Structural and Dynamical Trends in Alkali-Metal
Article pubs.acs.org/JPCC Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods † ‡ † § ∥ † ∥ Wan Si Tang,*, , Mirjana Dimitrievska,*, , Jean-Noel̈ Chotard, Wei Zhou, Raphael̈ Janot, ⊥ † Alexander V. Skripov, and Terrence J. Udovic † NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States ‡ Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States § National Renewable Energy Laboratory, Golden, Colorado 80401, United States ∥ Laboratoire de Reactivité ́et Chimie des Solides (LRCS), UMR 7314 CNRS, Universitéde Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France ⊥ Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990, Russia *S Supporting Information ABSTRACT: Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH3, where M = K, Rb, Cs, K0.5Rb0.5,K0.5Cs0.5, and Rb0.5Cs0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron- scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200− 250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a red shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice.
[Show full text]