistthe attackfromconcentratedhydrochloricacid(HCl),sulphuricacid(H 2SO 4),formicacid(HCOOH)and/or poorcirculationconditionswiththepresenceofhalides,e.g.fluoride(F ),chloride(Cl ),bromide(Br ) andiodide(I )[17].

Figure2Thepossiblepassivelayerformedonthestainlesssteelsunder(a)drycondition and(b)wetconditionatroomtemperature(Drawingbasedon[11]).

3 Table1 Propertiesofpossibleoxidesformedinstainlesssteelsatroomandhightemperature[12,14] Nomenclature Chemicalcompound Nature  Formedinlowtemperatureoxidation Maghemite γFe 2O3  Spinelferritestructureasinmagnetite  TransformtoαFe 2O3athightemperature  Formedabove570˚C  Nonstoichiometricrocksaltstructure Wüstite Fe 1xO  Cationdeficiencyoxide:ptype  Fastiondiffusionrate  Nonprotectiveoxide  Formedbetween570˚Cand650˚C Fe 3O4  Inversespineloxidestructure Magnetite 3+ 2+ 3+ [Fe ]tet [Fe ,Fe ]oct O4  Cationdeficiencyoxide:ptype  Moreprotectivethanwüstitebutlessprotectivethanhematite  Corundumstructure  Hexagonallyclosepackedoxidestructure Hematite αFe 2O3  650˚C–800˚C:Oxygendeficiencyoxide:ntype  >800˚C:Cationdeficiencyoxide:ptype  Themostprotectiveironoxide  Cationdeficiencyoxide:ptype Eskolaite/Chromia Cr 2O3  Slowiondiffusionrate  Oneofthebestprotectiveoxides 2+ 2+ Spinaltypesolid M3O4  Fe canbereplacedbysomedivalentcationlikeNi 3+ 3+ solution (e.g.Cr 2MnO 4)  Fe canbereplacedbysometrivalentcationslikeCr  x=0.75–1.0:ptype Corundumtypesolid (M ,M ) O A B 2 3  x=0:ptype solution (e.g.(Cr xFe 1x)2O3)  x=0.25–0.75:bothnandptype Whenapieceofstainlesssteelisplacedinanaggressiveenvironmentasmentionedabove(e.g. an acidic halidecontaining solution) after a period of time, this piece of alloy will be chemically attackedandthemostprominentfeaturesappearedwouldbepitsformation.Althoughtherearemany studiesanddiscussionaboutpittingcorrosion,controversiesstillexist.Generally,theinitiationofpits correlates to the type and concentration of the aggressive species as well as the nonuniformity of passivefilmonthestainlesssteelsurfaceneartheinclusionsandthestructuraldefects[1].Onemodel thatcorrelatestosulphideinclusionsisillustratedinFigure3[18].Inthismodel,corrosioncommences inandaroundtheinclusionswherethepassivelayerthicknessisrelativelythinnerthanthebulk.Adirect contactbetweenalloyandthecorrosivespeciesestablisheseasierandtoviolentcorrosiveattack onthemetallicmaterialsafterwards.Asthecorrosionrateishalideconcentrationdependentandvaries amongdifferentlocations,localisedpittingcorrosionproceedsrandomlyonthestainlesssteelsurface [718].MoreaboutthepittingcorrosionmechanismswillbediscussedinSection3.5.

Figure3Illustrationofthepittingcorrosionmechanismonstainlesssteels(Drawingbasedon[18]).

4 Besidesthecontributionfrompassivelayer,corrosionresistivityofstainlesssteelscanbeimproved byvaryingtheconcentrationofthealloyingelementssuchas(C),nitrogen(N),phosphorus(P), molybdenum(Mo),silicon(Si),titanium(Ti),and/orniobium(Nb)aswell.Differentclassesofstainless steelswithdifferentlevelsofcorrosionresistivityarethusdeveloped[3].However,metallurgistshave foundtheformationofcertaincorrosionresistingphasesthroughheattreatmentwillreducetheoverall corrosion resistance of stainless steels by taking away the corrosionresisting species from the bulk (Table 2) [1,19]. Therefore, to enhance the corrosion resistance of stainless steel materials by those corrosionresistingphases,otherapproachesinsurfaceengineeringtreatmentssuchascoatingdeposition andionimplantationcanbeattemptedtoachievethesamepurpose. Table2 Commonphasesinstainlesssteels[1,19] Phase Suggestedelement/ Crystallographicdata compound Spacegroup Latticeparameter Matrixphases α Febase Im3m (229) a=2.8664 γ Febase Fm3m (225) a=3.6000 Intermetallicphases Ferich J α’Cr+αFe Im3m (229) a=2.8600 σ* (Fe,Cr) P4 2/mmm(136) a=8.7995,c=4.5442;(c/a=0.516) L (Fe,Ni) P4/mmm(123) a=3.5200,c=3.6300;(c/a=1.03) Laves Fe 2X(X=Mo,Ti,Nb) P6 3/mmc(194) a=4.7440,c=7.7250;(c/a=1.628) Nirich η Ni 3Ti P6 3/mmc(194) a=5.0930,c=8.2760;(c/a=1.625) Morich χ* Cr 6Fe 18 Mo 5 4I 3m (217) a=8.8037 (Fe,Ni) 36 Cr 18 Mo 4 Fe 7Mo 6 R3m (166) a=4.7540,c=25.7100;(c/a=5.408) R FeCrMo R3 (148) a=10.9109,c=19.3540;(c/a=1.774) R’ m35 Icosohaedralquasicrystal Sirich G* Cr 12 Ni 9Fe 2Si 6 Fm3m (225) a=11.1980 a=11.1000 Fd3m (227) FeSi Fe 3Si,Fe 2Si Fm3m (225) a=5.6533 CrSi Cr 3Si Pm n3 (223) a=4.5550 SiC* SiC F43m (217)(β) a=4.3589 a=3.0810,c=10.061;(c/a=1.774) P6 3mc(186)(α,4H) Oxides SiO 2 Amorphous αAl 2O3 Al 2O3 R c3 (167) a=4.7488,c=12.9929;(c/a=2.736)

κAl 2O3 Al 2O3 Pna2 1(33) a=4.834,b=8.310,c=8.937 αCr 2O3 Cr 2O3 R c3 (167) a=4.958766,c=13.5942;(c/a=2.741) M3O4 Mn 1.5 Cr 1.5 O4 Fd3m (227) a=8.455 *Examplesofcorrosionresistingphaseswhichhavenegativeeffectonthepassivityofstainlesssteel[1].

5 2.2ProtectiveCoatings

Acoatingisanartificiallysynthesizedlayer coveringthetopofabulkmaterial(substrate)with thickness more than one micron. The concept of a coating to enhance the surface properties and/or improvetheaestheticappearanceofamaterialwasofficiallyrecognisedinthe1950s[2022].Coatings canbeclassifiedintermsoftheircompositionsandtheirfunctions.Fromcompositionpointofview, theycanbemadeofmetals,organiccompounds,cementmortarsorenamels;fromfunctionalpointof view, the aim of adding a coating can be made for decorative, protective, decorativeprotective or technicalpurpose[4,17,20,23]. Generally,protectivecoatingsreducethecorrosionrateoftheprotectedmaterialsbyactingasthe physicalbarrierstominimisethedirectinteractionbetweenthecorrosivespeciesandthesusceptible metallic materials. The average thickness of the protective coatings is usually several microns and thickercoatingisactuallypreferredtominimizetheinvinciblecoatingdefectsthatareindependentof which deposition technique that has been utilised [21,22]. To guarantee coating performance, good coatingadhesiveness,highmechanicalresistance,lowinternalstress,highchemicalstabilityandlow permeabilityforthecorrosivecomponentsaretheimportantpropertiesneededincoatingsapplications [2023]. It is recognised that coating performance also depends largely on the microstructure of the coatingandthiscanbetailoredbyoptimisingtheconstituentsandfabricationparameters[2429].In addition, to make the coating applicable to the coatingsubstrate couple, the chosen coating material should have similar thermal expansion coefficient (CTE) as the substrate material in order to avoid crackingorlatticemismatchatthecoatingsubstrateinterface. The development of nanotechnology starting from the beginning of the millennium has made microstructure studies one of the hottest topics in the past decade. Remarkable achievements in nanocomposite coatings, superlattice coatings, and nanoscale multilayer coatings bring advanced coatingsintoindustrialapplications[2429].Intheareaofprotectivecoatings,anewapproach about smartselfrepairingprotectivecoatingsiscurrentlydiscussed.Besidesactingasaphysicalbarrier,this classofcoatingsalsoencapsulatecorrosioninhibitorinamorphoussolidsolution,whichcanmigrateout toachemicallyreactivezonetoreducethemetalcorrosionrateinitiatedbybacteriaorcorrosivespecies [3032]. In such case, the practicability of these coatings can be everlasting. However, this advance achievementisoutofthescopeofthiswork,butitcouldbekeptasaproposalforfuturework. Developmentofprotectivecoatingsforstainlesssteelscomprisesadvanced,importantandactive researchactivitiesinthecoatings,corrosionscience and corrosion engineering fields: hafniaalumina coatings[33],variousconductivepolymers[3437]andhighpuritystainlesssteelsthinfilms[38]are reportedrecentlytobereliablecandidates.Nevertheless,siliconanditscompoundssuchasthesilicides, being among the most corrosionresistant elements and compounds at both ambient and high temperaturecondition[3946],arerarelydiscussedinthisparticularcontextandwillbehighlightedthis time.

6 2.3PotentialUseofTransitionMetalSilicidesasProtectiveThinFilms

SiliconwasextractedasapuremetalloidelementbytheSwedishchemist,JönsJacobBerzeliusin 1824andtheelementisfoundtobeoneofthemostabundantsolidelementsinnature[47,48].The general properties of silicon include low density, high hardness, high brittleness, high melting temperatureandchemicalinertness.Becauseofthebrittlenatureofsilicon,itwasfounddifficulttoseek apracticalapplicationofsiliconinengineeringindustriesafterthediscovery.Fortunately,duetothe uniquesemiconductingpropertiesachievedbydoping,siliconandsilicontypedmaterialsarenowwell developed and widely applied in microelectronic industry. Materials of this type can be found in transistors, photovoltaic cells, rectifiers, integrated circuits, optoelectronic devices, and many other modernelectronicdevicesineitherbulkorthinlayer(i.e.inmicronornanoscale)form[48].However, themoderndevelopmentofsiliconisnowreachingthephysicallimitsandthesilicon’sreignmightbe nearingtoitsendinmicroelectronics[49,50]. In order to bring silicon into the mechanical and manufacturing industries, it is necessary to improvetheductilityandtoughnessofthematerialsbasedonsilicon.Onewaytoachievethisobjective istodeveloptheintermetalliccompounds,thesilicides;thatis,mixingsiliconwithoneormoremetallic elementsinthemanufacturingprocess.Theideabehindistointroducemorenondirectionalcharacter ductile metallic bonds into the otherwise brittle covalentdominating structure (i.e. Si), and thus the ductility of the compound gets improved [5153]. Although the literature reports that the high temperaturemechanicalperformanceofsilicidesdoesimprovecomparedtothatofsilicon[5255],the roomtemperaturebrittlenessandhighcostforthemanufacturingprocessstillremainthemajorbarriers to bring the silicides into wide general application. Nevertheless, the highly stable performance of silicides under high temperature and adverse environment catches the attention of aeroengineers, automotiveengineersandmetallurgists,asthosepropertiesarewhattheengineersneedfortheengine componentsandfurnacewalls[45,54,55].AclassicexampleistheuseofMoSiforheatingelements [40]. Generally, the attractive properties of intermetallic silicides include superb strength at high temperature,highoxidationresistance,highcorrosionresistance andrelativelylowdensity. Aqueous corrosion resistance of silicide materials is good as well, but the discussion about this is rarely mentioneduntilrecentyears[45,46].Moreaboutthisissuewillbedescribedinthissection.Firstofall, someofthephysicalpropertiesabouttheselectedbinarycomponenttransitionmetalsilicidesrelatedto thisstudyaresummarisedinTable3.Itisfoundthatsilicidationoftransitionmetalistheexothermic process,materialsdensityreducesandthecorrespondingmeltingpointdecreasesasaresult.

7 Table3Generalpropertiesoftheselectedtransitionmetalandtheircorrespondingsilicides[48,52,5658] No.of No.ofmetal Structure Space Lattice Density Melting Composition atomsper atomsper (Pearson) Group Parameters (g ⋅⋅⋅cm 3) Point(ºC) unitcell unitcell Si A4 Fd3m a=5.431 8 8 2.33 1410 a=2.951; Ti A3 P6 3/mmc c=4.683 2 2 4.51 1660 a=8.236, αTiSi 2 C54 Fddd b=4.773, 24 8 4.13 1500 c=8.523 Cr C2 Im3m a=2.884 2 2 7.20 1857 a=4.428, CrSi 2 C40 P6 222 c=6.369 9 3 4.98 1490 Fe A2 Im3m a=2.866 2 2 7.88 1535 Transform a=9.879, toαFeSi at b=7.799, 2 βFeSi 2 C49 Cmca 3 1 4.95 700and c=7.839 meltat1220 Ni A1 Fm3m a=3.524 4 4 8.91 1455

NiSi 2 C1 Fm3m a=5.416 12 4 4.80 993

CorrosionResistivityofTransitionMetalSilicides

Chemicalinertnessofsiliconintheambientenvironmentcorrelatestothesilica(SiO 2)formationat theuppermostsurfacewhenincontactwithoxygenand/orwatermolecules.Naturally,owingtothe high oxygen affinity of silicon, silica layer forms readily into metastable vitreous structure (i.e. noncrystallineorshortrangeorder)welladheredontheSisubstrate.Thisvitreousoxidelayerhaslow 16 3 2 densityofdefects(<10 cm )andinhibitstheinwardtransportofoxygenions(O )tothesiliconoxide interface; thereby, the oxidation rate and the oxide layer growth rate reduces as a function of time [59,60]. This layer can transform to crystalline form at high temperature (Table 4) and is still a wellprotectivelayertotheunderlyingstructureupto1500ºC.Beyondthattemperature,gasmolecules (e.g. H 2O and O 2) adsorb on the surface, diffuse through the structure, react with the silica to form gaseoussiliconmonoxide[SiO (g) ]andleadstovitreousnetworkbreakdown.Fromaqueouschemistry point of view, although this layer is reported to be chemically inert in most of the acids at room temperature,thelayer,infact,sufferscorrosionattackfromhydrofluoricacid(HF)andalkalinesolution, e.g.NaOH[48].Moreover,bothreactionscanbeacceleratedinthepresenceofhalideions,suchas fluoride(F )andchloride(Cl )[6165].

Table4 Somephysicalpropertiesofbulksilica [48] Typeofsilica CrystalStructureandMorphology Density(g ⋅⋅⋅cm 3) Temperature(ºC) αSiO 2(αQuartz) 2.648 Roomtemp.to573 βSiO (βQuartz) 2.533 573to867 2 Hexagonalcrystal,colourless SiO 2(tridynite) 2.265 867to1470 SiO 2(cristobalite) 2.334 1470to1722(m.p.) SiO 2(vitreous) Vitreoussolid,colourless 2.196 1722to2950(b.p.) Intransitionmetalsilicides,besidessilicon,thetransitionmetalcanalsogetoxidisedincontact withwaterandoxygen.Therefore,itispossibleforthesebinarycomponentsystemstodevelopoxide layersconsistoftwoormoreconstituents.Thepossibleoxidesformedfromdifferenttransitionmetals

8 are listed in Table 5. It is noted that, metal oxides are classified into 3 classes: networkformers, intermediateonesandnetworkmodifiers.Metaloxides fall into the networkforming or intermediate classesandtendtogrowasprotectiveoxidesthatsupportanionormixedanioncationmovement.The network formers are noncrystalline and the intermediates tend to be microcrystalline at low temperatures.Forthenetworkmodifiers,theyarepolycrystallinestructureandthedevelopedlayersare thickerandlessprotective.Thebondinginanetworkformingoxideiscovalentandthatinamodifying oxideisionic.Thegrainboundariesthatexistbetweenthecrystallitesfacilitatetheionmobilityacross thelayerandthuspromotethechanceofmetalcorrosivespeciesreactions.Asaresult,asinglephaseof networkformerisactuallypreferredforbetterprotectiveness[59,66]. Table5 Typeofpossibleoxidefilms[58,6568] Min Formed Bondstrength Coordination Natureof Valence 1 Protectiveness MO x Oxide (kJ ⋅⋅⋅mol ) number(C.N.) theformedoxide* Si 4 SiO 2 444 4 NetworkFormer Protective Ti 4 TiO 2 306 6 Intermediate Protective Cr 3 Cr 2O3 197 6 NetworkModifier Protective Fe 2 FeO 134 6 NetworkModifier NonProtective Fe 3 Fe 2O3 407 6 NetworkFormer Protective Ni 2 NiO 117 6 NetworkModifier NonProtective *Network former if the bond strength is stronger than 315 kJ⋅mol 1; oxide becomes network modifier if the bond 1 1 strengthisweakerthan210kJ⋅mol ;intermediateoxideshavethebondstrengthbetween210and315kJ⋅mol [59]. EffectivenessofOxideintheChosenChemicalEnvironment Theoxidationstateofindividualelementinaspecific chemical environment can be predicted accordingtothethermodynamicpotentialpHdiagram(Pourbaixdiagram),seeFigure4and5[69,70]. Inourtestedenvironmentsof0.50Msulphuricacid(H 2SO 4)(pH=0)and0.05Mhydrochloricacid (HCl)(pH=1.3),itcanbepredictedthatSiO 2isformedandkeepsstableevenatahighpotential.The transition metal counterparts, except Ti, dissolve gradually into their ionic states in a widepotential range and cannot form any protective oxide. Therefore, it is predicted that Tisilicides could be a potentialcandidatetowithstandthetestingconditions. (i) (ii)

Figure4 ThePourbaixdiagramofSiin(i)0.50MH 2SO 4 and(ii)0.05MHClandthesilicon concentrationisassumedtobe1.00M(Simulationin[70]).

9 (i) (ii) (a)

(b)

(c)

(d)

Figure5ThePourbaixdiagramsof(a)Ti,(b)Cr,(c)Feand(d)Niin(i)0.50MH2SO 4 and(ii)0.05M HClandalltransitionmetalsconcentrationareassumedtobe1.00M(Simulationin[70]).

10 CorrosionofTransitionMetalSilicides

Comprehensive studies of the anodic behaviour of powder compacted transition metal silicide electrode materials of MnSi, FeSi, CoSi and NiSi have been conducted by Shein et al. in acid, alkalineandhalidecontainingsolutions[6165,7177].Theresultsfromtheiracidtestsaresummarised in Table 6. By checking the electrochemical parametersinthepolarisationcurves,itwasfoundthat silicidesmaterialshavesuperiorcorrosionresistivityincomparisontotheirtransitionmetalcounterpart by showing lower current density (i.e. lower reaction rate) at corrosion potential (E corr ), passivation potential(E pass )andwiderpassivatingrange(E range ).ThegeneralconclusionfortheacidtestsofH 2SO 4 for all transition metal silicides was that, “the selective dissolution of transition metal takes place concurrentlywiththeoxidationofSitoSiO 2[7173].”Thedissolutionrateisdeterminedbyi active .This processwassupposedtobeconnectedtothediffusionoftransitionmetalintheintermetalliccompound andthetransportoftheoxidisedtransitionmetalinthesuperficiallayerofthehydratedSiO 2[7173]. Therefore, it is expected that structure with stronger intermetallic bonds (e.g. covalent bond implies lowerdissolutionrateandlowerdiffusionrate)andhigherSicontentispreferabletoenhancecorrosion resistance[71,72].Nevertheless,inthepresenceofhalidessuchasfluoride(F ) or chloride (Cl ), the anodicprocessassuchwasfoundtoaccelerate,inadditionwiththedissolutionofasurfacelayerof SiO2andSi[616573].Theseresultsfromthebulkmaterialsareimportantreferencesforthethinfilm silicidesstudy. Table6Anodicpotentiodynamicpolarisationmeasurementsofsomepowdercompactedelectrodes[7173] Typeofsilicide Si Mn Fe Co Ni MnSi FeSi CoSi NiSi materials Testingcondition 0.50MH 2SO 4,Scanrate=1mV/s,ReferenceelectrodeisStandardhydrogenelectrode(SHE) Electrochemicalparameters Ecorr (mV) 80 680 160 75 75 70 0 155 173 2 3 icorr (A/cm ) 5.5 3500 200 10 200 0.15 0.20 0.10 10 Epass (mV) 200 500 580 1460 460 100 155 405 0 2 3 5 5 5 5 3 icrit (A/cm ) 10 10 10 10 10 1 0.1 0.5 10 2 3 5 2 3 ipass (A/cm ) 10 10 10 10 10 1 0.1 0.3 4.5 Etrans (mV) 1590 1650 1330 1260 1560 1420 1190 Erange(mV)* 1010 190 870 1160 1405 1015 1190

*E range =E trans E pass OthercurrentlyactivesilicidecorrosionresearchesarefoundinthegroupsinChina,Norwayand Russia[7882].Wangetal[8082]developedsomemultiphasestransitionmetalsilicidesspecimensby meansoflaser cladding techniques.Theirelectrochemical corrosiontestsinH 2SO 4,NaOHand NaCl solutions were carried out in a similar approach asSheindidfortheNiTiSiandCrNiSisystems. Thesesilicidesshowedgoodcorrosionresistanceinallthetestedconditionsandthediscussionabout corrosionmechanismsarebasicallythesameasbySheinandcoworkers. Clearly,bulksilicidematerialscanbeclaimedto have good corrosion resistance, but brittle in nature,andtheideaofusingsilicideasprotectivecoatingswasproposedalreadyin1991byKnyazheva etal.[46].However,sincethennotmanypapersarefoundrelatedtointhisspecificsubject[8390]. Even so, the reliability of silicide coatings is substrate dependent and no systematic study has been conducted so far. With this basis, the studies of the corrosion properties of transition metal silicide materials, applied as submicron protective thin films on one of the most widelyused engineering materials–austeniticstainlesssteel,comprisethemajorobjectivesofthepresentthesiswork.

11 Chapter3ElectrochemicalApproachtoAssessCorrosionPropertiesofMaterials

Corrosionisoneofthemostcommonandcostlymaterialfailuremechanisms.Thelatestpublished survey in 2007 [91] shows that the direct cost of corrosion – essentially materials, equipment, and servicesinvolvedinrepair,maintenance,andreplacement,isbetween€1.3and1.4trillionintheworld, or 3.1 to 3.5 % of a nation’s annual gross domestic product (GDP). Unfortunately, corrosion is unavoidable and atmospheric corrosion happens every instant once an object is exposed to the air. Although the corrosion rate can be slowed down through proper material designs and surface engineeringprocesses,itdoesnotmeanthatthecorrosionprocesscanbecompletelyprohibited.Onthe otherhand,everycorrosioncaseisuniqueandthereisnosinglesolutionoradvancedmaterialthatcan solvealltheproblems.Corrosioncanbeaffectedbymanychemicalspecies.Theycanbeingaseous formsuchasnitrogenoxides(NO x),sulphurdioxide(SO 2),hydrogenchloride(HCl),solidformsuchas particulates/suspensionlikedust,aqueousforminvolvingcompoundssuchassodiumchloride(NaCl) and fluoride (F ) [92], or even microbiological form such as bacteria [93]. Clearly, the different corrosionreactionsthatoccurasaresultofthecorrosivespeciescausedetrimentaleffectstoengineering materials.Fortunately,engineeringmaterialsarenotjustsufferingfromthechemicalreactionsinduced bytheenvironment.Withtheappropriatealloydesign,materialscan,inresponsetotheenvironment, react and heal themselves by developing a protective layer. This layer helps to reduce the surface reactivity,reducetheionspeciesmobility,and/ordevelopsasaphysicalbarrierbetweenthematerial andexternalenvironment.Bythismeans,theriskofcorrosionattackcanbeminimised. To assess the corrosion properties, more than hundreds of testing methods are found in the corrosion testing handbook [94]. Meanwhile, in this work, only an electrochemical test of potentiodynamicpolarisationmeasurementisimplemented.Althoughthisisalaboratoryscaletesting method,informationprovidedfromtheassessedresults including the corrosion rate, passivation and corrosion behaviour in a chosen environment are sufficient for the primary understanding of the materialspropertiesofinterestatpresentstage.

3.1 ThePolarisationDiagram

Theresultsofpotentiodynamicpolarisationmeasurementsare graphically presentedinaplotof potentialcurrent density diagram, which is also called the polarisation diagram (Figure 6). The logarithmic scale is used for the current density (unit: A cm 2) to cover the broad range of interest, while the linear scale is used for the voltage (unit: mV). The axes in the plot are interchangeable accordingtodifferentstudies[711,6165,7190].Inthediagram,someelectrochemicalcharacteristics including corrosion potential (E corr ), passivation potential (E pass ), and pitting (also called breakdown) potential(E pit orE break ),transpassivepotential(E trans ),aswellastheircorrespondingcurrentdensities(i, A/cm 2)canbedetermined,andtherebytheactive,passiveandtranspassiveregionscanbedefined. OthermeasuredparametersandcorrosionpropertiesliketheanodicandcathodicTafel’sconstants(β a 2 andβ c),andpolarisationresistance (R p, cm ) canbederived graphically andmathematically(read AppendixA)[95].Ingeneral,lowcurrentdensityatthefreecorrosionpotential,lowpassivecurrent density (i pass ), wide passive region (or working potential) (E range ) and high pitting or transpassive potential indicate better corrosion properties of the materials. Higher free corrosion potential also reflects more “noble” character of the material in the specific test environment. Note that Figure 6

12 providessimplifiedgeneralcharacteristicsofthepolarisationcurvesandthatvarioussidereactionsor overlapping processes can complicate the appearance in the real measurements. More about the polarisationtestinginstrument,thepotentiostat,andtheelectrochemistrycorrelatedtopolarisationcurve willbeintroducedanddiscussedinAppendixA.

ACTIVE PASSIVE TRANSPASSIVE )

2 REGION REGION REGION

Non-passivating material A/cm i crit

Passivating materials i corr i pass Currentdensity (

E E E E corr pass pit trans Potential (mV) Figure6Schematicdiagramshowingthepotentiodynamicpolarisationdiagram(Author’sillustration).

3.2 AnodicDissolution

Thetheoreticalbasisforanelectrochemicalcorrosionisderivedfromthemixedpotentialtheory [17].Inessence,thistheorystatesthatthetotalrateofalltheoxidationreactionsequalthetotalrateof allthereductionreactionsonacorrodingsurface.Theanodeusuallycorrodesbylossofelectronsfrom metalatomstoformcations.Thesecationsmayremaininsolutionorreacttoforminsoluble/soluble corrosionproducts.Iftheformercaseoccurs,usingthesymbolforametalatomcontainedwithinits solidstructure,theionisation(anodicreaction)canberepresentedbythefollowingreaction: z+ M(s) M (aq) +ze …(i) Thisisthegeneralisedcorrosionreactionthatremovesthemetalatombyoxidisingittoanionicstate.In thisreaction,thenumberofelectronsproducedequalsthevalenceofthemetalionproduced.Themixed potential theory proposes that all the electrons generated by the anodic reactions are consumed by corresponding reduction reactions. The more common cathodic reactions encountered in aqueous corrosionareasfollows[96]. Thehydrogenevolutionreaction,whichisthedominantcathodicprocessinacidicsolution: + o 2H (aq) +2e H2(g) E SHE =0.0V …(ii) Theoxygenreductioninacidicsolution(pH=0): + o ½O2(g) +2H (aq) +2e H2O(l) E SHE =+1.23V …(iii) Andtheoxygenreductioninneutral(pH=7)orbasic(pH=14)solution: o ½O2(g) +H 2O(l) +2e 2OH (aq) E SHE =+0.82V(pH=7)or+0.399V(pH=14)…(iv)

(OtherpossiblechemicalreactionsforthetransitionmetalsandsiliconinacidicsolutionareattachedinAppendixA[96].)

13 3.3 AnodicOxidation(Passivation)

Asmentionedintheprevioussection,whenmetalcorrodesandmetalionsaregenerated,themetal canbedissolvedintothesolutionandtheionsformedcanalsoreactwithotherspeciestoforminsoluble corrosion products. If the latter case happens andthe reaction product is welladhered on the surface withacoherentstructure,thismostlikelymeansthatapassivelayerisbuiltupbetweenthemetallic material and the external environment. If this layer is electrically insulating or semiconducting, this impliesthatthemobilitythroughthelayerissignificantlyreduced.Bythismeans,thecorresponding measuredcurrentdensityduringthepolarisationmeasurementsreduces,an“activepassive”transition “nose” is noted in the polarisation curve and the passivestate is, therefore, defined. This concept, passivity,wasfirstintroducedbySchönbeinin1836[8].

ThinOxideFilmDevelopmentonMetallicObjects

The oxide layer growth of metal at ambient temperature can be explained by the quantum mechanicalchargetransferCabreraMottmodel(Figure7)[59].Itdefinestheoxidegrowthmechanism asanelectrontunnellingprocessandassumesthatthemobilityofionsisrelativelynegligibleatlow temperature.Themathematicaloxidegrowthlawisdefinedasa directlogarithmiclaw : dx   q ⋅ a ⋅ E  …(v) = N ⋅⋅ν ⋅exp− W −  dt   k ⋅T  inwhichxistheoxidethickness,tthetime,Nthenumberofmobileions,theoxidevolumeper mobileion,υtheatomicvibrationfrequency,Wtheenergybarrier,qtheioniccharge,ahalftheion jump,EtheelectricfieldV/x,ktheBoltzmann’sconstant,andTthetemperature. oran inverselogarithmiclaw : x (t +τ ) 1   …(vi) = −ln  − ln(x1 ⋅u) x  x2  where  W  , q ⋅ a ⋅V and τ is a constant which can be neglected if it is small u = N ⋅⋅ν ⋅exp−  x1 =  k ⋅T  k ⋅T comparedwitht. Thegrowthrateofanoxidedependsontheprotectivenesswhichisdeterminedbythemetaloxide bondsintheindividualstructure.AsdiscussedinSection2.3,metaloxidesaredividedintonetwork formers, intermediates and network modifiers. The growth rate of those networkforming or intermediateclassesisgovernedbyinverselogarithmicexpression[59,60].Conversely,thegrowthof modifyingoxidesisgovernedbythedirectlogarithmicexpression[59,60].

Figure7CabreraMott’schargetransfermodel(Drawingbasedon[59]).

14 Therearetwocommonlyviewpointsregardingthenatureofthepassivefilmformation.Theyare theadsorptiontheoryandthethinoxidefilmstheory[8,97].Theadsorptiontheorysuggeststhatmetal suchaschromium,aluminium,titanium,etc,arecoveredbyamonolayerofchemisorbedions,e.g.O2. This layer of anions displaces the adsorbed water molecules and slows down the rate of metal dissolution involving hydration of metal ions. The thin oxide film theory stipulates that a threedimensionalsolidinsulatingfilmformsanditactsasadiffusionbarrierlayerofreactionproducts, whichseparatesthemetalfromtheaqueousenvironment,therebythereactionrateisdecreased. 3.4 Transpassivation Duringpolarisationmeasurement,whentheappliedpotentialisdrivenfarbeyondthepassivation potential,thecurrentdensityincreasesdramaticallyonceagainascanbeseenformetallicdissolutionin theactiveregion.Itispossibletosaythatthedissolutionprocessofpassivelayerinitiates.Withoutthe presence of aggressive species (e.g. chloride) in the corrosive environment, it is considered that the dissolutionprocessiselectrochemicallydrivenandtheregioninthepolarisationdiagramisdefinedas transpassive region. An example of transpassivation for stainless steel can be demonstrated in the sulphuricacidmeasurementatapotentialbeyond1.2V.Thecorrespondingreactioncanbereadas: 2 + Cr(OH) 3(s) +H2O(l)CrO 4 (aq) +5H (aq)+3e …(vii) Thischemical reactiontellsthattheoxidisedchromiuminthesolidstateforminpassivelayergets oxidised from Cr(III) to Cr(VI). The Cr(VI) complex is soluble in the testing solution and thereby detachesfromthestainlesssteel.Inthiscondition,stainlesssteelislosingitsselfhealingcapabilityand startstocorrodeactivelyoncethepassivelayeristotallyconsumed. 3.5 PittingCorrosion Inthepolarisationdiagram,acurrentdensityincrementatapotentialbeyondthepassiveregioncan alsobereflectedbythepittingcorrosionprocess.Thecorrespondingpittingpotential(E pit )islowerthan thatoftranspassivationpotential(E trans )forthesametestedmaterial.Theoccurrenceofpittingcorrosion, besides the electrochemical driving force, also depends on the presence of aggressive ions in the environment.Basically,inorderforpittingcorrosiontooccur,thereshouldbeaninitialpassivefilmand thematerialshouldexperiencesufficientlyhighanodicpolarisationpotentialinanenvironmentwith aggressiveanionssuchasCl and F .Abovethepittingpotential,localanodicattacktakes place. Of particular importance are the surface imperfections such as the presence of inclusions and grain boundaries,whichprovidesitesforpittingcorrosionattack.Nonmetallicinclusionscouldpreferentially dissolveinthecorrosionprocessandcreatemicrocrevicethatwilltopitdevelopmentlateron[17]. Thepittingprocesscanthusbeviewedasprocessinwhichthepassivefilmislocallybrokeninplaces depending on surface characteristics and local chemistry (e.g. chloride concentration) within the frameworkofthedynamicprocessesofcontinuouspassivation,activationandrepassivationoccurring onthesurface.Forthematrixelement,Fe,instainlesssteel,thepittingcorrosionreactionsunderthe actionofCl canbedepictedas[17]: FeOOH (s) +Cl (aq) FeOCl (aq) +OH (aq) …(viii) 3+ FeOCl (aq) +H 2O(l) Fe (aq) +Cl (aq) +2OH (aq) …(ix) Clearly,withpresenceofCl ,destabilisationofthesurfaceoxideisapossibleresult.Ontheotherhand, consideringtheothermajorelement,Cr,thedissolutionofCrhydroxidecanbeexpressedas: 3x + Cr(OH) 3(s) +xCl (aq) [CrCl x] (aq) +H (aq) +H 2O(l) +(x3)e …(x) Uponformationofthepassivefilm,preferentialdissolutionofFetakesplacefacilitatingtheformation

15 ofCrrichoxide/hydroxideonstainlesssteel[8].WiththepresenceofaggressiveionsasCl and the localisedcorrosioneffectsinducedbythestructuraldefectssuchasinclusions,theperformanceofthe passiveisdeteriorated.Threemajorpassivitybreakdowntheoriesdevelopedinliteraturetoexplainthe pitinitiationincludingtheionmigrationmechanism,theadsorptionmechanismandthefilmbreakdown mechanism[98]arebrieflydescribedbelow. IonMigrationMechanism Thisideainvolvesthetransportoftheaggressiveanionsthroughthepassivefilmtothemetal/oxide (oralloy/oxide)interface.Gettingdeeperintothecontent,itisproposedthattheinitiationofpitsduring ion penetration and migration is a result of the interchanging mechanism of oxides with aggressive anions (Figure 8). The more soluble metal chlorides are then dissolved into the corrosive solution, leadingtotheoxidenetworkbreakdownandpitformationlateron[8,99]. AdsorptionMechanism Placingthemetallicspecimeninanaqueoussolutioncontainingaggressivespecies,thereisthe accumulationofnegativechargesincludingtheanionsO 2andOH onthespecimensurfaceandthereby a“competitiveadsorption”environmentisestablished.Theadsorptionofaggressiveanionswouldbean exchangeofOH orO 2fromtheoxidefilm.Thecorrespondinghalideoroxyhalideproducthasgreater solubilitythantheoxideandresultsinpartialorcompleteremovalofthepassivelayerattheselocations. Ifthepassivelayerbecomesthinner,thecorrespondingunderlyingmetaldissolutionrateincreasesand pitinitiatesmorereadily(Figure9)[8,99].

Figure8 Ionmigrationmechanism Figure9Adsorptionmechanism (Drawingbasedon[97]). (Drawingbasedon[8]). FilmBreakdownMechanism This theory considers that the passive film is in a continual state of breakdown and repair. Mechanicalstressesariseattheweaksitesandthesebecomethecriticalareasofpassivitybreakdownas aconsequenceofelectrostrictionandsurfacetensioneffectsowingtothesurfacechemistrychangeson thethinfilm[99]. PittingPropagation Pitting is associated with a local discontinuity of the passive film in the form of mechanical imperfection. Pitting corrosion is an autocatalytic propagation process. When a local electrochemical cellisabletoformonthemetalsurface,pittingcaninitiate.Atthecentralanodicsite,dissolutionofthe metaloccurs.Theincreasedconcentrationofmetalionswithinthegrowingpitresultsinthemigration of chloride ions to maintain neutrality. The dissolved cations formed are hydrolysed by water to hydroxideandfreeacidandsubstantialacidificationoccursinthepit.Assoonasapithasbeenformed, it will continue to grow autocatalytically. In a vicious circle, the pit creates the condition which promotesitsfurthergrowth.

16 Chapter4ThinFilmFabricationandMaterialsCharacterisation

4.1IonBeamSputterDeposition(IBSD)

Sputterdepositionisaphysicalvapourdeposition(PVD)techniquethatinvolvesahighenergetic beamofelementaryparticleslikeelectronsorionstobombardthetargetmaterial,sputterouttheatoms, andthendepositthemonthesubstratesurface.Thinfilmsdepositedbymeansofthistechniqueare foundtobeofhighadhesiveness,highdensity,uniformity,andoftenamorphousinnature[101103].In thisstudy,theKaufmantypeionsource,atechniqueinventedattheNationalAeronauticsandSpace Administration(NASA)intheUnitedStateduring1960sforspacecraftengine[104],isbeingusedas ionbeamgenerator.IntheKaufmantypeionsource,plasmaisgeneratedwhenaflowofinertgasis introducedintoahighvacuumclosedcylindricalvolumeandignitedbyadischargevoltage(V d)atthe cathode.Thegeneratedplasmawillbeisolatedandsustainedintheclosedvolume.Ononeendsideof thisclosevolume,therearetwomolybdenum(Mo)gridsthatarewellalignedtogetherandanexternal negative “accelerator voltage” (V a) passes through these grids. When the positively charged ions impingeontheopengrids,theseionswillbeacceleratedandcanthenleavethesourceintheformofa broadbeamthatimpingesontothetargetmaterials.Toavoiddevelopingabiasonthegroundtarget materials,anelectronemittedtungstenfilament(W)called‘neutraliser’isusedforlimitingthecharge builduponthetargetbycompensationtheelectronstothepositivelychargedinertgasions.Figure10 and11showtheschematicdiagramoftheKaufmantypeionsourceandthemechanismofionbeam sputterdeposition(IBSD)[105107].Inordertogeneratethebinarycomponentthinfilmsofdifferent compositions,twofabricationapproacheshavebeenimplementedinthiswork.Onewaywastoconduct cosputterdepositionbyusingtwoionsourcesandtwotargets.Byvaryingtheionbeamvoltageofthe individual ion source, thin film with controlled silicon to transition metal ratio and smooth surfaces couldthenbeachieved.Other advantageswith thecosputtering method include the generation of a sharp coatingsubstrate interface and the reduction of silicide formation temperature during the deposition[101].Anotherapproachtoachievethebinarycomponentthinfilmwastoperformsingle targetdepositiononSiwaferandfollowedbyvacuumannealingtreatment.Heattreatmentsatdifferent temperaturefordifferenttransitionmetalsilicideshelpthedevelopmentofdifferentsilicidephaseswith highercrystallinitycomparedtothecodepositingtechnique[101103].

Figure10 CrosssectionofaKaufmantypeion Figure11Schematicdiagramshowingthesputter source(Drawingbasedon[105]). depositionprocess(Drawingbasedon[104,107]).

17 StructureoftheSputteredFilms

Theideaofdevelopingsilicidefilmsintotwostructuralformsforpropertiescomparisonoriginate fromaconceptinmaterialssciencethatbettermechanicalandchemicalpropertiescanbefoundinthe amorphousform[108,109].Infact,literaturerelatedtocorrosionstudiesshowthatamorphousmaterials alwaysshowbettercorrosionresistancethantheircrystallinecounterpartsowingtothehigherchemical homogeneity, the lower defect density and the capability of forming uniform and protective passive layers[110116].Therefore,itisinterestingtocheckifthesameproofisvalidornotinthetransition metalsilicidethinfilms.StructuralinvestigationofapairofNiSifilmswiththesamecompositionsbut indifferentdegreeofcrystallinityhavebeenconductedbymeansofTEMandthecrosssectionimages areshowninFigure12.Crystallitefeaturescanbeobservedintheannealedspecimenbutnotinthe cosputteredone,togetherwiththediffractionpatternacquiredfromtheGIXRDmeasurements(Figure. 13), the results show that longrange order or crystalline structure can be achieved through vacuum annealingprocess,whileshortrangeorder(vitreous)ornoordering(amorphous)thinfilmappearsfor thecosputteredstate.

Figure12CrosssectionalTEMimagesshowing(a)athermallyannealedNiSithinfilm; and(b)acosputteredNiSithinfilm(Resultsnotincludedintheappendedpapersandare developedbyDr.YimingYaotogetherwithProf.UtaKlementandthethesisauthor).

(a) (b) Ni Si (ICDD: 48-1339) 2 (211) (301) Ni Si 0.60 0.40

(211) NiSi (ICDD: 38-0844)

(002) (112) Intensity(a.u.)

(111) Intensity(a.u.) (200) (210) (103) Ni Si 0.38 0.62

40 45 50 55 60 65 70 75 80 85 45 50 55 60 65 70 75 80 85 90 2θ 2θ Figure13GIXRDoftwopairsofNiSithinfilmswiththesimilarchemicalcompositionsbutdifferent degreeofcrystallinity:(a)thermallyannealedpair;(b)cosputteredpair(ResultsinPaper4).

18 4.2SilicideCharacterisation

Structure,phaseformationandchemicalcompositionofthesilicidethinfilmswerecharacterised bymeansofXraydiffraction(XRD)andXrayphotoelectronspectroscopy(XPS)techniques.Also,a theoretical approach of the effective heat of formation(EHF)model[57,58]wasusedtopredictthe possiblephasesformedintheannealedspecimens.The background about individual characterisation techniqueandtheEHFmodelisfoundinAppendicesBandC. Structuralcharacterisationofthinfilmsneedstobedoneattheuppermostpartofthecharacterised specimen(inmicronscale)andthereforegrazingincidencesetupintheXraydiffractometerisamustto acquirethemaximumamountofdiffractedXraysignalfromthetoplayer.Thediffractionpatternsin Figure 14 show different NiSi phases that originate from a Ni/Si system after thermal annealing processes at different temperatures. The sharpness of the characteristic peaks is related to the crystallinity of the characterised thin films. For amorphous or vitreous structure, a broad halo peak wouldbeshowninsteadasillustratedinFigure13(b).InFigure14,thenumberofpeaksandintensityof thepeaksdeterminethesymmetryandthedegreeofcrystallinity,respectively,ofthecrystalstructure.In principle,crystalstructureswithhighersymmetryyieldfewerpeaksinthediffractionpattern.Bythis means,NiandNiSi 2havehighersymmetriccomparedtoNi 2SiandNiSi.Nevertheless,theformationof eachphaseistemperatureandtimedependent[57,58].Forhighercrystallinity,higherintensityofpeaks wouldbeacquired.Silicidemixtureisnotuncommontobesynthesizediftheinappropriateannealing temperaturehasbeenchoseninaccordancewiththeexperimentalstudiesintheresearch. Thechemicalinformationabouteachsilicidethin films is mainly obtained by means of XPS. Basically,theresultissimplypresentedasthephotoelectronemissionspectrumasshowninFigure15 andthisspectrumpresentsthebindingenergypeaksforemittedphotoelectronsfromboththeinnercore levels and the valence electron levels of the characterised specimen. With the characteristic binding energypositionsofthecoreelectronsfromalltheelements,theapproximatesurfacecompositionofthe specimen can be evaluated through measuring the intensity ratio of individual peaks with the considerationofsensitivityfactors[117119].

5 3.0x10 Ni 2p Ni Ni Si 5 3/2 2 2.5x10 NiSi NiSi 2 (111) (200) 5 Auger parameter ( α) 2.0x10 (121) Ni 2p (211) (310) (021) 1/2 1.5x10 5 (211)

(002) (112) Valence Band (111) Ni (AES) (200) (210) (103) 5 1.0x10 Ni 2s LMM Si 2p Ni 3p (220) LMV Ni 3s Intensity(a.u.) LVV (111) 5.0x10 4 Si 2s Countssecond per (cps)

0.0 40 45 50 55 60 65 70 75 80 85 1000 800 600 400 200 0 2θ Binding energy (eV) Figure14DiffractionpatternsoftheNiSisystem Figure15XPSsurveyspectrumofaNiSi 2thinfilm afterannealingprocessesatdifferenttemperatures (Author’sresults). (Author’sresults).

19 Whilethepeakintensityratiotellsthechemicalcomposition,thebindingenergypositionofthe photoelectronforaparticularXPSsignalforanelementtellsthepossiblechemicalstateofthatelement. Figure16illustratesthebindingenergyshiftofNifrommetallicstatetointermetallicstateofNiSi 2. Besidesthebindingenergyposition,thechangeofpeaksymmetry,peakwidthandthedisappearanceof satellitepeakarealsothecharacteristicfeatures.InPaper2,bindingenergyshiftsofthetransitionmetal inthetransitionmetaldisilicidesofTiSi,CrSi,FeSiandNiSicomparedtotheirmetallicstateswere investigatedandtheresultsshowthatthesilicidationprocessleadstotransitionmetalcorelevelXPS peaksthatstartfromanegativebindingenergyshifttoaprominentpositivebindingenergyshiftwhen passingfromlefttorightacrossthetransitionmetalseries.Furtherexplanationofthisphenomenoncan bedevelopedbyconsideringtheinitialstateandfinalstateAugerparametersasillustratedinaWagner plot(Figure17).Forexample,thesilicidationprocessofNitoNiSi 2meansthatthebindingenergyshift (E b)oftheNi2p 3/2signalismainlygovernedbytheinitialstateAugerparameter(β).Thisisrelated tothefactthatthescreeningeffectforNiatombythesurroundingNiatomsisgreatlyreducedandthus anisolated/atomisiticNistructureisactually establishedinthedisilicide.Asaresult,theinteraction betweenthenucleusandcorelevelelectronincreasessignificantlyandleadstotheincrementofbinding energyvalue.Meanwhile,thechangeoftheinitialstateeffectisrelativelyinsignificantincomparison with the other silicide systems. Thereby, higher contribution from the finalstate effects (α) or the extraatomic relaxation energies (R) will be the results and smaller binding energy shifts can be observedfromtheothersilicides(seeTable7).

712 Ni Final state effect

NiSi 2 Initial state effect 710 2p 3/2 Ni 708

NiSi 2 706 Intensity(a.u.) 704

702 860 858 856 854 852 850 854.8 854.4 854.0 853.6 853.2 852.8 852.4 Kineticenergy of the Augerelectron (eV) Binding energy (eV) Binding energy (eV) Figure16BindingenergyshiftofNi Figure17Wagnerplotillustratingtheinitialstateand 2p 3/2 fromNistatetoNiSi 2state finalstateeffectsofNiinNistateandNiSi 2state (ResultsinPaper2). (ResultsinPaper2).

20 Table7BindingenergylinesintheXPSmeasurementsfordifferentcharacterisedthinfilms(ResultsinPaper2) KEof Augerparameters Transition Thin E Auger α(Final β(Initial metal b E R film (2p ) electron Auger state α state β b 2p 3/2 3/2 (eV) effects) effects) Ti 454.2 388.6 842.8 1751.2 0.3 0 0.3 0.9 0.30 0.15 TiSi 2 453.9 388.6 842.5 1750.3 Cr 574.3 489.2 1063.5 2212.1 CrSi 0.1 0.9 1.0 1.2 0.10 0.50 + 574.2 488.3 1062.5 2210.9 CrSi 2 Fe 706.7 598.5 1305.2 2718.6 +0.3 0.7 1.4 0.8 +0.3 0.70 FeSi 2 707.0 596.8 1303.8 2717.8 Ni 852.6 708.0 1560.6 3265.8 +2.0 3.2 0.2 +3.8 +2.0 0.10 NiSi 2 854.6 705.8 1560.4 3269.6

Theatomicinteractionorthebondingnatureoftheelementsonthesurfacecanbestudiedthrough thevalencebandspectrumintheXPSmeasurements.Figure18presents thevalencebandspectraof NiSisystemextractedfromPaper1.Inthisfigure,themainpeakappearingontheNispectrumbelongs totheelectronin3d 5/2 stateandtheshoulderisthesatellitepeak.Ontheotherhand,twopeaksarefound intheSispectrumthatrepresent3pand3sstates,respectively.Afterthesilicideformation,thevalence bandlevelsfortheindividualelementsinteractandthehybridisationofthe3dorbitalofthetransition metalandthe3porbitalofthesiliconresults.Theresultofhybridisationshiftsthebindingenergiesof both3dand3pstatesandthepreviousdominant3dpeakdiminishes.Bythismeans,electronsinthe3d stateand3pstateareshared.ThedisappearanceoftheshoulderpeakforNiresultswiththeconsumption offreemovingelectrons.ByincreasingtheSiconcentration,thereisclearlythepositiveshiftofbinding energy position of the main peakandthisimpliesthatmoresilicontypeorcovalentcharacter bonds havebeendevelopedinthethinfilmsystems.Similarresultsanddiscussioncanalsobedevelopedfor theothersilicidesandthedetailsarefoundinPaper2.

Bonding Non-bonding Anti-bonding Ni state state state Ni Si 0.66 0.33 Ni 3d Ni Si 5/2 0.4 0.6 Ni Si 0.20 0.80 Si

d-p hybridized bonding state Intensity(a.u.)

Si 3s Si 3p

15 10 5 0 -5 Binding energy (eV) Figure18ValencebandspectraintheNiSifilmseriessamples(ResultsinPaper1).

21 Clearly,thecorelevelbindingenergyshiftsofthetransitionmetalintheXPSmeasurementscan show the possible chemical states of transition metal silicides. Still without the aid of phase identificationviaXRD,theXPSbindingenergycharacterisationofthinfilmwithshortrangeorderor amorphousstructurewouldbequestionable.Therefore,acorrelationstudyapplyingbothXRDandXPS foreachsilicidephaseisnecessaryatthebeginningofworkforspecificsilicideidentification.Afterthat, itispossibletoinvestigatethesilicideswithlowercrystallinitythroughtheexistingdatabase. Asmentionedatthebeginningofthischapter,higher crystallinity of silicide thin films can be achieved through thermal annealing process. Meanwhile, silicide mixtures cannot be avoided if inappropriateannealing temperaturehasbeen chosen.Withtheknownconcentrationatthebeginning beforetheannealingprocess,itispossibletopredicttheinitialsilicidephaseformationaswellasthe subsequent silicide form in a particular silicide system through the Pretorius’s effective heat of formation(EHF)model[57,58].Table8showssometransitionmetalsilicidethinfilmspreparedby cosputteringdepositionandheattreatedatadesiredtemperaturetopromotetheformationofcrystalline disilicides.Althoughmostofthesilicidesystemsworkout,theexpectedsinglephaseformationofCrSi 2 wasnotpossibletoachieve.ThecauseofsilicidemixtureformationfortheCrSisystemissupposedto bearesultofthepartialdecompositionofthefirstformedCrSi 2 phaseintoCrSiandSi,whichisoutof thescopeoftheEHFmodelpredictions.Nevertheless,withtheconfirmationofsilicidephasesfromthe XRDanalyses,theXPSbindingenergyofspecificsilicidesarethendefinedandcanalsobeusedto interpretthepossibletransitionmetalsilicidewithlowcrystallinityfromthepositionsoftheXPSpeak positions recorded. Table 9 shows the results for the NiSi film series in deposited form in Xrays amorphouscondition,fabricatedbymeansofthecosputterdeposition. Table8CompositionofdifferenttransitionmetalsilicidethinfilmsbymeansofXPSquantitativeanalysisandthe possiblephaseformationuponannealingpredictedbyeffectiveheatofformation(EHF)model(ResultsinPaper2) Compound Effective Possible Hº Limiting H´ Phase Specimens Congruency composition concentration phases (kJ mol 1at1) element (kJ mol 1at 1) formed (at.%) (at.%) Ti 0.40 Si 0.60 Ti 3Si Ti 0.75 Si 0.25 53.0 Ti 40 28.3 Ti 5Si 3 C Ti 0.62 Si 0.38 72.4 Ti 40 46.3 Ti 5Si 4 Ti 0.56 Si 0.44 81.0 Ti 40 57.9 TiSi Ti 0.50 Si 0.50 78.6 Ti 40 62.9 TiSi 2 C Ti 0.33 Si 0.67 57.0 Si 60 51.0 TiSi 2 Cr 0.20 Si 0.80 Cr 3Si C Cr 0.75 Si 0.25 34.4 Cr 20 9.2 Cr 5Si 3 C Cr 0.62 Si 0.38 35.0 Cr 20 11.2 CrSi Cr 0.50 Si 0.50 30.2 Cr 20 12.2 CrSi 2 C Cr 0.33 Si 0.67 25.8 Cr 20 15.6 CrSi 2 Fe 0.40 Si 0.60 Fe 3Si Fe 0.75 Si 0.25 25.8 Fe 40 13.8 FeSi C Fe 0.50 Si 0.50 39.3 Fe 40 31.4 FeSi FeSi 2 Fe 0.33 Si 0.67 30.6 Si 60 27.4 Ni 0.25 Si 0.75 Ni 3Si Ni 0.75 Si 0.25 37.2 Ni 25 12.4 Ni 5Si 2 C Ni 0.71 Si 0.29 42.3 Ni 25 14.9 Ni 2Si C Ni 0.67 Si 0.33 46.9 Ni 25 17.5 Ni 3Si 2 Ni 0.60 Si 0.40 45.2 Ni 25 18.8 NiSi C Ni 0.50 Si 0.50 42.4 Ni 25 21.2 NiSi NiSi 2 Ni 0.33 Si 0.67 29.3 Ni 25 22.2

22 Table9ThepredictionofphaseformationintheNiSifilmseriesutilisingPretorius’EHFmodel(ResultsinPaper1) Effective Compound Thinfilm H° Limiting H´ Phase Composition concentration concentration specimens (kJmol 1at 1) element (kJmol 1at 1) formation (at.%) (at.%) Ni 0.66 Si 0.33 Ni 0.67 Si 0.33 46.9 Ni 66 67 46.2 Ni 2Si Ni 0.50 Si 0.50 42.4 Si 33 50 28.0 Ni 0.33 Si 0.67 29.3 Si 33 67 14.4 Ni 0.40 Si 0.60 Ni 0.67 Si 0.33 46.9 Ni 40 67 27.6 Ni 0.50 Si 0.50 42.4 Ni 40 50 33.9 NiSi Ni 0.33 Si 0.67 29.3 Si 60 67 26.2 Ni 0.20 Si 0.80 Ni 0.67 Si 0.33 46.9 Ni 20 67 14.0 Ni 0.50 Si 0.50 42.4 Ni 20 50 17.0 NiSi Ni 0.33 Si 0.67 29.3 Ni 20 33 17.6 NiSi 2 Otherthanthesilicidestatecharacterisation,thecorelevelSi2pspectrumplaysanimportanton silicide oxidation characterisation. Since silicon has much higher oxygen affinity compared to the transition metal, silicon oxidation is much more efficient and thus becoming a crucial factor of the corrosionresistivityofthetransitionmetalsilicidethinfilms.Itissupposedthatthesilica(SiO2)isan effectivepassivelayerthatcanwithstandmanyaggressivecorrosionenvironments[48].Notethatthe bindingenergyoftheSi2pofsiliconstateis99.4eV,silicidestate99.3–99.7eV,andoxidestateat 103.0–104.0eV(Figure19).ThebindingenergyleveloftheSipeakforthesilicastatedependsonthe integrityofthesilicalayerandthelayerthickness,i.e.athickerlayergivesanapparenthigherbinding energyvalue.Theeffectispartlyrelatedtotheinsulatingnatureofthelayer,i.e.chargingeffects[120].

Si 2p (b) NiSi Si 2p (a) NiSi 2 2

SiO 2

Intensity (a.u.) Intensity(a.u.)

104 102 100 98 96 108 106 104 102 100 98 96 Binding energy (eV) Binding energy (eV) Figure19BindingenergyspectraofapairofSi2p(a)beforeand(b)afteroxidationintheNiSi 2thinfilm (ResultsinPaper3).

23 Chapter5ThinFilmProperties

5.1CorrosionProperties

Corrosionpropertiesofthetransitionmetalsilicidethinfilmshavebeenstudiedinthreestagesand reported in separate articles (Papers 3 to 5). ThispartofworkwasstartedwiththeNiSisystemof different compositions (Paper 3). Based on the findings from this preliminary work, the optimum compositionwithhighcorrosionresistancewaschosenandtheinvestigationwasthenextendedtothe othertransitionmetalsilicidesystems,i.e.TiSi, CrSi and FeSi (Paper 5). Furthermore, it was also considered that the shortrange order or no ordering structure might have beneficial effect to the corrosionresistance.Therefore,acomparativestudyoftwopairsofNiSiwiththesimilarcompositions butdifferentdegreeofcrystallinity (Paper4) wasconductedinordertofindoutthepotentialimpact inducedbythestructuraldesignofthinfilm. Tostartwith,thepolarisationdiagramsoftheNiSifilmsseriesafterthe0.05Mhydrochloricacid (HCl)tests(pH=1.3)areshowninFigure20andtheelectrochemicalcharacteristicsaresummarisedin Table10.Theresultsofthesecurvesshowthatthe corrosion resistance of the coated specimens are better than the uncoated 304L steel since all the polarisation curves have relatively lower current densities. The lower corrosion current density (i corr ) at the corrosion potentials (E corr ) and higher polarisationresistances(R p),thereby,impliesthehigherselfcorrosionresistanceofthecoatedsamples thantheuncoatedsteel.Whenconsideringthesilicidecomposition,itisfoundthatNiSifilmswithhigh Si contents (i.e. Ni 0.40 Si 0.60 and Ni 0.20 Si 0.80 )givehigherpolarisationresistancesthanthatwith low Si content(i.e.Ni 0.66 Si 0.33 )andthepureNifilm.ThismeansthathighSicontentisanimportantfactorto improvethecorrosionresistanceintheNiSisystem.Furthermore,thesmallE corr differencesbetween the 304 substrate and all NiSi films imply that only small galvanic effect at these silicide304L interfaceswillbeinducedwheneithersideisdamaged.Bythismeans,itisexpectedthatNiSithinfilm cangivegoodcorrosionprotectiontoorimprovethecorrosionresistanceof304Lstainlesssteels. 10 3

2 2 10

10 1 A/cm 10 0

10 -1

AISI 304L 10 -2 Ni Ni Si -3 0.66 0.33 10 Ni Si 0.40 0.60 -4 Ni Si 10 0.20 0.80

Currentdensity - Si 10 -5 -700 -600 -500 -400 -300 -200 -100 0 100 Potential - mV (vs Ag/AgCl, sat. KCl, +197 mV) Figure20 ThepolarisationcurvesintheNiSifilmsseries,theelementalNiandSifilmsand the304Lstainlesssteeltestedin0.05MHClsolution(ResultsinPaper3).

24 Table10 Highlightedelectrochemicalcharacteristicsinthepolarisationcurves(ResultsinPaper3)

304L Ni Ni 0.66 Si 0.33 Ni 0.40 Si 0.60 Ni 0.20 Si 0.80 Si 2 Corrosioncurrentdensity (i corr –A/cm ) 240 54 3.4 0.23 0.62 0.25

Corrosionpotential (E corr vsAg/AgCl–mV) 460 430 380 400 390 410 Corrosionpotential(E corr vsSHE–mV) 263 233 183 203 193 213 2 5 5 5 Polarisationresistance(R p–/cm ) 310 1065 6630 2.0×10 1.0×10 3.0×10

Basedonthisfinding,transitionmetalsilicidethin films of other systems were deposited with siliconcontentatorabove65%.Underthesamepolarisationenvironmentbutfasterscanningrate,the polarisationdiagramsweremeasuredandareplottedinFigure21.Basically,besidesTiSispecimen, there is no significant difference among different silicide thin films and the 304 steel. They are all showingthesimilarpolarisationbehaviourfortheirclosecorrosionpotential(E corr ),corrosioncurrent density(i corr ),passivationpotential(E pass ),passivecurrentdensity(i pass )andcommonpittingpotential (E pit ). The polarisation measurements imply that the different transition metal silicides, except TiSi, share the similar polarisation behaviour as stainless steel. For TiSi, the polarisation curve is exceptionally lower in current density thus indicating its chemical inertness. The electrochemical characteristicsduringthepolarisationmeasurementsaresummarisedinTable11.Inall,theresultsshow that the transition metal silicide thin films together with the uncoated stainless steel substrate are susceptibletothehydrochloricacidandthereforeallsilicidethinfilmscannotsignificantlyimprovethe corrosionresistivityof304steel,exceptTiSi. 10 10

2 10 9

8 A/cm 10

10 7

6 304 10 Si Ti Si 5 0.35 0.65 10 Cr Si 0.25 0.75 Fe Si 4 0.35 0.65 10 Ni Si 0.25 0.75 Current density - 10 3 -700 -600 -500 -400 -300 -200 -100 0 100 Potential - mV (vs Ag/AgCl, Sat. KCl, + 197 mV) Figure21Thepolarisationdiagramof(a)AISItype304stainlesssteel;(b)Sithinfilm;(c)TiSithinfilm;(d) CrSithinfilm;(e)FeSithinfilm;and(f)NiSithinfilmobtainedfromthepotentiodynamicpolarisation measurementsinthe0.05MHClsolution(ResultsinPaper5). Table11 Dataextractedfromthepolarisationexperimentsdonein0.05MHCl(ResultsinPaper5)

Thinfilmcomposition Ti 0.33 Si 0.67 Cr 0.25 Si 0.75 Fe 0.30 Si 0.70 Ni 0.25 Si 0.75 Si Bulk Substrate 304 304 304 304 304 304 Ecorr vsAg/AgCl–mV 345 430 400 370 420 400 Ecorr vsSHE–mV 148 233 203 173 223 203 2 icorrA/cm 2 180 35 30 130 14 2 icrit A/cm 2 570 190 940 620 510 2 ipass A/cm 9 80 25 70 80 110 Epit vsAg/Cl–mV 100 50 55 80 40 55 Workingpotential(mV) 230 170 230 120 150 150

25 WhileallspecimenshavefailedtopassivateunderHClattack,anothersilicidesetwiththesame composition as above were prepared for sulphuric acid runs. The polarisation curves and the correspondingelectrochemicalcharacteristicsarepresentedinFigure22andTable12.Unlikethetests runinHCl,allspecimensgetpassivatedinthisconditionandclearpassiveregionsaredefined.However, onlyTiSiandNiSisustainedonthesubstratesurfaceattheendofthepolarisationtestaccordingtothe microscopicobservationandthusCrSiandFeSiarenotsuitableforprotectivethinfilmsapplication (readPaper5).

10 10 2 10 9 10 8 A/cm 10 7 10 6 5 10 304 10 4 Si Ti Si 3 0.35 0.65 10 Cr Si 2 0.25 0.75 10 Fe Si 0.35 0.65 1 Ni Si Currentdensity - 10 0.25 0.75 10 0 -600 -400 -200 0 200 400 600 800 1000 Potential - mV (vs Ag/AgCl, Sat KCl, + 197 mV) Figure22Thepolarizationdiagramof(a)AISItype304stainlesssteel;(b)Sithinfilm;(c)TiSithin film;(d)CrSithinfilm;(e)FeSithinfilm;and(f)NiSithinfilmobtainedfromthepotentiodynamic polarisationmeasurementsinthe0.50MH 2SO 4solution(ResultsinPaper5).

Table12 Dataextractedfromthepolarisationexperimentsdonein0.5MH 2SO 4 (ResultsinPaper5)

Thinfilmcomposition Ti 0.35 Si 0.65 Cr 0.25 Si 0.75 Fe 0.35 Si 0.65 Ni 0.25 Si 0.75 Si Bulk Substrate 304 304 304 304 304 304 Ecorr vsAg/AgCl–mV 329 370 357 421 382 397 Ecorr vsSHE–mV 132 173 160 223 185 200 2 icorr A/cm 0.72 55.6 14.4 16.9 7.7 252 2 icrit A/cm 4.8 208 343 17.6 97.9 785 2 ipass A/cm 0.77 5.3 11.2 0.18 7.72 4.5 Etrans vsAg/AgCl–mV 980 960 975 975 965 805 Workingpotential(mV) 1215 1230 900 1180 1155 1084 OneinterestingphenomenonisthatthepolarisationbehavioursofNiSithinfilmswithdifferent crystallinitydonotshowsignificantdifferenceascanbeseeninFigure23.Theresultsthereforeimply

thatthisfactordoesnothavesignificantimpacttoimprovethecorrosionresistivityofsilicidemat erials. 10 5 2 10 4 A/cm 3 10

10 2 Ni Si 2 10 1 NiSi Ni Si 0.60 0.40 10 0 Ni 0.38 Si 0.62

Current density- Si wafer 10 -1 -900 -600 -300 0 300 600 900 1200 Potential - mV (vs Ag/AgCl, Sat. KCl, + 197 mV) Figure23ThepolarisationcurvesofaSiwaferandtwoNiSithinfilmpairswithsimilar compositionsbutdifferentdegreeofcrystallinity(ResultsinPaper4).

26 5.2TribologicalProperties ThinFilmAdhesiveness

Thin film adhesiveness is characterised by means of the RockwellC adhesion test. A pair of indentedmarksforapairofNiSithinfilmswithdifferentcrystallinityisshowninFigure24.Sincethe micrographsshownolateralorradialmicrocracks,noflakesandnothinfilmdelaminationsurrounding theindentedmark,thenickelsilicidethinfilmspreparedbymeansoftheionbeamsputterdeposition (IBSD)providedanexcellentadhesivenesson304stainlesssteelsubstrate.Theirpracticalreliabilityto static mechanical impact is thus guaranteed. The specification of this characterisation technique is furtherdiscussedinAppendixE[121123].

(a) (b) Figure24RockwellCadhesionteston(a)thecosputteredand(b)theheattreatedNiSithinfilms (ResultsinPaper6). HardnessandElasticModulus Static mechanical properties of the uppermost thin films such as hardness and modulus can be determinedbymeansofnanoindentationmeasurements.IndentationtestsfortheaboveNiSipairwere conductedandtheirloaddisplacementcurvesareshowninFigure25.Thecurvesillustratethatboth specimens behave in a similar way by showing a similar maximum penetration depth and smooth loadingunloading curves. The measured hardness and elastic modulus data on individual specimen (Table 13) indicate that structural design does not have much influence on the film mechanical properties. The small data scattering in the measurements show that both coated specimens have uniformmechanicalpropertiesintheirsurfaces.Furtherinformationaboutnanoindentationtechniqueis discussedinAppendixF[124129].

600 Indentation 1 (a) 600 Indentation 1 (b) Indentation 2 Indentation 2 500 Indentation 3 500 Indentation 3 N) N) 400 400

300 300

200 200 Loading( Loading( 100 100

0 0 -10 0 10 20 30 40 50 60 -10 0 10 20 30 40 50 60 Indentation depth (nm) Indentation depth (nm) Figure25Loaddisplacementcurvesof(a)cosputteredand(b)heattreatedNiSithinfilm(Author’sresults).

27 Table13 Mechanicalpropertiesofthenickelsilicidethinfilmswithdifferentdegreeofcrystallinitycharacterised bymeansofnanoindentationmeasurementsandRockwellCadhesiontests(ResultsinPaper6) * Specimen Hfilm (GPa) E (GPa) Adhesiveness Rq (nm) Cosputteredfilm 9.0 ±0.2 144.0 ±2.5 HF1 14 Heattreatedthinfilm 10.0 ±0.9 142.0 ±11 HF1 17

SurfaceTopography

Surface topography directly determines tribological properties and thus becomes an important considerationinpractice.SurfacesoftheabovementionedNiSipairweremappedbymeansofatomic forcemicroscopy(AFM)afternanoindentationmeasurements,seeFigure26a(i)andb(i).Apparently, thelinearprofilesextractedfromindividualmapsshowthatthesurfaceroughnessofcosputteredthin filmislessthanthatoftheheattreatedoneandthe‘bumps’appearingonthelatterspecimenisakindof crystallisedfeature.Theroughnessvalue(R a)determinedforcosputteredspecimenis1.0nmandthat for annealed specimen is 2.0 nm. However, for the small scanning region in submicronscale, it is doubtfultoreportthismeasuredvalue.Therefore,R aand/orR qarealsomeasuredandreportedbymeans of engineeringscale profilometry techniques instead (see Table 13). The values in Table 13 are approximatelyoneorderofmagnitudelargerthantheR avaluesderivedbymeansofAFM.Technical informationaboutAFM[130,131]andtheprofilometersarepresentedinAppendixG[132134].

(i) (ii) a 5

0

-5

-10 Height(nm) -15

-20 0.0 0.5 1.0 1.5 2.0 Lateral distance ( m) b 5

0

-5

-10 Height (nm) -15

-20 0.0 0.5 1.0 1.5 2.0 Lateral distance ( m) Figure26Apairof(i)AFMimagingsurroundingtheindentedmarkon(a)cosputteredNiSi,and(b) heattreatedNiSiand(ii)thelinearprofileextractfromthemap(Author’sresults).

28 WearProperties

ThewearpropertiesofthesameNiSithinfilmpairwereevaluatedthroughthedryslidingtestina reciprocatingsliding wearinstrument.ThechosenmatingcounterbodieswereaCrrichbearingsteel (Crsteel)ballandatungsten(WC)ball.Resultsarepresentedinfrictioncoefficientcurvesand showninFigure27and28.Itcanbeseenthatfrictioncoefficientsofthetwospecimensunder5Nload are the same under both conditions, while lower friction coefficient was observed for the 2 N tests. Specificwearrateofindividualtestcanbeevaluatedthroughmeasuringthevolumeofwornregionsby means of profilometry and results are summarised in Table 5.5. It is concluded that there is less materialslossintheCrsteelballtestscomparedtotheWCballtestsaccordingtothemeasuredwear volume. Tungstencarbideballtests

0.5 (a) Co-sputtered Ni-Si 0.5 (b) Heat Treated Ni-Si ) ) f f 0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1 2N 2N Frictioncoefficient ( Friction coefficient( 5N 5N 0.0 0.0 0 100 200 300 400 500 0 100 200 300 400 500 No. of cycles No. of cycles Figure27Frictioncoefficients( f)asafunctionofthereciprocatingslidingcyclesinthetungstencarbide(WC) ballweartestson(a)cosputtered;and(b)heattreatedNiSithinfilmcoatedon304stainlesssteelspecimens (ResultsinPaper6). Crsteelballtests

0.5 (a) Co-sputtered Ni-Si 0.5 (b) Heat Treated Ni-Si ) ) f f 0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1 2N 2N Friction coeficient ( Frictioncoefficient ( 5N 5N 0.0 0.0 0 100 200 300 400 500 0 100 200 300 400 500 No. of cycles No. of cycles Figure28Frictioncoefficients( f)asafunctionofthereciprocatingslidingcyclesintheCrsteelballweartests on(a)cosputtered;and(b)heattreatedNiSicoated304stainlesssteelspecimens(ResultsinPaper6).

29 Table14 TribologicalparametersfromweartestingofNisilicidecoated304stainlesssteels(ResultsinPaper6) Testedspecimen Counterbody Sliding Friction Wearvolume Specificwear 3 3 load(N) coefficient( f) (m ) rate(m /N ⋅m) CosputteredNiSi WCball 2 0.25 1.52 10 12 1.9 10 13 coatedsteelplate WCball 5 0.40 4.25 10 12 2.1 10 13 Crsteelball 2 0.35 7.20 10 12 9.0 10 14 Crsteelball 5 0.35 2.85 10 12 1.4 10 13 HeattreatedNiSi WCball 2 0.35 1.53 10 12 1.9 10 13 coatedsteelplate WCball 5 0.40 4.23 10 12 2.1 10 13 Crsteelball 2 0.30 1.10 10 12 1.4 10 13 Crsteelball 5 0.40 3.68 10 12 1.8 10 13 Inthesurfaceprofilometrymeasurements,itisobservedthatthecrosssectionalprofileoftheworn regionaftertheWCballtestissmootherthantheregionaftertheCrsteelballtest(Figure29).Atop viewoftheopticalmicroscopyontheindividualweartrackshowstherearesomedebrisleftoverthe surfaceaftertheCrsteelballweartestwhileitdoesnotappearaftertheWCtest(Figure30).Therefore, itisbelievedthatthereismaterialstransferfromtheCrsteelballtothesilicidecoatedsurfacebutnotin theothercase.CompositionalanalysisbymeansofEDXshowsthedebrisonthecosputteredsilicide containsofCr,Fe,andOandthatontheheattreatedsilicidecontainsofFeandOonly(reportedin Paper 6). Together with the specific wear rate values, it is thereby concluded that the formation of Crcontainingoxideplaysanimportantroleinwearresistanceimprovement.Aslidingweartestforthe uncoatedsubstratewasperformedattheendofthiswork.Forthehigherfrictioncoefficientsagainst bothcounterbodies(Figure31)andthelargermeasuredwearvolume,thespecificwearrateofthe304 stainlesssteelisanorderhigherthanthosereportedforthesilicidespecimens,i.e.10 12 m3/N m,and thusthesilicidethinfilmssomehowhaveapositivecontributiontowearresistanceimprovementon stainlesssteel.Itisbelievedthatthehigherwearresistancecontributionofsilicideisrelatedto their hardernatureascomparedtostainlesssteel(i.e.1–2GPa)[129]. CosputteredNiSithinfilm 2N 5N WCball

Crsteelball

HeattreatedNiSithinfilm 2N 5N WCball

Crsteelball

Figure29Crosssectionalprofilesoftheweartracksdevelopedonthetwocoatedspecimensafterreciprocating slidingweartestagainstaWCballandaCrsteelballunder2Nand5N(Author’sresults).

30 (a) (b) Figure30 WearsurfaceoftheheattreatedNiSispecimenafterthereciprocatingslidingweartest against(a)aWCball;and(b)aCrsteelballataloadof5N(Author’sresults).

1.0 Cr-steel ball 0.9 WC ball )

f 0.8 0.7 0.6 0.5

0.4 0.3 0.2 Frictioncofficient ( 0.1 0.0 0 100 200 300 400 500 No. of cycles Figure31Frictioncoefficient( f)asafunctionofthereciprocatingslidingcyclesintheCrsteelball weartestsonanuncoated304stainlesssteelspecimenataloadof5N(Author’sresults).

31 Chapter6Conclusions

TransitionmetalsilicidesofTiSi,CrSi,FeSi and NiSi have been fabricated as thin films by means of ionbeam sputter deposition (IBSD) on AISI type 304 stainless steel substrate in order to enhancethecorrosionresistance.Potentiodynamicpolarisationmeasurementsinhydrochloricacid(HCl) andsulphuricacid(H 2SO 4)ofdifferentsilicidesshowthatallthinfilmshavehighercorrosionresistance thantheuncoatedstainlesssteelbyshowinglower currentdensitythroughoutthewholepolarisation diagramseventhoughnosignificantdifferencehavebeenfoundinthecurveshape.However,onlyTiSi and NiSi films sustained on the stainless steelafterthetestsandtherebyonlythesefilmshavethe potentialtobeprotectivethinfilms.Furtherinvestigationsaboutvaryingthethinfilmcompositionand thin film structure were conducted on the NiSi system and the results show that the variation of composition has a more significant influence than that of structure to the corrosion resistance enhancement.ItisfoundthattransitionmetalsilicidewithSicontentofatleast60%,independentofthe thinfilmcrystallinity,wouldhavebettercorrosionresistancetothetestedenvironmentthanthosewith lowerSicontent.ThisisduetotheformationofuniformpassivelayerofSioxideonthesurfaceofthe silicides and its chemical inertness plays a significant role in the corrosion resistance enhancement. Besides the corrosion properties, study of the tribological properties and some fundamental understandingaboutthethinfilmswerealsoinvolvedinthisresearch.Forthetribologicaltests,good adhesivenesswasshownforapairofNiSithinfilmwithdifferentcrystallinityonausteniticstainless steel.Thereciprocatingdryslidingweartestcarriedoutonthesamepairofspecimensshowedthatthin films,independentonthestructuralcrystallinity,improvethewearresistanceslightlyincomparisonto thestainlesssteelsubstrate.Bythismeans,silicidethinfilmsnotonlyenhancethecorrosionresistance, but also strengthen the wear resistivity. With the proof of properties improvement, the nature of transition metal silicide thin films were further investigated by means of surface sensitivity characterisationtechniquesincludingGIXRDandXPS.WiththeaidofGIXRD,crystallinityofthin films as well as the possible phases appearing was depicted and it was shown that postannealing treatmentafterIBSDpromotesthethinfilmcrystallisationandthedevelopmentofaparticularphase. Chemicalinformationincludingthecomposition,chemicalstateofindividualelementinasilicideand the electronic structure can be determined from XPS analyses by simply evaluating the core level bindingenergypositionofthetransitionmetalcomponent,theintensityratioofthecorelevelpeaks andthevalencebandspectraneartotheFermienergylevel.Moreinformationabouttoplayerthickness evaluationandbindingenergyshiftcanbeinvestigatedthroughARXPSandtheAugerparameter.The covalentcharacterofthetransitionmetalsiliconbondingexplainsthestrongbondingbetweenthesein the intermetallic compound and thus the potential higher corrosion resistance compared to that of uncoatedstainlesssteelsubstrates.

32 Chapter7FutureWorks

Thecurrentstudyabouttransitionmetalsilicidesasprotectivethinfilmsonengineeringmaterials is at fundamental level and many ideas can be put forward to develop this work in the future. The suggestionslistedherearebasedonthescopeofthisthesis: 1. ThinFilmSynthesis Research progress is largely hindered by the thin film fabrication process. IBSD is a slow depositiontechniqueandthelifetimeofthefilamentsisshort.Frequentreplacementsofthefilaments interruptthedepositionprocessfromtimetotimeandtheUHVchamberisinevitablycontaminatedin theatmosphere.Asaresult,theconsistencyaboutthethinfilmqualitycanalwaysbeimproved.These obstaclesmakeithardtomovetheresearchforwardfromthecurrentstatus.Theauthorsuggeststhethin filmfabricationprocesscanbetakenoverbyotheradvancedPVDtechnique,likemagnetronsputtering. Amorereliabledepositionsystemcanthusguaranteehigherqualityfilmsandcoatingsfabrication. 2. CorrosionProperties Inthepresentstudy,itisfoundthatthecorrosionpropertiesofthevarioussilicidesdonotshow significantdifferencecomparedtothesubstratematerialseventhoughsilicahasformed.Itisbelieved thesweeprateinthepotentiodynamicpolarisationtestssuggestedbytheASTMstandardmaystillbe too fast for the protective silica layers to build up, or the chemical environment is too aggressive. Therefore,itisproposedtokeepthepolarisationscanningrateonlyatorbelowtheirsuggestedlevel. For the same matter, it is proposed that the coated specimens could be exposed to an oxidising environment for a period of time or treated them in a more moderate environment to stimulate the passivefilmdevelopmentpriortotheaggressivecorrosiontest.Thewelldevelopedsilicalayeratthe silicide top surface should have beneficial effect to the corrosion resistance improvement and the transitionmetalmighthavecarriedaroleasacatalysisorinhibitorduringthesilicaformationprocess. The corrosion mechanism of individual silicides in each of the tested solution is always an interesting topic from electrochemistry point of view. Therefore, electrochemical impedance spectroscopy(EIS)measurementisproposedtocarryout.Cyclicvoltammetryisalsoproposedforthe anodicdissolutionstudy.Someattemptstoapplycyclicvoltammetryweredone,butthepreliminary restulswerenotconclusive.Resultsfromthesesilicidethinfilmscanbecomparedwiththosepublished by Shein [6064,7075] acquired from bulk silicide materials, and a comparative study about the corrosionbehaviourofthesilicidematerialsinbulkandthinfilmformcanbeworkedout. 3. WetTribologicalProperties Inthepracticalenvironment,materialsusuallysuffer both corrosive attack and wear. Therefore, wettribologicalslidingtestismeaningfultobeconductedandverifythepracticabilityofthesilicide thinfilmsinadesignedenvironment. 4. AdvancedCoatingsInvestigation InSection2.2,theauthorhasmentionedthatthelatestresearchactivityinthisareaisabout“smart selfrepairingprotectivecoatings”.Ifthesilicidefilmsareprovedtoworkout,onewaytoupgradetheir function could be achieved by introducing chemical inhibitors as a further means of “defence line”! Alternatively,multicomponentdesigncouldbeanotherapproachtoreachthesamegoal.

33 References [1] K.H.Lo,C.H.Shek,J.K.L.Lai, RecentDevelopmentsinStainlessSteels ,Mater.Sci.Eng.,R65(2009)39–104. [2] K.W.Wong, AgeingCharacteristicsandMicrostructuralStudiesofDuplexStainlessSteels ,Ph.D.Thesis,CityUniversityof HongKong,HongKong,1997. [3] P.L.Tam, FabricationandCorrosionPropertiesofNickelSilicideThinFilms ,LicentiateThesis,ChalmersUniversityof Technology,Gothenburg,Sweden,2009. [4] U.R.Evans, AnIntroductiontoMetallicCorrosion (3rd edition),EdwardArnold,1981. [5] R.W.K.Honeycombe,H.K.D.H.Bhadeshia, Steels–MicrostructureandProperties (2nd edition),ButterworthHeinemann, 1995. [6] L.L.Shreir,R.A.Jarman,G.T.Burstein, Corrosion (3rd edition),Oxford,ButterworthHeinemann,1994. [7] F.Falkenberg, InitiationandRepassivationofPitsonAusteniteStainlessSteels ,Ph.D.Thesis,ChalmersUniversityof Technology,Gothenburg,Sweden,2000. [8] L.Wegrelius, PassivationofAusteniticStainlessSteel ,Ph.D.Thesis,ChalmersUniversityofTechnology,Gothenburg, Sweden,1995. [9] B.Brox, AnodicDissolutionandPassivationofStainlessSteels ,Ph.D.Thesis,ChalmersUniversityofTechnology, Gothenburg,Sweden,1987. [10] B.O.Elfström, ThePassiveStateofStainlessSteels ,Ph.D.Thesis,ChalmersUniversityofTechnology,Gothenburg,Sweden, 1981. [11] I.Olefjord, ApplicationsofESCAinMaterialsTechnology:Corrosion,WeldEmbrittlement,andBatteryElectrodes ,Ph.D. Thesis,ChalmersUniversityofTechnology,Gothenburg,Sweden,1974. [12] H.Asteman, WaterVapourInducedActiveOxidationofStainlessSteel ,Ph.D.Thesis,GothenburgUniversity,Gothenburg, Sweden,2002. [13] J.Nockert, CorrosionofStainlessSteelinDieselExhaustGasAfterTreatmentSystemswithUreaInjection ,LicentiateThesis, ChalmersUniversityofTechnology,Gothenburg,Sweden,2010. [14] C.Pettersson, HighTemperatureCorrosionofsomeStainlessSteels–TheInfluenceofWaterVapourand containingSalts ,Ph.D.Thesis,ChalmersUniversityofTechnology,Gothenburg,Sweden,2009. [15] J.Pettersson, AlkaliInducedHighTemperatureCorrosionofStainlessSteel–ExperiencesfromLaboratoryandField ,Ph.D. Thesis,ChalmersUniversityofTechnology,Gothenburg,Sweden,2008. [16] F.Tholence, HighTemperatureCorrosionofCastIronsandSteels ,Ph.D.Thesis,ChalmersUniversityofTechnology, Gothenburg,Sweden,2004. [17] D.A.Jones, PrinciplesandPreventionofCorrosion (2nd edition),PrenticeHall,1996. [18] M.P.Ryan,D.E.Williams,R.J.Chater,B.N.Hutton&D.S.McPhail, WhyStainlessSteelCorrodes ,Nature415(2002)770– 774. [19] P.Liu, PhaseAnalysisinSteelusingAnalyticalTransmissionElectronMicroscopy ,SandvikMaterialsTechnology,Sweden, 2004. [20] T.Burakowski, Chapter6Coatings in: SurfaceEngineeringofMetals:Principles,EquipmentsandTechnology ,CRCPress LLC,BocaRaton,Florida,1999. [21] J.R.Davis(Editor), SurfaceEngineeringforCorrosionsandWearResistance ,ManeyPublishing,ASMInternational, InstituteofMaterials,MaterialsPark,Ohio,2001. [22] R.Asthana,A.Kumar,N.B.Dahotre, Chapter5CoatingsandSurfaceEngineering ,in: MaterialsProcessingand ManufacturingScience ,ElsevierAcademicPress,Amsterdam,Boston,2006,pp.313–394. [23] G.Heim,W.Schwenk, Chapter5CoatingsforCorrosionProtection ,in:W.Schwenk,W.Prinz(Editors), Handbookof CathodicCorrosionProtection (3 rd edition) :TheoryandPracticesofElectrochemicalProtectionProcesses,Houston,Tex. GulfPub.Co.1997. [24] M.Stueber,H.Holleck,H.Leiste,K.Seemann,S.Ulrich,C.Ziebert, ConceptsfortheDesignofAdvancedNanoscalePVD MultilayerProtectiveThinFilms ,J.AlloyCompd.483(2009)321–333. [25] P.Eh.Hovsepian,W.D.Münz, Chapter14Synthesis,Structure,andApplicationsofNanoscaleMultilayer/Superlattice StructuredPVDcoatings ,in:A.Cavalieiro,J.Th.M.DeHosson(Editors), NanostructuredCoatings ,Springer,NewYork, 2006. [26] P.H.Mayrhofer,C.Mitterer,L.Hultman,H.Clemens, MicrostructuralDesignofHardCoatings ,Prog.Mater.Sci.51(2006) 1032–1114. [27] S.C.Tjong,H.Chen, NanocrystallineMaterialsandCoatings ,Mater.Sci.Eng.,R45(2004)1–88. [28] O.Knotek,F.Löffler,G.Krämer, ProcessandAdvantageofMulticomponentandMultilayerPVDCoatings ,Surf.Coat. Technol.59(1993)14–20. [29] S.Vepřek, TheSearchforNovel,SuperhardMaterials ,J.Vac.Sci.Technol.A17(1999)2401–2420. [30] T.Markley,S.Dligatch,A.Trinchi,T.H.Muster,A.Bendavid,P.Martin,D.Lau,A.Bradbury,S.Furman,I.S.Cole,

34 MultilayeredCoatings:TuneableProtectionforMetals ,Corros.Sci.52(2010)3847–3850. [31] F.PresuelMoreno,M.A.Jakab,N.Tailleart,M.Goldman,J.R.Scully, CorrosionresistantMetallicCoatings ,Mater.Today 11(2008)14–23. [32] D.V.Andreeva,D.G.Shchukin, SmartSelfrepairingProtectiveCoatings ,Mater.Today11(2008)2430. [33] M.A.Almomani,C.R.Aita, PittingCorrosionProtectionofStainlessSteelbySputterDepositedHafnia,Alumina,and HafniaaluminaNanolaminateFilms ,J.Vac.Sci.Technol.A27(2009)449–455. [34] A.A.Hermas, ProtectionofType430StainlessSteelagainstPittingCorrosionbyLadderConductivePolymer ,Prog.Org. Coat.61(2008)95–102. [35] A.Yağan,N.ÖzçiçekPekmexz,A.Yıldız, Poly(Nethylaniline)Coatingson304StainlessSteelforCorrosionProtectionin AqueousHClandNaClSolutions ,Electrochim.Acta53(2008)2474–2482. [36] E.Hür,G.Bereket,Y.ahin, CorrosionInhibitionofStainlessSteelbyPolyaniline,Poly(2chloroaniline),and Poly(anilineco2chloroaniline)inHCl ,Prog.Org.Coat.57(2006)149–158. [37] T.Tüken, PolypyrroleFilmsonStainlessSteel ,Surf.Coat.Technol.200(2006)4713–4719. [38] S.Fujimoto,H.Hayashida,T.Shibata, ExtremelyHighCorrosionResistanceofThinFilmStainlessSteelsDepositedbyIon BeamSputtering ,Mater.Sci.Eng.A267(1999)314–318. [39] S.Bose, HighTemperatureCoatings ,ElsevierButterworthHeinemann,Amsterdam,Boston,2007. [40] E.Fitzer,D.Kehr, Carbon,CarbideandSilicideCoatings ,ThinSolidFilms39(1976)55–67. [41] E.Fitzer,H.J.Mäurer,W.Nowak,J.Schlichting, AluminiumandSiliconBaseCoatingsforHighTemperatureAlloys– Process,DevelopmentandComparisonofProperties ,ThinSolidFilms64(1979)305–319. [42] R.Mévrel, StateoftheArtonHightemperatureCorrosionresistantCoatings ,Mater.Sci.Eng.A120(1989)13–24. [43] H.W.Grünling,RBauer, TheRoleofSiliconinCorrosionresistantHighTemperatureCoatings ,ThinSolidFilms95(1982) 3–20. [44] M.Bartur,M.A.Nicolet, ThermalOxidationofTransitionMetalSilicideonSi:Summary ,J.Electrochem.Soc.131(1982) 371–375. [45] A.D.Chirkin,V.O.Lavrenko,V.M.Talash, HightemperatureandElectrochemicalOxidationofTransitionMetalSilicides , PowderMetall.Met.Ceram.48(2009)330–345. [46] V.M.Knyazheva,S.G.Babich,V.I.Kolotyrkin,V.B.Kozhevnikov, MetallikeCompoundsofTransitionmetals–ANew ClassofCorrosionresistantMaterialsandProtectiveCoatings ,Prot.Met.27(1991)470–480. [47] J.Emsley, TheElements ,OxfordUniversityPress,1998. [48] W.M.Hayes(Editor), HandbookofChemistryandPhysics ,CRCPress,91 st edition,2011. [49] SolidStateTechnology®OnlineMagazine. [50] R.F.Service, IsSilicon’sReignNearingitsEnd? ,Science323(2009)1000–1002. [51] C.H.Li,R.Warren,I.Olefjord,L.L’Estrade, SilicidesasPotentialStructuralMaterialsforHighTemperatureApplication , Internrapport,ChalmersUniversityofTechnology,Gothenburg,Sweden,1992. [52] D.Q.Yi, StructuralSilicides–Processing,MicrostructureandToughening ,Ph.D.Thesis,ChalmersUniversityof Technology,Gothenburg,Sweden,1997. [53] A.A.Sharif,A.Misra,J.Petrovic,T.E.Mitchell, AlloyingforMoSi 2forImprovedMechanicalProperties ,9 (2001)869–873. [54] J.J.Petrovic,A.K.Vasudevan, KeyDevelopmentsinHighTemperatureStructuralSilicides ,Mater.Sci.Eng.A261(1999) 1–5. [55] K.S.Kumar, Chapter10Silicides:Science,TechnologyandApplications ,in:J.H.Westbrook,R.L.Fleischer(Editors), StructuralApplicationsofIntermetallicCompounds ,JohnWiley&SonsInc.,2000. [56] J.P.Gambino,E.G.Colgan, Silicides ,EncyclopaediaofAppliedPhysics,2004,pp.201–248. [57] R.Pretorius, PredictionofSilicideFormationandStabilityusingHeatsofFormation ,ThinSolidFilms290–291(1996) 477–484. [58] R.Pretorius,T.K.Marais,C.C.Theron, ThinFilmCompoundPhaseFormationSequence:AnEffectiveHeatofFormation Model ,Mater.Sci.Rep.10(1993)1–83. [59] F.P.Fehlner,M.J.Graham, Chapter6ThinOxideFilmFormationonMetals ,in:P.Marcus(Editor), CorrosionMechanisms inTheoryandPractice (2 nd edition,revisedandexpanded),MarcelDekkerInc.,NewYork,2002,pp.171–187. [60] F.P.Fehlner, LowtemperatureOxidation–TheRoleofVitreousOxides ,JohnWiley&Sons,Inc.,1986. [61] A.B.Shein,O.V.Kanaeva, AnodicDissolutionofthe(100)and(110)FacesofIronMonosilicideinaSulphuricAcid Electrolyte ,Russ.J.Electrochem.36(2000)913–915. [62] A.B.Shein, ElectrochemicalBehaviourofCo 2SiinAcids ,Prot.Met.36(2000)165–169. [63] A.B.Shein,O.V.Kanaeva, AnodicDissolutionofCobaltSilicidesinSulphuricAcidSolutions ,Russ.J.Electrochem.36 (2000)1021–1025. [64] A.B.Shein,O.V.Kanaeva, PeculiaritiesoftheAnodicDissolutionofaPowderNiSiElectrode ,Prot.Met.37(2001)385– 388. [65] A.B.Shein,O.S.Ivanova,R.N.Minkh, TheEffectofAnionsontheAnodicDissolutionofNickelSilicideinSulphate Electrolytes ,Prot.Met.44(2008)32–38.

35 [66] S.Base, Chapter4Oxidation ,in: HighTemperatureCoatings ,Elsevier,ButterworthHeinemann,2007. [67] M.A.Wells,R.J.Gilkes,R.W.Fitzpatrick, PropertiesandAcidDissolutionofMetalsubstitutedHematites ,ClayClayMiner. 49(2001)60–72. [68] W.D.Callister,Jr., MaterialsScienceandEngineering:AnIntroduction (5 th edition),JohnWiley&Son.Inc.2000. [69] M.Pourbaix, ThermodynamicsandCorrosion ,Corros.Sci.30(1990)963–988. [70] I.Puigdomenech, MakeEquilibriumDiagramsUsingSophisticatedAlgorithms(MEDUSA) ,RoyalInstituteofTechnology, Stockholm,Sweden,2009Version. [71] A.B.Shein,E.N.Zubova, ElectrochemicalBehaviourofManganeseSilicidesinSulphuricAcidSolution ,Prot.Met.41(2005) 234–242. [72] A.B.Shein,E.N.Zubova, ElectrochemicalBehaviourofMn 5Si 3andMn 5Ge 3inSulphuricAcidSolutions ,Russ.J. Electrochem.40(2004)222–227. [73] A.B.Shein, EffectoftheMetalComponentonAnodicDissolvabilityofIron,Cobalt,andNickelSilicides ,Prot.Met.37(2001) 315–318. [74] A.B.Shein,I.L.Rakityanskaya,S.F.Lomaeva, AnodicDissolutionofIronSilicidesinAlkalineElectrolyte ,Prot.Met.43 (2007)54–58. [75] A.B.Shein,I.L.Sergeeva, AnodicDissolutionofCobaltSilicidesinAlkalineElectrolytes ,Prot.Met.40(2004)562–565. [76] A.B.Shein,I.L.Sergeeva, CorrosionelectrochemicalBehaviourofNickelMonosilicideinAlkalineElectrolyte ,Prot.Met.40 (2004)556–561. [77] I.L.Rakityanskaya,A.B.Shein, AnodicBehaviourofIron,Cobalt,andNickelSilicidesinAlkalineElectrolytes ,Russ.J. Electrochem.42(2006)1208–1212. [78] Z.Jiang,X.Dai,H.Middleton, EffectofSilicononCorrosionresistanceofTiSialloys ,Mater.Sci.Eng.B176(2011)79– 86. [79] Y.Omurtag,M.Doruk, SomeInvestigationsoftheCorrosionCharacteristicsofFeSialloys ,Corros.Sci.10(1970)225– 231. [80] L.X.Dong,H.M.Wang, MicrostructureandCorrosionPropertiesofLasermeltedDepositedTi 2Ni 3Si/NiTiIntermetallic Alloy ,J.AlloysCompd.465(2008)83–89. [81] L.Yuan,H.M.Wang, CorrosionPropertiesofaCr 13 Ni 5Si 2basedMetalSilicideAlloy ,Intermetallics16(2008)1149–1155. [82] L.Yuan,H.M.Wang, CorrosionBehavioursofaγtoughenedCr 13 Ni 5Si 2/Cr 3Ni 5Si 2MultiphaseTernaryMetalSilicideAlloy inNaClSolution ,Electrochim.Acta24(2008)421–429. [83] L.X.Cai,H.M.Wang,C.M.Wang, CorrosionResistanceofLaserCladCralloyedNi2Si/NiSiIntermetallicCoatings ,Surf. Coat.Technol.182(2004)294–299. [84] C.M.Wang,L.X.Cai,H.M.Wang, MicrostructureandCorrosionResistanceofLaserCladCoatingofNi 2Si/Ni 3Si 2Silicide Alloy ,RareMetal.Mater.&Eng.32(2003)197–200. [85] H.M.Wang,C.M.Wang,L.X.Cai, WearandCorrosionResistanceofLaserCladNi 2Si/NiSiCompositeCoatings ,Surf.Coat. Technol.168(2003)202–208. [86] H.W.Wang,G.Duan, WearandCorrosionBehaviourofLaserCladCr 3SiReinforcedIntermetallicCompositeCoatings , Intermetallics11(2003)755–762. [87] M.Popczyk,J.Kubisztal,A.Budniok, StructureandElectrochemicalCharacterisationofElectrolyticNi+Mo+Si CompositeCoatingsinanAlkalineSolution ,Electrochim.Acta51(2006)6140–6144. [88] M.Herranen,A.DelblancBauer,J.O.Carlsson,R.F.Bunshah, CorrosionPropertiesofThinMolybdenumSilicideFilms , Surf.Coat.Technol.96(1997)245–254. [89] P.I.Igenatenko,A.A.Goncharov,S.S.Primin, StructureandPropertiesofThinCoatingsSi 3N4andNi 3Si ,Met.Phys.Adv. Tech.18(1999)705–710. [90] L.L.Stetsovskii,E.T.Shapovalov,L.A.Shvartsman, DepositionofNickelSilicideCoatingsandtheirElectrochemicaland CorrosionProperties ,Russ.Metall.2(1991)183–186. [91] G.F.Hays,PE, NowistheTime ,WorldCorrosionOrganisation,2007: http://www.corrosion.org/ [92] C.Leygraf, Chapter15AtmosphericCorrosion ,in:P.Marcus(Editor), CorrosionMechanisminTheoryandPractice (2 nd edition),MarcelDekkerInc.,NewYork,2002,pp.529–562. [93] D.Thierry,W.Sand, Chapter16MicrobiallyInfluencedCorrosion ,in:P.Marcus(Editor), CorrosionMechanisminTheory andPractice (2 nd edition),MarcelDekkerInc.,NewYork,2002,pp.563–604. [94] R.Baboian(Editor), CorrosionTestsandStandards–ApplicationandInterpretation ,ASTM,USA,1996. [95] CorrWareforWindows–Electrochemistry/CorrosionSoftware–OperatingManualVersion2.9 ,ScribnerAssociates,Inc., 2002. [96] A.J.Bard,R.Parsons,J.Jordan(Editors), StandardPotentialsinAqueousSolution ,IUPAC,Dekker,1985. [97] C.R.Clayton,I.Olefjord, Chapter7PassivityofAusteniticStainlessSteels ,in:P.Marcus(Editor), CorrosionMechanismin TheoryandPractice (2 nd edition),MarcelDekkerInc.,NewYork,2002,pp.217–242. [98] G.S.Frankel,N.Sridhar, UnderstandingLocalisedCorrosion ,Mater.Today11(2008)38–44. [99] G.S.Frankel, PittingCorrosionofMetals–AReviewoftheCriticalFactors ,J.Electrochem.Soc.145(1998)2186–2198. [100] H.H.Stehblow, Chapter8MechanismsofPittingCorrosion ,in:P.Marcus(Editor), CorrosionMechanisminTheoryand

36 Practice (2 nd edition),MarcelDekkerInc.,NewYork,2002,pp.243–286. [101] S.P.Murarka, CodepositedSilicidesinVerylargescaleIntegration,ThinSolidFilms,140(1986)35–50. [102] C.J.Chen,J.C.Huang,H.S.Chou,Y.H.Lai,L.W.Chang,X.H.Du,J.P.Chu,T.J.Nieh, OntheAmorphousand NanocrystallineZrCuandZrTiCosputteredThinFilms ,J.AlloysCompd.483(2009)337–340. [103] H.Inui,A.Fujii,T.Hashimoto,K.Tanaka,M.Yamaguchi,K.Ishizuka, DefectsStructuresinTaSi 2ThinFilmsProducedby Cosputtering ,ActaMater.51(2003)2285–2296. [104] S.M.Rossnagel, ThinFilmDepositionwithPhysicalVaporDepositionandRelatedTechnologies ,J.Vac.Sci.Technol.A21 (2003)S74–S87. [105] H.R.Kaufman,J.J.Cuomo,M.E.Harper, CriticalReview:TechnologyandApplicationsofBroadbeamIonSourcesUsedin Sputtering.PartIIonSourceTechnology,J.Vac.Sci.Technol.21(1982)725–736. [106] J.M.E.Harper,J.J.Cuomo,H.R.Kaufman, Criticalreview:TechnologyandApplicationsofBroadbeamIonSourcesUsedin Sputtering.PartIIApplications ,J.Vac.Sci.Technol.21(1982)737–756. [107] J.A.Thornton,J.E.Greene, Chapter5SputterDepositionProcesses ,in:R.F.Bunshah(Editor), HandbookofDeposition TechnologiesforFilmsandCoatings–Science,TechnologyandApplications (2 nd edition),NoyesPublications,NewJersey, 1994,pp275–345. [108] C.J.Byrne,M.Eldrup, BulkMetallicGlasses ,Nature321(2008)502–503. [109] T.L.Cheung, MechanicalandSurfacePropertiesofCopperbasedBulkMetallicGlasses ,M.Phil.Thesis,CityUniversityof HongKong,HongKong,2006. [110] P.F.Gostin,A.Gebert,L.Schultz, ComparisonoftheCorrosionofBulkAmorphousSteelwithConventionalSteel ,Corros. Sci.52(2010)273–281. [111] Y.W.Wu,W.C.Chiang,J.Chu,T.G.Nieh,Y.Y.Kawamura,J.K.Wu, CorrosionresistanceofAmorphousand CrystallinePd 40 Ni 40 P20 AlloysinAqueousSolutions ,Mater.Lett.60(2006)2416–2418. [112] H.AshassiSorkhabi,S.H.Rafizadeh, EffectofCoatingTimeandHeatTreatmentonStructuresandCorrosion CharacteristicsofElectrolessNiPAlloyDeposits ,Surf.Coat.Technol.176(2004)318326. [113] S.J.Pang,T.Zhang,K.Asami,A.Inoue, SynthesisofFeCrMoCBPBulkMetallicGlasseswithHighCorrosion Resistance ,ActaMater.50(2002)489–497. [114] A.P.Wang,X.C.Chang,W.L.Wou,J.Q.Wang, CorrosionBehaviorofNibasedAmorphousAlloysandtheirCrystalline Counterparts ,Corros.Sci.49(2007)2628–2635. [115] A.P.Wang,T.Zhang,J.Q.Wang, NibasedFullyAmorphousMetallicCoatingwithHighCorrosionResistance ,Phil.Mag. Lett.86(2006)5–11. [116] D.Zander,U.Köster, CorrosionofAmorphousandNanocrystallineZrbasedAlloys ,Mater.Sci.Eng.A375–377(2004) 53–59. [117] J.F.Watts,J.Wolstenholme, AnIntroductiontoSurfaceAnalysisbyXPSandAES ,JohnWiley&SonsInc.,2003. [118] I.Olefjord, XPS–QuantitativeandQuantitativeaspects ,ProceedingsintheSymposiumoftheApplicationofSurface AnalysisMethodstoEnvironmental/MaterialInteractions,TheElectrochemicalSociety,Seattle,1990. [119] D.Briggs,M.P.Seah, PracticalSurfaceAnalysisbyAugerandXrayPhotoelectronSpectroscopy ,JohnWiley&Sons.Inc., 1983. [120] J.Finster,D.Schulze,F.Bechstedt,A.Meisel, InterpretationofXPSCoreLevelShiftsandStructureofThinSiliconOxide Layers ,Surf.Sci.152/153(1985)1063–1070. [121] W.Heinke,A.Leyland,A.Matthews,G.Berg,C.Friedrich,E.Broszeit, EvaluationofPVDNitrideCoatingsUsingImpact, ScratchandRockwellCAdhesionTests ,ThinSolidFilms270(1995)431–438. [122] N.Vidakis,A.Antoniadis,N.Bilalis, TheVDI3198IndentationTestEvaluationofaReliableQuantitativeControlfor LayeredCompounds ,J.Mater.Process.Technol.143–144(2003)481–485. [123] DDCEN/TS10718:2004standard:AdvancedTechnical–MethodsofTestforCeramicCoatings: Part8Rockwell IndentationTestforEvaluationofAdhesion . [124] M.L.Oyen,R.F.Cook, APracticalGuideforAnalysisofNanoindentationData ,J.Mech.Biomed.Mater.2(2009)396– 407. [125] E.LeBourhis, IndentationMechanicsanditsApplicationtoThinFilmCharacterization ,Vacuum82(2008)1353–1359. [126] A.C.FischerCripps, Review:CriticalReviewofAnalysisandInterpretationofNanoindentationTestData ,Surf.Coat. Technol.200(2006)4153–4165. [127] J.L.Hay,G.M.Pharr, InstrumentedIndentationTesting ,in:ASMHandbookVol.08:MechanicalTestingandEvaluation, ASMInternational,2000. [128] J.Menčik,D.Munz,E.Qunadt,E.R.Wepelmann, DeterminationofElasticModulusofThinLayersusingNanoindentation ,J. Mater.Res.12(1997)2475–2484. [129] J.Musil,F.Kunc,H.Zeman,H.Polaková, RelationshipsbetweenHardness,Young’sModulusandElasticRecoveryinHard NanocompositeCoatings ,Surf.Coat.Technol.154(2002)304–313. [130] W.D.France,Jr., ASpecimenHolderforPreciseElectrochemicalPolarisationMeasurementsonMetalSheetsandFoils ,J. Electrochem.Soc.114(1967)818819. [131] ASTMInternational:G5–94Standard, StandardReferenceTestMethodforMakingPotentiostaticandPotentiodynamic

37 AnodicPolarisationMeasurements ,2004. [132] B.Cottis, CorrosionMeasurementTechniques (PowerPoint),EChemforCorrosionProcesses,1997. [133] D.G.Enos,L.L.Scribner, ThePotentiodynamicPolarisationScan–TechnicalReport33 ,SolartronInstruments,1997. [134] D.Landolt, Chapter1IntroductiontoSurfaceReactions:ElectrochemicalBasisofCorrosion ,in:P.Marcus(Editor), CorrosionMechanisminTheoryandPractice (2 nd edition),MarcelDekkerInc.,NewYork,2002,pp.1–18. [135] A.J.Bard,L.R.Faulkner, ElectrochemicalMethods–FundamentalsandApplications (2 nd edition),JohnWiley&Sons.Inc, 2001. [136] B.Y.Tsaur,S.S.Lau,J.W.Mayer,M.A.Nicolet, SequenceofPhaseFormationinPlanarMetalSireactioncouples ,Appl. Phys.Lett.38(1981)922–924. [137] U.Gösele,K.N.Tu, GrowthKineticsofPlanarBinaryDiffusionCouples:“Thinfilmcase”versus“Bulkcases” ,J.Appl. Phys.53(1982)3252–3261. [138] LicenseAgreementissuedbyCopyrightClearanceCenterbetweenthethesisauthorandElsevierforreusingthefiguresinthe articleinThinSolidFilms290291(1996)477–484forauthor’sthesis–Lic.No.:27724160007210. [139] T.B.Massalski(Editor), BinaryAlloyPhaseDiagrams(2 nd edition),ASMInternational,MaterialsPark,Ohio,1990. [140] C.S.Fadley, XrayPhotoelectronSpectroscopy:ProgressandPerspective ,J.Electron.Spectrosc.178179(2010)2–32. [141] K.M.Siegbahn, ElectronSpectroscopyforAtoms,MoleculesandCondensedMatter ,NobelLectureinPhysics,Stockholm, Sweden,1981. [142] TechnicalManual,5500/5600MultiTechnique–Installation,Calibration,Maintenance ,PerkinElmer,PhysicalElectronic Corporation,1992. [143] C.D.Wagner, XrayPhotoelectronSpectroscopy ,PerkinElmer,PhysicalElectronicCorp.,1979. [144] G.Moretti, AugerParameterandWagnerPlotintheCharacterizationofChemicalStates:InitialandFinalStateEffects ,J. Electron.Spectrosc.76(1995)365–370. [145] C.D.Wagner, TheAugerParameter,itsUtilityandAdvantages:AReview ,J.ElectronSpectrosc.47(1988)283–313. [146] P.Dutta, GrazingIncidenceXrayDiffraction ,Curr.Sci.India78(2000)1478–1483. [147] R.D.Tarey,R.S.Rastogi,K.L.Chopra, CharacterizationofThinFilmsbyGlancingIncidenceXrayDiffraction ,TheRigaku Journal4(1987)11–15. [148] PowderDiffractionFiles(PDF2),InternationalCrystallographyDiffractionDatabase(ICDD),2000. [149] A.L.Patterson, TheScherrerFormulaforXrayParticleSizeDetermination ,Phys.Rev.56(1939)978–982. [150] LEO1550ScanningElectronMicroscope ,MicrofabricationLaboratory,UniversityofCaliforniaatBerkeley: http://microlab.berkeley.edu/labmanual/chap8/leo.pdf [151] WelcometotheWorldofScanningElectronMicroscope ,MaterialsScienceandEngineeringDepartment,IowaState University: http://mse.iastate.edu/microscopy/home.html [152] P.W.Shum, StructuralCharacterisationandMechanicalPropertiesofIndustrialPVDTiAlNCoatings ,Ph.D.Thesis,City UniversityofHongKong,HongKong,2005. [153] ASTMG13305Standard: StandardTestMethodforLinearlyReciprocatingBallonflatSlidingWear ,2010. [154] UBi1®UsersManual, HysitronInc.,2004. [155] BSENISO14577Standard: MetallicMaterials–InstrumentedIndentationTestforHardnessandMaterialsParameters , Part1–3,2002. [156] BS11341:1988: AssessmentofSurfaceTexture–Part1:Methodsandinstrumentation . [157] RSTPlussystem–Operator’sGuideandTechnicalReferenceManual ,WYKO™Corporation,1995. [158] TaylorHobsonInc.Companyhomepage: www.taylorhobson.com [159] G.Binnig,C.F.Quate,Ch.Gerber, AtomicForceMicroscope ,Phys.Rev.Lett.56(1986)930–933. [160] Y.Gan, AtomicandSubnanometerResolutioninAmbientConditionsbyAtomicForceMicroscopy, Surf.Sci.Rep.64(2009) 99–121.

38 Appendix A

ElectrochemicalInterface:Potentiostat

Potentiodynamic polarisation measurement is conducted by using a potentiostat together with a threeelectrodeelectrochemicalcellasshowninFigureA.1.Tosumupbriefly,thethreeelectrodesetup isworkingintwopairstomeasurethecurrentpassing through and potential change in the working electrode(WE)duringpolarisationprocess.Toachievethat,theworkingandthecounter(orauxiliary) electrodes are working in pair (WECE) for current measurement while the other pair of WE and reference electrode (RE) is measuring the change of potential. For the top layer thin film corrosion propertiesevaluation,aspecialspecimenholderbasedonSternMakrides[130]designismadetoensure onlytheuppermostareaisexposedtothesolution.Sincethechloridecontainingsolutionischosentobe the testing environment, Ag/AgCl reference electrode is selected. For the choice of corrosive environment,wehavethoughtabouthydrochloricacidistheaggressiveenvironmentforstainlesssteel materials. Later on, we have also considered that the passivity of stainless steels in pure acidic environmentisalsoimportantinthisstudy.Therefore,sulphuricacidischoseninthelaterpartofthe research.Inpractice,beforeallpolarisationexperiments,deaerationofthesolutionwascarriedoutby purging dry inert gas (e.g. N 2) into the solution to reduce the dissolved oxygen content. The whole electrochemicalsetupwasthenintroducedintothesolution.Afterimmersingthecellintothesolution for more than an hour, the open circuit potential (E OCP ) was acquired at the equilibrium condition. PolarisationscanningwasthenstartedfromapotentialmorenegativetotheE OCP andsweepingtothe positivepotentialatarateof+0.1667mV/s,accordingtotheASTMstandard[131],orbelow1.0mV/s asrecommendedbyCottis[132].

FigureA.1 Thethreeelectrodeelectrochemicalcellsetup(Drawingbasedon[133]).

ElectrochemistryaboutthePolarisationDiagram

TheresultsofpolarisationscanarepresentedinapolarisationdiagramasintroducedinSection3.1. Thoughthisdiagramcanpresenttheelectrochemicalpropertiesofamaterialinachosenenvironmentin a simple illustration, fundamental knowledge about electrochemistry is required to get a better understanding about the curves. Therefore, the thermodynamics and kinetics about the chemical reactionsinanelectrochemicalprocessarebrieflyintroducedhere.

39 ElectrochemicalThermodynamics[17,134]

Inmaterialsciencepointofview,everymaterialinagivenstatewillhaveacharacteristicvalueof Gibb’sfreeenergy (G)(unit:Joule,J).ChangeofamaterialstatemeansthechangeofG,i.e.G.Inan electrochemicalreaction,amaterialchangesfromonechemicalstatetoanothercanbemathematically expressedas: G = −n ⋅ F ⋅ E …(A1) wherenisthenumberofelectrontransferinachemicalreaction,FistheFaraday’sconstant(96485 Cmol 1)andEistheelectrochemicalpotential(unit:V). Inprinciple,thisenergychangeprovidesa drivingforceforachemicalreaction.ProvidedthatGislessthan0,thechemicalreactionwillbe spontaneous.Whiletheoccurrenceofareactioncanbepredictedbythisidea,theactualEischanging when the reaction proceeds. This is because the concentrations of the reactants and products are changingcontinuously.Therefore,bytakingconcentrationintoaccount, Nernstequation [Equation(A3)] isappliedtomonitorthechangeofelectrodepotentialinthereactingenvironmentofaspecificreaction. Forexample,forachemicalreactionofJ: xJn + + ne → xJ …(A2)

x 0 R ⋅T [J ] …(A3) E = E − ln x n⋅ F []J n+ where E 0isthestandardpotentialofahalfcellreactionofM,Ristheuniversalmolargasconstant (8.314J ⋅mol 1⋅K1),TisthetemperatureinKelvin(unit:K),[J]and[J n+ ]aretheconcentrationsofJin metallic state and ionic state respectively (unit: molar, M), the superscripts x is the corresponding numberofthereductantsandoxidantsthattakepartinahalfcellreaction.Meanwhile,thereactioninan electrochemicalmeasurementisneverasingleeventbutinvolvesatleastanoxidationreductionpair,or commonlycalledas“redox”pair,forelectronchargetransferinteractionsamong2ormoreelements, compoundsormolecules.Thereby,themeasuredpotentialsoftheelectrochemicalcharacteristicsinthe experiments are never at the exact potential as they are expected in the standard potential. The experimentalresultsareconsequentlyexplainedbythemixedpotentialtheory .Anexamplegivenhere inFigureA.2istheE corr determinationinapolarisationmeasurement.

FigureA.2 Tafelslopecalculation(Drawingbasedon[133]). Assumingthatthemeasurementwasrunfromalowpotentialtoahighpotentialjustbeyondthe corrosionpotential(E corr ),wecandefinethecurvelocatedatthelowerpotentialthanE corr tobeasignof thecathodicdominantpathandthecurveathigherpotentialastheanodicdominantpath.Thereby,E corr isdefinedasthepotentialatwhichbothanodicandcathodicreactionsproceedatthesamerate,butin opposite direction (i.e. one is donating electrons and the other is receiving electrons), resulting in basicallythemeasuredisbeingzero.FromthediagramasinFigureA.2,thecorrosioncurrentdensity (i corr )canbeextracted.

40 ElectrochemicalKinetics[135] Notethatthermodynamicsisincapabletoestimatethereactionrates.Therefore,potentialaloneis insufficienttotellthechemicalkinetics.Inthe polarisation diagram, the current density (i, A cm 2) does. A higher current density indicates a faster reaction rate and vice versa. The measured current density,again,iscontributedbyaredoxpair,andtherefore,interpretedasfollows:

At stationary conditions at corrosion current density (i corr ), current densities of anodic (i anod. ) and cathodic(i anod. )reactionsareofequalmagnitudeandthereactiondirectionsareopposingtoeachother. EachreactionhasthesamekineticasexpressedinEquation(A5a)and(A5b):

icorr. = icath. = ianod. …(A4) G G  cath.  …(A5a) and  anod.  …(A5b) icath. = kcath. ⋅exp−  ianod. = kanod. ⋅exp−   RT   RT  inwhichkisthereactionrate(mol cm 2s1). Whenanoverpotential(η)isapplied,thebalanceis disrupted and this external driving force is governingthefinalreactionratebyspeedingupthereactionrateisgivendirectionthrough:

η = E − Ecorr. …(A6) i R ⋅T ⋅ln(10) η = β ⋅log …(A7)inwhich β = …(A8) i0 α ⋅n⋅ F where i 0 is the exchange current density of a specific material at a standard condition and α is the fraction of η taken by the anodic (during anodic overpotential) or cathodic (during cathodic overpotential)reactionduringthepolarisationprocess.

Atcathodicoverpotential(η c,i.e.E<E corr ),withthesupplyingelectronsfromtheexternalcircuit, the energy barrier of the cathodic process reduces. Therefore, the reduction (or discharge) process becomeseasierwhiletheoxidation(orionisation)processbecomesharder.Mathematically:

icath. > ianod. …(A9) G −α ⋅n⋅ F ⋅η G − 1( −α)⋅n⋅ F ⋅η ´  cath. c  …(A10a) and ´  anod. c  …(A10b) icath. = kcath. ⋅exp−  ianod. = kanod. ⋅exp−   R ⋅T   R ⋅T  Theresultingcurrentdensitywillbecathodicallydrivenandexpressedasfollow:

iapp.,c = icath. − ianod. …(A11)

  α ⋅ n⋅ F ⋅ηc   1( −α)⋅n⋅ F ⋅ηc  …(A12) iapp.,c = i0 ⋅exp−  − exp−    R ⋅T   R ⋅T 

Ontheotherhand,atanodicoverpotential(η a, i.e. E > E corr ), electrons are extracted out by the externalcircuit,theenergybarrieroftheanodicprocessreducesandthustheoxidationprocessbecomes easierwhilethereductionprocessbecomesharder.Mathematically,thesituationbecomes:

ianod. > icath. …(A13) G −α ⋅n⋅ F ⋅η G − 1( −α)⋅n⋅ F ⋅η ´  anod. a  …(A14a) and ´  cath. a  …(A14b) ianod. = kanod. ⋅exp−  icath. = kcath. ⋅exp−   R ⋅T   R ⋅T  Theresultingcurrentdensitywillbecomeanodicallydrivenandexpressedas:

iappl.,a = ianod. − icath. …(A15)

  α ⋅n⋅ F ⋅ηa   1( −α)⋅ n⋅ F ⋅ηa  …(A16) iappl.,a = i0 ⋅ exp−  − exp−    R ⋅T   R ⋅T 

41 CorrosionRateAssessment

Corrosionrate(r corr. )canbeextractedfromthepolarisationcurvebymakinguseofthecorrosion currentdensity(i corr )andFaraday’slaw.Forengineeringpurpose,thecorrosionratecanbedefinedas shown: i ⋅ M m 2 1 r = corr = (massperunitareaperunittime,e.g.g cm s )…(A17),or corr. n⋅ F t ⋅ A i ⋅ M m 1 d = corr = (penetratingdepthperunittime,e.g.nm s )…(A18) corr. n ⋅ F ⋅ ρ t whereMisthemolarmass(g mol 1)ofthetestedspecimen.Inalloymeasurements,Mcanbereplaced byequivalentweight(W eq. )asdefinedinthefollowingexpression:

−1  f ⋅ n   i i  …(A19) Weq. = ∑   i M i  wherefistheatomicfractionandnisthevalenceofeachcomponent.Bythismeans,theexperimental resultscancorrelatewiththeengineeringunits[17,133]. TableA.1 Thesummaryofthestandardpotentialsoftheelectrochemicalreactionsof thetransitionmetalsandsiliconinacidsolution[96]

Element Changeoftheoxidationstateandthecorrespondingpotential(inV)

Si SiO 2–(0.90)–Si

Ti TiO 2–(0.56)–Ti 2O3–(1.23) –TiO–(1.31) –Ti Cr Cr(VI)–(+0.55) –Cr(V)–(+1.34) –Cr(IV)–(+2.10) –Cr 3+ –(+0.42) –Cr 2+ –(0.90) –Cr Fe Fe 3+ –(+0.771) –Fe 2+ –(0.44) –Fe 2 2+ Ni NiO 4 –(+1.8) –NiO 2–(+1.593) –Ni –(+0.257) –Ni

42 Appendix B

EffectiveHeatofFormation(EHF)ModelforPhasePrediction Inmetalsilicidethinfilmpreparationformicroelectronicdevices,theknowledgeabouttheinitial formationofsilicidephaseandthephaseformationsequenceineachsystemisimportantfromboth practicalandresearchpointofview.Probably,thefirstruleforpredictingphaseformationstated:“the first compound nucleated in planar binary reaction couples is the most stable congruently melting compoundadjacenttothelowesttemperatureeutecticonthebulkequilibriumphasediagram[136].” Lateron,thisconceptwasextendedbyadding:“Thesecondphaseformedisthecompoundwiththe smallest T that exists in the phase diagram between the composition of the first phase and the unreactedelements[136].”Inaddition,ithasbeenpredictedthatafterthefirstcompoundphasehas formed, this phase must exceed a critical thickness before a second compound phase may form and growthsimultaneouslywiththefirstone[137].Basedonthoseaboveconcepts,Pretorius’etal[57,58] proposedanovelwayofphasepredictionbysimplymakinguseofthermodynamicdataandthemodel iscalledtheeffectiveheatofformation(EHF)model.Whileconsideringthethermodynamicapproach, thedrivingforceforaprocesstotakeplaceisgivenbythechangeintheGibbsfreeenergy(G o)and expressedas: Go = H o −T ⋅ S o …(B1) whereH oisthechangeinenthalpyduringthereactionattemperatureTandS othechangeinentropy. However,thechangeinenthalpyismuchmoresignificantthanthechangeinentropyduringsolidstate formationoforderedcompounds.Therefore,thecontributionfromtheentropyisusuallynegligibleand H oaloneisagoodmeasureofthechangeinfreeenergyGo.ThismodelbyPretoriusisthendefined toassessaneffectiveheatofformationH´whichdependsontheavailableconcentrationofthereacting atomicspeciesatthegrowthinterface,givenby: EffectConcentrationofLimitingElement H '= H o × …(B2) CompoundConcentrationofLimitingElement AccordingtoPretorius,thefirstformedphaseshouldfulfilthefollowingcriteria: 1. itmustbeacongruentphase, 2. thephaseshouldhavethelowesteffectheatofformation(H´)level. 3. thephaseformationsequencecanbeevaluatedbycomparingtheH´levelamongdifferentphases, noncongruentphasecanformafterthefirstphaseisdevelopedprovidedthatthetemperature differencebetweentheliquiduscurveandtheperitectic/peritectoidpointisverysmall. FigureB.1andB.2demonstratestheapplicationofEHFmodeltopredictthesilicideformationin our transition metal silicide analyses performed in Paper 2 (Table 8). Please note that the silicide synthesized from cosputtering here is different fromthemetalsiliconinterfacereactioninPretorius’ model. The effective concentration of the limiting element can be the exact composition of the asdepositedmixture/compoundinsteadoftheliquidusminimumasproposedintheoriginalmodel.The model,still,correctlypredicttheformationofcongruentTiSi 2phasefromTi 0.40 Si 0.60 ,thenoncongruent βFeSi 2 and NiSi 2 phases from Fe 0.40 Si 0.60 and Ni 0.20 Si 0.75 . The formation of the latter two phases is owingtotheirsmalldifferenceofH´fromthecongruentFeSiandNiSi(i.e.slightlynegativeatthat specificcomposition),respectively.ForthemixtureofCrSi2andCrSiintheCrSisystem,themodel, however,hasfailedtoexplainthisoutcome.ItisassumedthatsuchresultistheconsequenceofCrSi2 decompositionduringthehightemperaturetreatment.

43 . ems[57,58,138,139] Sisyst Siand(b)Cr orthe(a)Ti TheEHFdiagram(top)andphasediagram(bottom)f FigureB.1

44 [57,58,138,139]. Sisystems Siand(b)Ni rthe(a)Fe TheEHFdiagram(top)andphasediagram(bottom)fo FigureB.2

45 Appendix C

XrayCharacterisationInstruments: XrayPhotoelectronSpectrometer(XPS)andXrayDiffractometer(XRD)

SurfacesensitiveXrayinstrumentsincludingXrayphotoelectronspectrometer(XPS)andXray diffractometer (XRD) carried the major role in the surface characterisation work in this research. Compositional,chemicalaswellasstructuralcharacteristicsofthecoatedsilicidescanbeanalysedby theindividualtechniques. XrayGeneration Inprinciple,thegenerationofXrayistheresultofhighenergeticelectronbombardments,whichis emittedfromhottungsten(W)filaments,ontheanodematerialsunderahightensionofvoltageinan enclosedhighvacuumdevice[117].ThepowerofXrayemissiondependsonthepowerappliedonthe filament.FortheXraysourceintheXPSused(PHI5500),thefilamentissetoperatingat350W(i.e. 25mA,14kV);whilefortheXraytubeequippedwithaCranodeinXRD,theoperatingpowerissetat 1400W(i.e.40mA,35kV).InXPS,thechoiceofsourcedependsontheenergyleveloftheXrayand theenergyresolutionoftheXrayenergyline(i.e.fullwidthahalfmaximum–FWHM).Usually,the bindingenergyrangesfrom0toabout1000eVandthen1253.6or1486.6eVgeneratedfromthemost commonlyusedMgorAlsourcesarewideenoughtoprovidesufficientinformationformostofthe elementswhiletheFWHMsarelessthan1.0eV.ThechoiceofanodeinXRDissampledependent,for example,Cranodeischoseninourlaboratorybecauseitcanavoidthefluorescingradiationfromthe Febasedmaterials,themostfrequentlymeasuredtypeofmaterial,otherwiseinducedbythecommonly usedCuKαsource.ThelongwavelengthofCrKαradiation(λ=2.2897Å),indeed,isusefulforlarge unitcellsmeasurement.

FigureC.1 Xraygenerationin(a)XraysourceinXPS(b)XraytubeinXRD(Author’sillustration). XrayPhotoelectronSpectroscopy(XPS) ThephotoelectriceffectbyXrayswasdiscoveredbyHeinrichHertzin1887andwasexplainedby Albert Einstein in 1905 [140]. The usage of this physical phenomenon as a practical analytical instrumentwasbroughtupalmostahundredyearslaterbyKaiSiegbahnin1970[141],rightafterthe goldenageofvacuumtechnologyinthe1960s.The Xray photoelectron spectroscopy (XPS) , or the electronspectroscopyforchemicalanalysis(ESCA) coinedbySiegbahn,isoneofthemostimportant materials characterisation tools in nowadays surface science research. The main parts of an XPS instrumentconsistofanXraysource,asamplemanipulator,andanelectronenergyanalyser(Figure C.2).WhenamonochromaticXraybeamisilluminatedonthesamplesurface,photoionisationoccurs asillustratedinFigureC.3andexpressedintheformula:

46 Eb,PE =hν–Ek,PE –φ spec. …(C1)

wherehνstandsfortheenergyoftheXrayphotons,E b,PE isthebindingenergyofthephotoelectronto theatomicnucleus,Ek,PE isthekineticenergyoftheemittedphotoelectronandφ spec istheworkfunction ofthespectrometer.Theworkfunction(φ)isbasicallytheenergydifferencebetweenthevacuumand Fermilevels(E F)forthespecificcaseconsidered.Themediumtolowenergyemittedelectronsarethen collectedandcountedintheelectronenergyanalyser.

FigureC.2 IllustrationofanXPSinstrument FigureC.3 Schematicdiagramofaphotoelectron (From[118]). emissionprocess(Drawingbasedon[117]). AplotofphotoelectronintensityagainstbindingenergythatcontainsbothphotoelectronandAuger electron peaks is then generated (see Figure 15; Note: Auger electrons that are generated due to the deexcitationprocesscanalsobefoundinanXPSspectrum provided that their kinetic energies are withinthepossiblerangeofanalysis).TheXPSspectrumobtainedprovidesthebasisfortheabundance ofsurfacespecificinformationsuchaschemicalstatesofelementspresent,theirsurfacecomposition, thinfilmthicknessesandalsothespatialdistributionofcompoundsonanddifferentmaterialsonatleast micrometrescaleinlateralsize[118,119,142]. Chemicalcompositioncanbecharacterisedbymakinguseofthepeakheightintensityorpeakarea measureofthecharacteristicpeaks(I)oftheindividualcomposingelements.Theatomiccomposition (C at. )ofeachelementcaninthesimplestapproachbeevaluatedthroughthecalculationofintensityratio byputtingatomicsensitivityfactor(S)intoconsideration[142].Theequationthenappliedis: I / S Cat. = …(C2) ∑(In / Sn ) n Providedthattheanalysedvolumeofmaterialinthesurfaceishomogeneous,thisapproachisapplicable. Wouldthere,however,beamorecomplicatedmorphologyofthinsurfaceproductssothattheanalysed materialvolumecoversbothbulkandthinproducts,moreadvancedquantificationapproachesmustbe appliedasfurtherdiscussedbelow. Theinformationdepth(orsamplingdepth)(d)iscorrelatedtothephotoelectronattenuationlength (λ),whichinturndependsonthekineticenergyoftheemittedphotoelectron(E)andthematerialbeing analysed (a). Photoelectron attenuation lengths are generally in the range of 1 – 3 nm, and can be expressedinthefollowingsemiempiricalequations[117119]:

47 538⋅ a Formetallicmaterials: λ = + .0 41⋅ a 2/3 ⋅ E 2/1 …(C3) met E 2 2170⋅ a Forinorganicmaterials: λ = + .0 72⋅ a 2/3 ⋅ E 2/1 …(C4) inorg E 2 3/1 ρ 3  1  7 inwhich a =   ⋅10 andDisthemoleculardensity, D = (mol ⋅cm ),n Aisthenumberof  D ⋅ nA ⋅ N  M atomsinthemoleculeandNistheAvogadro’snumber.TableC.1liststheattenuationlengthsderived forthematerialsstudiedalongwiththeirphysicaldataanddetailsabouttheircharacteristicXPSpeaks.

TableC.1ThesummaryofattenuationlengthevaluationofaNiSisystem

Thin Molar Density Molecular Binding Corresponding Binding Corresponding N a λNi λSi film mass (g ⋅⋅⋅cm 3) density energy kineticenergy energy kineticenergy (nm) (nm) system (g ⋅⋅⋅mol 1) (mol ⋅⋅⋅cm 3) position (eV) position (eV) ofNi2p3/2 ofSi2p peak peak (eV) (eV) Ni 58.7 8.91 0.152 852.8 633.2 1 0.2219 1.08

Ni 2Si 145.5 7.30 0.050 853.3 632.7 99.6 1386.4 3 0.2226 1.90 2.82 NiSi 86.8 5.98 0.069 853.8 632.1 99.6 1386.4 2 0.2293 1.99 2.94

NiSi 2 114.9 4.80 0.042 854.5 631.5 100.0 1386.0 3 0.2366 2.08 3.09 Si 28.1 2.33 0.083 99.4 1386.6 1 0.2716 3.79

SiO 2 60.1 2.65 0.044 103.8 1382.2 3 0.2324 3.00 *MonochromaticAlKαsourceisusedinPHI5500XPScharacterisation( hν =1486.6eV)[142].

Basedontheapproximateattenuationlength,theinformationdepthofaparticularchemicalstate canbeanalysedbytheBeerLambertLaw[117]:

I = I0 ⋅ exp(−d / λ ⋅ sinθ ) …(C5) and the approximate maximum information depth, i.e. a depth from which 95 % of all generated photoelectronscanreachthesurface,isexpectedtobe[117,118]:

dmax = 3⋅ λ ⋅sinθ …(C6) Byvaryingthetakeoffangle(θ),theattenuationlengthwillchangeandtheinformationdepth,of course,willvary.Therefore,throughchangingthetakeoffangle,compositionatdifferentdepthofthe toplayercanbeexamined.TheanalysingtechniqueofsuchtypeinXPSiscalledangleresolvedXPS (ARXPS). Surface composition and depth profile at the uppermost layer can thus be evaluated. For example,considerasiliconoxidationprocessonasiliconwafer.Theonlypossiblephasesinthesystem areSiandSiO 2only.ByanalysingtheSi2ppeakcoveringboththeelementalstateandtheoxidised state of silicon at different takeoff angle, the thickness of the uppermost silica (SiO 2) layer can be calculated.

∞   dSiO  PhotoelectronfromtheuppermostSiO 2: I = I ⋅ 1− exp− 2  …(C7) SiO2 SiO2      λSi ⋅sinθ 

48  d  ∞  SiO2  PhotoelectronfromtheunderlyingSi: I Si = I Si ⋅ exp−  …(C8)  λSi ⋅sinθ 

 I SiO / ISi  Thicknessoftheoxidelayer: d = λ ⋅sinθ ⋅ ln 2 +1 …(C9) SiO2 Si I ∞ / I ∞  SiO2 Si  In laboratory used for the present study, there is a PHI 5500 XPS instrument equipped with monochromatic AlKα Xray source (E = 1486.6 eV) [142,143]. In overall compositional analysis performed,surveyspectrawereacquiredat93.5eVpassenergyand0.4eV/stepscanrate.Inchemical stateanalysis,higherresolutioncorelevelspectraforindividualelementwereacquiredat23.5eVpass energy with 0.1 eV/step scan rate. In Si 2p analysis, even higher resolution can be achieved to distinguishSi2p 3/2 and2p 1/2 orbitalat5.85eVpassenergywith0.05eV/step.Allspectrawereacquired atatakeoffangleof45º.Thisanglecorrespondstothesamplebeinghorizontallypositionedduringthe analysis. Variation of the takeoff angle at 30º, 45º and 60º is possible to generate nondestructive angleresolvedanalysisfortheuppermostoxidelayerformedafterpolarisationtests.

ChemicalStateandChemicalShift

Inprinciple,thebindingenergy(BE)levelintheXPSmeasurementisanintegratedresultofthe photoelectron emission and Xray excited Auger electron emission processes and involves the initialstateandfinalstateeffects.Theinitialstateeffectsexistafterthephotoelectronemissionbutprior toXrayexcitedAugerelectronemissionandtheyincludefactorssuchasionicity(i.e.chargetransfer), valenceorbitaltransformationandvalenceelectronconfigurations.Duringthephotoelectronemission process,anelectronfromaspecificelectronicshellatthecorelevelisemittedoutandthisleadstothe binding energy strengthening between the remaining corelevel electrons and the nucleus. Mathematically,theseeffectscanbesummarisedinthefollowingequation:

0 Eb,PE = Eb,PE + k ⋅ q +VM …(C10) 0 whereE b,PE isthebindingenergyofacorelevelphotoelectronemittedoutfromanatom,E b,PE isthe bindingenergyofthatelectronbeforeemittedoutfromtheatom(i.e.anenergyreferenceandaphysical constant), V M is the Madelung potential (i.e. the polarisation energy of an atom to the surroundings atoms),qisthevalencechargeofanatomandkisthechangeincorepotentialresultingfromaremoval ofaphotoelectron. The finalstate effects occur following the Xray excited Auger electron emission. The system adjustsitsorbitaltoalowerbindingenergylevel,producingtherelaxationofthecoreholesthatare induced during photoelectron emission process. This relaxation energy consists of an intraatomic contribution(R ia )–thecontractionenergyoftheouterelectronchangetowardtheinnercorehole–and anextraatomiccontribution(R ea )–therelaxationenergyassociatedwiththerestofthesystem–butit canassumethatR ea aloneisthedominantfactorforthefinalstateeffects.

Then,the“measured”XPSBElevelofaspecificchemicalstate(E b(M),PE )canthusbeinterpreted byasemiquantitativemodel[144]accordingtothepointchargepotentialapproximationas:

0 ea ia Eb(M ),PE = Eb,PE + k ⋅ q + V − R + q ⋅ R …(C11) WhencomparingtheBEleveloftwostatesofthesameelement,thechemicalshiftisthusderived ea as: Eb(M ),PE = (V + k ⋅ q) − R …(C12)

49 Both initialstate and finalstate effects of each chemical state can be graphically presented by meansoftheWagnerplot(orchemicalstateplot)[144,145]intermsofinitialstateAugerparameter(β) andfinalstateAugerparameter(α),whicharedefinedandinterpreted,respectively,inequations(C13) and(C14):

Ek, Auger = β − 3⋅ Eb,PE …(C13)

Ek , Auger = α − Eb,PE …(C14) whereE k,Auger isthekineticenergyoftheAugerelectron. Toextendequation(C13),theinitialstateAugerparameter(β)isactuallythesummationofthe kinetic energy of emitted Xray excited Auger electron and the binding energies of all the electrons involvedintheAugerprocess:

β = Ek, Auger + Eb,PE + 2 ⋅ Eb, Auger …(C15) ConsideringtheexpressionforthekineticenergyofanAugerelectron:

Ek, Auger = Eb,PE − 2 ⋅ Eb, Auger …(C16), theinitialstateAugerparameterofaparticularstateofanelementcanberewrittenas:

0 β = 2 ⋅ Eb,PE = 2 ⋅ (Eb + k ⋅ q +VM ) …(C17) andthechangeofinitialstateeffectsbecomes: β = 2 ⋅ (V + k ⋅ q) …(C18). ThefinalstateAugerparameter(α)canbedefinedas:

α'= α − h ⋅ν = Ek − Ek,PE …(C19) inwhichα´istheoriginaldefinitionofAugerparameterandh ⋅υistheenergyoftheXraysource.The changeoffinalstateeffects,therefore,becomes:

α'= α = Ek, Auger − Ek,PE …(C20)

ea ea where Ek, Auger = −ε + 3⋅ R , Ek,PE = −ε + R , andεisthechangeofenergyinanelectronshell[145].Then, α = 2 ⋅ Rea …(C21)

Thecorelevelshift,E b(M),PE [Equation(3)],withrespectivetothemetalreferencedependson boththeinitialstateandfinalstateeffectsanditcanthusbededucedeasilyfromequations(C18)and (C21)as:

E = 1 β − α …(C22) b(M ),PE 2( ) Through these equations, it implies that both physical effects can be roughly estimated via an experimentalapproach.

50 XrayDiffractometry(XRD)

Xraydiffractometer(XRD)isamaterialcharacterisationinstrumentforcrystallographicstructure and phase identification. A collimated Xray beam irradiated onto the materials diffracts at different angles according to material crystallographic orientation.Therelationshipbetweenthewavelengthof theXraybeam,λ,theangleofdiffraction,2θ,thedistancebetweeneachsetofplanesofthecrystal lattice,d,isgivenbytheBragg’slaw(FigureC.4):

nλ=2d hkl sinθ nhnknl …(C23) where n represents the order of diffraction. The significant Xrays penetration depth of the ordinary Bragg Brentano geometry of XRD determined by BeerLambert equation between 0.1 – 10 mm (depends on the Xray irradiation strength and materials density) is too deep for thin layer characterisation. Therefore, the specific geometry of grazing incidence angle (GIXRD) for thin film characterisationwasapplied,seeFigureC.5.Inthisgeometry,theangleofXrayincidenceisfixedata verylowangleatbetween0.5–3.0ºwhilethedetectorrotatesasinordinaryXRD.Owingtothelow angleofincidence,theacquireddiffractogramissurfacesensitiveandthediffractedradiationfromthe thin film become more significant than the ordinary XRD diffractogram [146,147]. Crystallographic structuresandphaseidentificationwerecarriedoutforsuchsetupusingaBrukerD8AdvanceXray Diffractometer.TheCrKαradiation(λ=2.2897Å)atascanrateof0.06°/minwasemployed.AnXray beamwasgeneratedontothethinfilmsurfaceattheangleofincidenceof2.0 °.Scanningwasperformed from40°to80°atastepsizeof0.02°.Thediffractionpatternwerethenanalysedwithreferencetothe Powder Diffraction Files (PDF2) in the International Centre for Diffraction Data (ICDD) for phase identification[148].

FigureC.4 IllustrationoftheBragg’slawinanXray FigureC.5GIXRDsetupintheXraydiffractometer diffractionprocess(Author’sillustration). (Author’sillustration). CrystalliteSizeDetermination Ifthecharacterisedstructureiscrystallised,thesizeofthecrystallite(x)canbecalculatedthroughthe Scherrer’sequation[149]: k ⋅ λ x = …(C24) cosθ ⋅ (FWHM ) wherekisanumericalconstant,λisthewavelengthofXray,θistheangularpositionofthe characteristicpeakandFWHMisthewidthofthecharacteristicpeak.

51 Appendix D

ElectronBeamCharacterisationInstrument:ScanningElectronMicroscope(SEM)

Scanningelectronmicroscopy(SEM)isanimagingtechniquethatiscommonlyusedinmaterials science.Itmakesuseoftheelectronbeamasamediumtoformanimage.Theimagesproducedbythis technique can reach high magnification ( 100,000 or better) and are found to have much better resolutionandlargerdepthoffieldcomparedtothosecapturedbytheopticalmicroscope.Inthecurrent study, the SEM employed was LEO 1550 model (Figure D.1). In the instrument, a Schottky field emission gun equipped with a zirconium oxidecoated tungsten filament is placed at the top of the column. The emitted electrons are accelerated at auniformdirectionbythebeambooster(oranode) belowtheguntoformanelectronbeam.Theelectronbeamfollowsaverticalpathdownthecolumnand is guided by the electromagnetic condenser lens without introducing any crossover in between. The beamisfinallyfocusedbytheobjectivelensandfallsontotheexaminedsample.Theejectedelectrons fromthesamplecanbedetectedeitherbytheinlensdetectorinsidetheobjectivelensorbythesideway secondary electron (SE) detector. The backscattered electron (BSE) images developed by the high energyelectronscanbeusedtostudytheelementaldistributiononthesurface.TheSEimages,onthe otherhand,areusedfortopographyexamination[150,151].Imagesproducedbythisequipmenthavea veryhighresolutionasfineas2–5nm[150].Inthepresentstudy,surfacemorphologiesbeforeand afterelectrochemicalmeasurementsofeachspecimenwereexaminedbymeansofSEimages.Thepits formation and surface roughening induced by the electrochemical attack on the potentiodynamically polarisedspecimensweredirectlyidentified.

FigureD.1 CrosssectionoftheLEO1550scanningelectronmicroscopecolumn(Author’sillustration).

52 Appendix E

TribologicalTestingInstruments:RockwellHardnessTesterandSlidingWearTester

TribologicalstudiesinthisresearchinvolveRockwellCadhesiontestanddryslidingweartestin ordertoinvestigatethethinfilmadhesivenessandthewearresistance.Intheadhesiontest,astandard Rockwell hardness tester modelled Matsuzawa DXT1 was employed. The indenter was a conical diamondtip,theloadingforcewassetat150kg fandtheholdingtimewasabout30sec.Theresulting indentationmarkisexaminedbymeansofopticalmicroscope.Theamountandlengthofradialcrack linesandthedelaminationand/orbucklingfeaturesdeterminetheadhesionstrengthfromHFlevel1to6 accordingtotheVDI3198standard[122].Inordertohavesufficientcoatingadhesiveness,thelevel shouldbekeptaslowaspossible,seeFigureE.1.

Thewearresistanceofthecoatedspecimenismeasuredandthewearmechanismisdeterminedby means of dry sliding wear test and SEM examination, respectively. To establish a sliding couple, counterfacingmaterialshavetobechosenandmountedontoaballholderandthetestedspecimenis mountedonthestageplatform.Theslidingcounterfaceisthenmovingbackandforthagainstthetested specimenandaweartrackisdeveloped(seeFigureE.2).Afterthepresetofhundredsorthousandsof reciprocatingslidingcycles,thewornsurfacesonbothtestedspecimenandthecounterfacewillthenbe dismountedandexaminedundertheopticalmicroscopeandSEM[152].Thetopographyandthevolume ofthewornregionarethereaftermeasuredbymeansofsurfaceprofilometry(readAppendixG)andthe wear volume is determined. Thereby, the specific wear rate of individual testing condition can be determined.Thewearmechanismcanbestudiedthroughexaminingthespecialwornfeaturesremaining onthesurface.Somewornfeaturessuchasscratches,cracks,debrisandbucklingcanbecheckedup withtheaidofSEM.Thecorrespondingchemicalcompositionofeachfeaturecanbealsoanalysedby meansofenergydispersiveXrayspectroscopy(EDX)[153].

FigureE.1 Classificationoftheadhesionstrengthlevelsin FigureE.2 Slidingweartester(Author’sillustration). theRockwellCadhesiontest(Drawingbasedon[122]).

53 Appendix F

NanomechanicalTestingSystem:Nanoindenter

Mechanical properties of thin film materials requires highly surface sensitive instrument to determineinordertoavoidthesubstratecontribution.Nanoindentationisoneofthemostcommonly usedtechniquestodepictthinfilmmechanicalpropertiessuchashardnessandelasticmodulus.

Instrumentedindentationtestingsystemofananoindenterconsistsofthreebasiccomponents:(a)a welldefinedgeometryindenter,(b)anactuatorforapplyingtheforceand(c)asensorformeasuringthe indenter displacement [127]. For the UBi1® Nanoindenter employed in this work, the instrument is equipped with a threesided pyramidal shape Berkovich indenter and the threeplate capacitive transducerasshowninFigureF.1.Themaximumappliedforceisupto30mNwiththeresolutionof1 nNandthemaximumpenetrationdepthis20mwithresolutionof0.04nm[154].

L max

Unloading curve

n

o i

g N) e r

n y o r gi Loading curve re e n v io o at c

Load( e m r or f c e i d t tic s a s l la P E

h h h f c max Indentation depth (nm) FigureF.1 Schematicdrawingshowinga FigureF.2 Anillustrationofaloaddisplacement nanoindenter(Drawingbasedon[152]). curve(Modifiedfromauthor’sresultinPaper6). Indentation results of nanoindentation measurement are presented in the form of the loaddisplacementcurve(orloadingunloadingcurve)asillustratedinFigureF.2.Thepenetrationdepth of the indenter increases with the ascending compressive load in microNewton scale (N) applied continuously by the piezoelectric transducer until reaching the maximal load and then the indenter retreats when the load reduces. Three significant depths recorded after the measurements are the maximumpenetrationdepth(h max ),theindentercontactdepth(h c)andthedepthatwhichindenteris detachedfromthetestedmaterials(h f).Theareabetweenloadingcurveandunloadingcurverepresents theproportionofplasticdeformationwhiletheareabelowtheunloadingcurverepresentstheproportion ofelasticrecovery(W e).Largerproportionofelasticrecoveryinthetestedspecimenimpliesahigher elasticity.Inpractice,morethan10indentationmeasurementsshouldbemadeondifferentareasofthe sample surface in order to get a better statistics tointerpretthecharacterisedmaterials[155].In this work,thereportedhardnessandmodulusvaluesareaveragedatleastfrom15measurements.

54 Mechanicalparametersandpropertiesobtainedinnanoindentationtesthavetobeevaluatedcarefully for the thin film properties since basic indentation evaluation approach is insufficient [124128]. Traditionally, data obtained in the nanoindenter is primarily characterised by means of OliverPharr method,inwhichhardness(H)ismeasuredbydividingthemaximumloadingforce(P max )tothecontact area(A c)oftheindentertip,asinequation(F1): P H = max …(F1) Ac 2 where Ac = const.⋅ hc and const. is around 24.5 for Berkovich tip. The reduced modulus (E r) or indentationmodulus(E IT ),infact,ismathematicallycalculatedasaslopeofalinearfunctionon80%of theunloadingcurve,andexpressedas: π S E = ⋅ …(F2) r 2β A whereSisthestiffnessandβistheindenterdependentconstantwhichisequalto1.034forBerkovich. Furthermore,duringanindentationprocess,twocontactbodiesareactuallyinvolved.Theyarethe indenter(E i)andtheindentedmaterials(testedmaterials)(E sam ).Therefore,themeasuredindentation, the effective Young’s modulus (E*), involve the contribution from both physical bodies and can be interpretedviaareciprocalfunctionas: 2 2 1 1−ν i 1−ν sam * = + …(F3) E Ei Esam whereυxisthePossion’sratioofindividualmaterials.FortheBerkovichdiamondindenter,E i=1141 GPaandv i=0.07.Accordingly,E rforthetestedspecimencanalsobedefinedphysicallyas: 2 2 1 1−ν sam 1 1−ν i = = * − …(F4) Er Esam E Ei The measurement of the coated specimens, E sam , indeed, is a mechanical response from the filmsubstratecomposite.It,therefore,furtherincreasesthecomplexityofthecharacteristicconditionby takingbothcomponentsintoaccount.So:

1 1  hc  1   hc  = ⋅φ ⋅  + ⋅ 1−φ ⋅  …(F5) Er Esub  t  E film   t  2  1  1  1 x  a where φ = ⋅ arctan  + ⋅ 1( − 2 ⋅ν ) ⋅ ⋅ ln(1+ x2 ) − and x = inwhichaisthe π  x  2π ⋅ 1( −ν )  x 1+ x2  t meanradiusofgrainsandtisthethinfilmthickness[128]. Similarfunctionshouldbeusedforfilmhardnessevaluation[125]:   v  h n   film   c  H = H sub + ()H film − H sub ⋅exp−   ⋅   …(F6)   vsub   t   wheretheexponentniseither1or2forafilmthatisharderorsofterthanthesubstrate. Byconductingtheseseriesofdataanalysis,mechanicalparametersofuppermostthincoatedlayer canbedetermined.Morethinfilmmechanicalpropertiescanbefurtherderivedandpredictedbasedon theseprimaryparameters.Forexample,MusilhasdiscussedhowtocorrelatetheH3/E* 2totheplastic 2 deformationresistance,H/Etoelasticrecovery(We),andP/S tothetribologicalproperties[129].

55 Appendix G

SurfaceTopographicalInstruments: OpticalInterferometer,StylusProfilometer,AtomicForceMicroscope(AFM)

Surface topographic information such as average roughness (R a) and three dimensional surface profilescanbeobtainedbymeansofnoncontactopticalinterferometryandcontactstylusprofilometry [156]. In the optical technique, a filtered (PSI mode) or unfiltered (VSI mode) visible light source reflectedbyabeamsplitterilluminatesonthesample.Thedetectoratthetopofinstrumentcollectsa combinationofreflectedlightsfromthesampleanda‘referencesurface’insidetheopticalinstrument forms the interference fringes. Precise measurement can be evaluated through the mathematical calculationsbasedonlightintensityoneachpixel,‘referencesurface’positionandappliedwavelength of light [157]. In the present study, WYKO RST Plus surface profiling system is employed. This instrument offers two operating modes: phaseshifting interferometry (PSI) and verticalscanning interferometry(VSI).ThePSImodewhichallowssmoothsurfacemeasurementsattheangstromlevel wasusedforanoverviewstudyaboutsurfacecondition.TheVSImodewhichallowsroughsurfaces and steps measurements at the nanometer level that was used for corroded pits study and thin film thicknessevaluation.

FigureG.1Stylusprofilometer(Author’sillustration). Inthecontactmethod,astylusequippedwithadiamondtipof2.0minradiuswasequippedina TaylorHobson Form Talysurf120L profilometer operating in the phasegrating interferometry (PGI) mode for surface mapping (Figure G.1) [158].Data resolution is about 0.25 m. Although the data acquisition rate is much slower than the optical technique, this technique takes the advantage of complicated surface profiling on a deep worn surface in which certain part of the surface might be shadowedduringthelightrayilluminationintheabovecharacterisation. Forthefineresolutiondowntosubatomicscale,atomicforcemicroscope(AFM)isthechoicefor surface roughness measurement [159,160]. However, long acquisition time, the demanding testing conditionandthenanoscalescanningareaarethemaindisadvantagestoapplythismeasurementasa generalpractice.AFMmappingwascarriedoutintheUbi1 ®Nanoindenter(readAppendixF)afterthe nanoindentation measurements to check the pileup and crack initiation (or propagation) phenomena surroundingtheindentedmark.

56