Chemical Vapor Deposition of Tungsten Oxide Rein U

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Vapor Deposition of Tungsten Oxide Rein U APPLIED ORGANOMETALLIC CHEMISTRY, VOL. 12, 155–160 (1998) Chemical Vapor Deposition of Tungsten Oxide Rein U. Kirss* and Lamartine Meda Department of Chemistry, Northeastern University, Boston, MA 02115, USA Crystalline and amorphous thin films of tung- literature contains several reports of electro-opti- sten(VI) oxide can be prepared by chemical cally inactive WO3 films prepared by sputtering, vapor deposition using a variety of volatile evaporation or spray methods,3 although later work precursors below 500 °C. Deposition parameters has yielded electrochromic WO3 films by these 1 for preparation of WO3 films from tungsten methods. No attempt is made here to review the hexacarbonyl [W(CO)6], tungsten hexafluoride literature pertaining to WO3 films prepared by these (WF6), tungsten ethoxides [W(OEt)x, x =5,6] methods. 3 and tetra(allyl)tungsten [W(h -C3H5)4] are sum- The present review focuses on CVD of amor- marized. The electrochromic behavior of these phous and crystalline tungsten oxide films, in- films is comparable with that observed for WO3 cluding thermal CVD, plasma-enhanced CVD films prepared by evaporation, sputtering and (PECVD) and photo-assisted CVD (PACVD). The electrodeposition. # 1998 John Wiley & Sons, principle advantage of chemical vapor deposition Ltd. of electronic materials over other methods is in step Appl. Organometal. Chem. 12, 155–160 (1998) coverage, the absence of radiation damage, throughput and the possibility for selective 4 Keywords: tungsten trioxide; electrochromism; growth. For example, CVD of WO3 occurs at thin films; chemical vapor deposition (CVD) temperatures significantly below those for evapora- ° 5 Received 5 December 1996; accepted 3 March 1997 tion (1300 C). FILM GROWTH INTRODUCTION CVD of WO3 from tungsten hexafluoride (WF6) and tungsten carbonyl [W(CO)6] precursors has The electrochromic behavior of tungsten(VI) oxide received the greatest attention. Both compounds are makes WO3 an attractive material for electronic volatile and commercially available. Tungsten 1 devices. Partial reduction of colorless WO3 trioxide films have also been prepared from generates an intense blue color assigned to inter- tungsten alkoxides, W(OC2H5)n (n = 5, 6). Re- valence charge transfer in partially reduced WO3. cently, we have prepared thin films of WO3 from 3 The electrochemical reduction of tungsten(VI) to tetra(allyl)tungsten, W(Z -C3H5)4. A summary of tungsten(V) is accompanied by uptake of cations deposition conditions and film composition is to be (e.g. H,Lietc.) to maintain electrical neutrality, found in Table 1. and is reversible. Applications for thin films of WO3 and other electrochromic materials include ‘smart windows’, electrochromic displays and other electronic devices.1 TUNGSTEN HEXAFLUORIDE Both amorphous and crystalline tungsten oxide films have been prepared. The electrochromic Tungsten hexafluoride, WF6, is widely applied as a properties are strongly dependent on the prepara- precursor for the deposition of tungsten metal and tive method and conditions. For example, sol–gel- has been used in the deposition of tungsten 4,6 derived WO3 films do not exhibit electrochromism oxides. Deposition of pure tungsten from WF6 2 unless they are annealed or laser-fired. The early under H2 or SiH4 results in inclusion of some crystalline W20O58 and possibly other tungsten oxide impurities in body-centered cubic (bcc) 7 *Correspondence to: Rein U. Kirss, Department of Chemistry, tungsten films. Northeastern University, Boston, MA 02115, USA. Tungsten oxide films have been intentionally # 1998 John Wiley & Sons, Ltd. CCC 0268–2605/98/030155–06 $17.50 156 R. U. KIRSS AND L. MEDA Table 1 Comparison of film deposition conditions and composition Growth temp. Growth rate Precursor (°C) (nm/min) Film thickness Structure O:W ratio Ref. a W(CO)6/O2 anneal 500 — 185–1500 Crystalline 3:1 15–17 a W(CO)6/O2/O2 anneal 500 — 185–1500 Crystalline 3.12:1 15–17 W(CO)6/air 200–400 30–40 250 Amorphous 1.83:1 21–24 W(CO)6/air/hn 150–250 200–400 250 Amorphous 2.92:1 25 W(CO)6/O2 (PECVD) 60 8–9 Amorphous 10 WF6/O2 (PECVD) 50–60 28 150–650 Amorphous 3.7:1 10 WF /H /air 50–60 18–24 250 3:1 11 6 Á W(OEt)x (X = 5, 6) 100–300 0.75–30 Amorphous 2.6–3.2:1 6 a W(allyl)4/O2 anneal 250–450 — 250 Crystalline 32 a For these samples, the oxide is generated by oxygen annealing of a previously prepared WOxCy film, so direct comparisons of growth rates are meaningless. deposited from WF6 using pure oxygen or air. A tungsten(VI) in ‘black tungsten’ films. Films were 1 growth rate of 28 nm min was reported for an successfully deposited on quartz, aluminum, and tin amorphous WO3 grown from WF6 in air using oxide-coated glass. plasma-enhanced CVD.8,9 Films ranging from 150 XRD, RHEED and XPS data for ‘black’ or to 650 nm in thickness were deposited at low ‘reflective’ tungsten films annealed in oxygen substrate temperature (50–60 °C) on indium tin between 400 and 600 °C were consistent with oxide-coated sodalime glass substrates. Analysis of formation of polycrystalline WO3 containing 12 fluorine-free films prepared in this fashion gave an monoclinic WO3. The oxygen tungsten ratio in O/W ratio of 3.7:1 by Auger spectroscopy. the transparent films ranged from 2.77:1 to 3.57:1, WO3 films have also been grown on a wide depending on annealing temperature and the partial 15 variety of substrates from WF6 and room air in the pressure of oxygen. Oxidation rates ranged from 1 presence of radiofrequency-generated hydrogen 1 to 2 nm min , producing films from 185 to atoms.10 Growth rates ranged from 18 to 24 nm 1500 nm thick.16,17 1 min producing amorphous, producing films Decomposition of W(CO)6 in air between 200 250 nm thick with a 3:1 ratio of oxygen to tungsten. and 400 °C produces amorphous, transparent WO3 Fluorine impurities were not detected in these films, films with O/W 1.83:1. The films contain metal 1 18–24 but fluorine-doped WO3 films can be prepared from and grow at a rate of 30–40 nm min . Growth pyrolysis of WF6 in the presence of difluoroethane temperatures were further reduced to 150 °C and 1 and isopropanol as the fluorine and oxygen growth rates (200–400 nm min ) were signifi- sources.11 cantly enhanced using photo-assisted CVD (PACVD).21–24 The oxygen/tungsten ratio in the PACVD films ( 250 nm thick) increased to 2.92:1. Growthrates for plasma-enhanced CVD TUNGSTEN HEXACARBONYL using W(CO)6 in O2 at 60 °C are in the range of 8– 1 10 9 nm min . Thermal decomposition of W(CO)6 above 400 °C in the absence of oxygen produces tungsten metal contaminated with carbon and oxygen.12–14 As- deposited films of this type have been referred to as TUNGSTEN ALKOXIDES ‘reflective tungsten’ to distinguish them from ‘black tungsten’ films deposited from W(CO)6 in Tungsten alkoxides are attractive precursors for the presence of oxygen under the same conditions. CVD of tungsten oxide thin films avoiding, in X-ray diffraction (XRD) and Reflection High principle, the need for oxygen annealing steps. Energy Electron Diffraction (RHEED) data on There is one report of CVD of tungsten oxide using 25 black tungsten films were consistent with W18O49 tungsten ethoxides, W(OC2H5)n (n = 5, 6). Penta- and either tetragonal WO2.9 or monoclinic kis(ethoxy)tungsten is a volatile liquid and hex- 11 W20O58. X-ray photo-electron spectroscopy akis(ethoxy)tungsten is a solid. Amorphous, (XPS) confirmed the presence of tungsten(V) and adherent films of WO3 (O:W ratio 2.7–3.2:1) were # 1998 John Wiley & Sons, Ltd. Appl. Organometal. Chem. 12, 155–160 (1998) CHEMICAL VAPOR DEPOSITION OF TUNGSTEN OXIDE 157 Table 2 Summary of electrochromic properties of CVD WO3 films Response time a 2 1 Deposition method Precursor Structure n (cm C ) Coloration Bleaching Ref. Thermal CVD W(CO)6 Amorphous 230 30 s 30 min 18–20 b W(CO)6 Crystalline 40 0.330 s 13 s 13,14 25.5 60–120 s 13–16 c W(OEt)x Amorphous n.r. n.r. n.r. 25 W(allyl)4 Crystalline n.r. n.r. n.r. 31 PACVD W(CO)6 Amorphous 222 2 min 10 min 21–24 PECVD WF6 Amorphous 100 30 s 8,9 a b In 1M LiClO4 or LiBF4 unless otherwise noted. 1M H2SO4. c n.r., not reported. grown on quartz, sodalime glass, indium tin oxide- for application in electrochromic devices can be coated glass and silicon. Growth rates ranged from assessed through measurement of several para- 1 0.75 to 30 nm min over the temperature range meters, including coloration efficiency, response 100–300 °C. Carbon contamination was below time and cycle life1,32 The electrochromic proper- 2 atom%. Powdery blue films were deposited above ties of CVD WO3 films are summarized in Table 2. 350 °C. The color change is described by Eq. [1] and in Fig. 1: WO3 x M x e → MxW(1 x)WxO3 [1] colorless blue ORGANOMETALLIC TUNGSTEN bleached colored COMPOUNDS M = H, Li A number of organometallic tungsten compounds have been investigated as precursors for the CVD of tungsten metal,6 including bis(cyclopentadienyl)- 5 26 tungsten dihydride, [(Z -Cp)2WH2] tris(methyl- COLORATION EFFICIENCY 27 vinylketone)tungsten, [W(C4H6O)3], tris(buta- 27 diene)tungsten [W(C4H8)3] and tetra(allyl)tung- The coloration efficiency, Z, of an electrochromic 28 sten, [W(Z3-C3H5)4 Tungsten carbide films have thin film is determined from Eq.
Recommended publications
  • Electrochromism in Metal Oxide Thin Films
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1323 Electrochromism in Metal Oxide Thin Films Towards long-term durability and materials rejuvenation RUI-TAO WEN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9421-6 UPPSALA urn:nbn:se:uu:diva-267111 2015 Dissertation presented at Uppsala University to be publicly examined in Polhemalen, Ångströmlaboratoriet, Lägerhyddsv. 1, Uppsala, Thursday, 14 January 2016 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Agustín R. González-Elipe (Universidad de Sevilla). Abstract Wen, R.-T. 2015. Electrochromism in Metal Oxide Thin Films. Towards long-term durability and materials rejuvenation. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1323. 86 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9421-6. Electrochromic thin films can effectively regulate the visible and infrared light passing through a window, demonstrating great potential to save energy and offer a comfortable indoor environment in buildings. However, long-term durability is a big issue and the physics behind this is far from clear. This dissertation work concerns two important parts of an electrochromic window: the anodic and cathodic layers. In particular, work focusing on the anodic side develop a new Ni oxide based layers and uncover degradation dynamics in Ni oxide thin films; and work focusing on the cathodic side addresses materials rejuvenation with the aim to eliminate degradation. In the first part of this dissertation work, iridium oxide is found to be compatible with acids, bases and Li+-containing electrolytes, and an anodic layer with very superior long-term durability was developed by incorporating of small amount (7.6 at.
    [Show full text]
  • Safety Data Sheet Material Name: TUNGSTEN HEXAFLUORIDE SDS ID: MAT24560
    Safety Data Sheet Material Name: TUNGSTEN HEXAFLUORIDE SDS ID: MAT24560 Section 1 - PRODUCT AND COMPANY IDENTIFICATION Material Name TUNGSTEN HEXAFLUORIDE Synonyms MTG MSDS 85; TUNGSTEN FLUORIDE (WF6), (OC-6-11)-; WOLFRAM HEXAFLUORIDE; HEXAFLUOROTUNGSTEN; TUNGSTEN(6+) FLUORIDE; TUNGSTEN HEXAFLUORIDE (WF6); TUNGSTEN VI FLUORIDE; TUNGSTEN FLUORIDE; UN 2196; F6W Chemical Family Fluoride, inorganic, metal Product Use Industrial and Specialty Gas Applications. Restrictions on Use None known. Details of the supplier of the safety data sheet MATHESON TRI-GAS, INC. 3 Mountainview Road Warren, NJ 07059 General Information: 1-800-416-2505 Emergency #: 1-800-424-9300 (CHEMTREC) Outside the US: 703-527-3887 (Call collect) Section 2 - HAZARDS IDENTIFICATION Classification in accordance with paragraph (d) of 29 CFR 1910.1200. Gases Under Pressure - Liquefied gas Acute Toxicity - Inhalation - Gas - Category 2 Skin Corrosion/Irritation - Category 1 Serious Eye Damage/Eye Irritation - Category 1 Specific target organ toxicity - Repeated exposure - Category 1 GHS Label Elements Symbol(s) Signal Word Danger Hazard Statement(s) Contains gas under pressure; may explode if heated. Fatal if inhaled. Causes severe skin burns and eye damage. Causes damage to organs through prolonged or repeated exposure. (bones ) Precautionary Statement(s) Prevention Do not breathe gas. Use only outdoors or in a well-ventilated area. In case of inadequate ventilation wear respiratory protection. ____________________________________________________________ Page 1 of 9 Issue date: 2021-07-07 Revision 7.0 Print date: 2021-07-07 Safety Data Sheet Material Name: TUNGSTEN HEXAFLUORIDE SDS ID: MAT24560 Do not eat, drink or smoke when using this product. Wear protective gloves/protective clothing/eye protection/face protection.
    [Show full text]
  • Tungsten Hexafluoride WF6 Safety Data Sheet SDS P4855
    Tungsten hexafluoride Safety Data Sheet P-4855 This SDS conforms to U.S. Code of Federal Regulations 29 CFR 1910.1200, Hazard Communication. Date of issue: 01/01/1985 Revision date: 10/24/2016 Supersedes: 04/28/2015 SECTION: 1. Product and company identification 1.1. Product identifier Product form : Substance Name : Tungsten hexafluoride CAS No : 7783-82-6 Formula : WF6 Other means of identification : Tungsten hexafluoride 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Industrial use. Use as directed. 1.3. Details of the supplier of the safety data sheet Praxair, Inc. 10 Riverview Drive Danbury, CT 06810-6268 - USA T 1-800-772-9247 (1-800-PRAXAIR) - F 1-716-879-2146 www.praxair.com 1.4. Emergency telephone number Emergency number : Onsite Emergency: 1-800-645-4633 CHEMTREC, 24hr/day 7days/week — Within USA: 1-800-424-9300, Outside USA: 001-703-527-3887 (collect calls accepted, Contract 17729) SECTION 2: Hazard identification 2.1. Classification of the substance or mixture GHS-US classification Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330 Skin Corr. 1A H314 Eye Dam. 1 H318 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS04 GHS05 GHS06 Signal word (GHS-US) : DANGER Hazard statements (GHS-US) : H280 - CONTAINS GAS UNDER PRESSURE; MAY EXPLODE IF HEATED H314 - CAUSES SEVERE SKIN BURNS AND EYE DAMAGE H330 - FATAL IF INHALED CGA-HG11 - SYMPTOMS MAY BE DELAYED CGA-HG22 - CORROSIVE TO THE RESPIRATORY TRACT Precautionary statements (GHS-US) : P202
    [Show full text]
  • Electrochromism: from Oxide Thin Films to Devices Aline Rougier, Abdelaadim Danine, Cyril Faure, Sonia Buffière
    Electrochromism: from oxide thin films to devices Aline Rougier, Abdelaadim Danine, Cyril Faure, Sonia Buffière To cite this version: Aline Rougier, Abdelaadim Danine, Cyril Faure, Sonia Buffière. Electrochromism: from oxide thin films to devices. SPIE Photonics West 2015 : OPTO, Feb 2015, San Francisco, United States. 93641D (10 p.), 10.1117/12.2077577. hal-03136350 HAL Id: hal-03136350 https://hal.archives-ouvertes.fr/hal-03136350 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Electrochromism : from oxide thin films to devices Aline Rougier, Abdelaadim Danine, Cyril Faure, Sonia Buffière Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France [email protected] ABSTRACT In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers.
    [Show full text]
  • And Ion-Conductive Polymers in Electrochromic Devices Linköping Studies in Science and Technology Applied Physics Thesis No
    Department of Phvsics and Measurement Technology Linköping University Department of Physics and Measurement Technology S-5S1 S3 Linköping, Sweden Electron- and ion-conductive polymers in electrochromic devices Linköping Studies in Science and Technology Applied Physics Thesis No. 401 Catarina Gustafeson IiU-TEK-LIC-1993:43 ISBN 91-7871-181-9 ISSN 0280-7971 Preface This licentiate thesis is based on work performed in the Conducting Polymer Group, Laboratory of Applied Physics at the Department of Physics, Linköping University, between august 1990 and november 1993. It contains an introduction to the chemistry and physics of electronically conductive polymers, ion-conductive polymers, and electrochromic materials, and the following papers: Paper 1 Heterocyclic conductive polymers as electrode materials in solid state electro- chromic devices J. C. Gustafsson, O. Ingåräs, A. M. Andersson; Synthetic Metals (in press) Paper 2 Spectroscopic evidence for asymmetric polaron states in pory[3-(4-octylphenyl)- thiophene] J. C. Gusti 'sson, Q. Pei, O. Inganäs; Solid State Commun. 87 (1993) 265 Paper ' In situ ^ rf roscopic investigations of electrochromism and ion transport in a pory(3, ,i Jf /lenedioxythiophene) electrode in a solid state electrochemical celL J. C. Gu k; fsson, B. Liedberg, O. Inganäs; Submitted to Solid State Ionics Contents Page 1. Electronically conductive polymers 4 1.1. Historical remarks 4 1.2. Chemical and electronic structure 5 1.3. Charge transport mechanism 8 1.4. Electrochemistry 8 2. Ion-conductive polymers 11 2.1. Introduction 11 2.2. Transport mechanisms and polymer architecture 11 3. Electrochromic materials 14 3.1. Introduction 14 3.2. Coloration mechanisms 15 3.3.
    [Show full text]
  • In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts Supported By
    In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts supported by TiO2 Mengru Li,y Sung Sakong,y and Axel Groß∗,y,z yInstitute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany zHelmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069 Ulm, Germany E-mail: [email protected] Abstract Tungsten-doped vanadia-based catalysts supported on anatase TiO2 are used to re- duce hazardous NO emissions through the selective catalytic reduction of ammonia, but their exact atomistic structure is still largely unknown. In this computational study, the atomistic structure of mixed tungsta-vanadia monolayers on TiO2 support under typical operating conditions has been addressed by periodic density functional theory calcu- lations. The chemical environment has been taken into account in a grand-canonical approach. We evaluate the stable catalyst structures as a function of the oxygen chemi- cal potential and vanadium and tungsten concentrations. Thus we determine structural motifs of tungsta-vanadia/TiO2 catalysts that are stable under operating conditions. Furthermore, we identify active sites that promise high catalytic activity for the selec- tive catalytic reduction by ammonia. Our calculations reveal the critical role of the stoichiometry of the tungsta-vanadia layers with respect to their catalytic activity in the selective catalytic reduction. 1 Keywords Vanadium-based catalyst; Density functional theory; Selective Catalytic Reduction; stoi- chiometry; chemical potential Introduction Nitrogen oxide (NOx) emission from various stationary and mobile sources is significantly contributing to air pollution and causing, among others, ozone depletion, smog, acid rain, 1,2 eutrophication, and eventually global warming.
    [Show full text]
  • Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas
    nanomaterials Communication Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas Detection Yuzhenghan He 1, Xiaoyan Shi 1, Kyle Chen 2 , Xiaohong Yang 1,* and Jun Chen 2,* 1 Key Laboratory of Functional Materials of Chongqing, School of Physics & Information Technology, Chongqing Normal University, Chongqing 400047, China; [email protected] (Y.H.); [email protected] (X.S.) 2 Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; [email protected] * Correspondence: [email protected] (X.Y.); [email protected] (J.C.) Received: 21 February 2020; Accepted: 8 April 2020; Published: 11 April 2020 Abstract: Gas sensors are an important part of smart homes in the era of the Internet of Things. In this work, we studied Ti-doped P-type WO3 thin films for liquefied petroleum gas (LPG) sensors. Ti-doped tungsten oxide films were deposited on glass substrates by direct current reactive magnetron sputtering from a W-Ti alloy target at room temperature. After annealing at 450 ◦C in N2 ambient for 60 min, p-type Ti-doped WO3 was achieved for the first time. The measurement of the room temperature Hall-effect shows that the film has a resistivity of 5.223 103 Wcm, a hole concentration × of 9.227 1012 cm 3, and mobility of 1.295 102 cm2V 1s 1. X-Ray diffraction (XRD) and X-ray × − × − − photoelectron spectroscopy (XPS) analyses reveal that the substitution of W6+ with Ti4+ resulted in p-type conductance. The scanning electron microscope (SEM) images show that the films consist of densely packed nanoparticles.
    [Show full text]
  • Bulk Tungsten-Substituted Vanadium Oxide for Low-Temperature Nox
    ARTICLE https://doi.org/10.1038/s41467-020-20867-w OPEN Bulk tungsten-substituted vanadium oxide for low- temperature NOx removal in the presence of water Yusuke Inomata 1, Hiroe Kubota2, Shinichi Hata3, Eiji Kiyonaga4, Keiichiro Morita4, Kazuhiro Yoshida4, Norihito Sakaguchi 5, Takashi Toyao 2, Ken-ichi Shimizu2,8, Satoshi Ishikawa6, Wataru Ueda6, ✉ Masatake Haruta1 & Toru Murayama 1,7,8 NH3-SCR (selective catalytic reduction) is important process for removal of NOx. However, 1234567890():,; water vapor included in exhaust gases critically inhibits the reaction in a low temperature range. Here, we report bulk W-substituted vanadium oxide catalysts for NH3-SCR at a low temperature (100–150 °C) and in the presence of water (~20 vol%). The 3.5 mol% W- substituted vanadium oxide shows >99% (dry) and ~93% (wet, 5–20 vol% water) NO −1 −1 conversion at 150 °C (250 ppm NO, 250 ppm NH3,4%O2,SV= 40000 mL h gcat ). Lewis acid sites of W-substituted vanadium oxide are converted to Brønsted acid sites under a wet condition while the distribution of Brønsted and Lewis acid sites does not change + without tungsten. NH4 species adsorbed on Brønsted acid sites react with NO accompanied by the reduction of V5+ sites at 150 °C. The high redox ability and reactivity of Brønsted acid sites are observed for bulk W-substituted vanadium oxide at a low temperature in the presence of water, and thus the catalytic cycle is less affected by water vapor. 1 Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University Hachioji, Tokyo 192-0397, Japan.
    [Show full text]
  • Gas and Metal Compatibility Guide
    Gas & Metal Compatibility Table Chemical Suggested Choosing a Mott High Purity Gas Filter: Gas Formula Filter Media Choosing the best metal filter is not always a simple Ammonia NH 3 SS/Ni matter, because in addition to easily identified variables Argon Ar SS/Ni Arsenic Pentafluoride AsF 5 SS/Ni (i.e., gas, pressure and flow), there are subjective Arsine AsH 3 SS/Ni(1) considerations. Some gases are compatible with more Boron Trichloride BCI 3 Ni/H than one type of metal which allows you a choice when Boron Trifluoride BF 3 Ni/H Carbon Dioxide CO 2 SS/Ni selecting the right filter for your application. Carbon Monoxide * CO SS * Carbon Tetrachloride CCl 4 SS/Ni The information contained in this table is a guideline for Carbon Tetraflouride CF 4 SS/Ni appropriate filter selection. Consultation with your gas Chlorine Cl 2 SS/Ni/H Diborane B2H6 SS/Ni(1) supplier is recommended to ensure Dichlorosilane SiH 2Cl 2 Ni/H gas compatibility. Because so many Diethyltelluride C4H10 Te SS/Ni Fluorine F2 Ni/H factors can affect the chemical Freon 13 CClF 3 SS/Ni resistance of a given product, you Freon 14 Tetrafluoromethane CF 4 SS/Ni should pretest under your own Freon 23 Trifluoromethane/Fluoro-form CHF 3 SS/Ni Freon 115 Chloropentafluoroethane C2ClF 5 SS/Ni operating conditions. Freon 116 Hexafluoroethane C2F6 SS/Ni As with any Germane GeH 4 SS/Ni Helium He SS/Ni chemical Hydrogen H2 SS/Ni application, Hydrogen Bromide HBr Ni/H Hydrogen Chloride HCl Ni/H safety precautions Hydrogen Fluoride HF Ni/H as noted on MSDS Hydrogen Selenide H2Se SS/Ni sheets should be Hydrogen Sulfide H2S SS/Ni Krypton Kr SS/Ni observed .
    [Show full text]
  • Tungsten-Based Nanocomposites by Chemical Methods
    Tungsten-Based Nanocomposites by Chemical Methods Sverker Wahlberg Doctoral Thesis in Materials Chemistry Stockholm 2014 KTH Royal Institute of Technology SE-100 44 Stockholm, Sweden TRITA-ICT/MAP AVH Report 2014:20 KTH School of Information and ISSN 1653-7610 Communication Technology ISRN KTH/ICT-MAP/AVH-2014:20-SE SE-164 40, Kista, Sweden ISBN 978-91-7595-368-7 Akademisk avhandling som med tillstånd av KTH i Stockholm framlägges till offentlig granskning för avläggande av teknisk doktorsexamen torsdagen den 11 december kl 10.00 i sal 205, Electrum, KTH, Isafjordsgatan 22, Kista. © Sverker Wahlberg, 2014 Universitetsservice US-AB, Stockholm 2014 2 Abstract Tungsten based-materials find use in many different fields of engineering, particularly in applications where good temperature and/or erosion resistance is important. Nanostructuring of tungsten composites is expected to dramatically improve the materials’ properties and enhancing the performance in present applications but also enabling totally new possibilities. Nanostructured WC-Co materials have been the focus of researchers and engineers for over two decades. New fabrication methods have been developed. But, the fabrication of true nanograined WC-Co composites is still a challenge. Nanostructured tungsten-based materials for applications as plasma facing materials in fusion reactors have attracted a growing interest. This Thesis summarizes work on the development of chemical methods for the fabrication of two different types of nanostructured tungsten-based materials; WC-Co composites mainly for cutting tools applications and W-ODS materials with yttria particles, intended as plasma facing materials in fusion reactors. The approach has been to prepare powders in two steps: a) synthesis of uniform powder precursors containing ions of tungsten and cobalt or yttrium by precipitation from aqueous solutions and b) processing of the precursors into WC- or W-based nano-composite powders.
    [Show full text]
  • Comprehensive Electronics Solutions Praxair Offers a Full Suite of Electronics Gases, Equipment and Services
    Comprehensive Electronics Solutions Praxair offers a full suite of electronics gases, equipment and services. Applications: Semiconductor From cost effectiveness to supply reliability to product quality – across North LEDs and Photonics America and around the world – Praxair is the gas supply partner with a proven Solar track record of success. Praxair’s experts are uniquely positioned to address the key needs of your operation, helping you remain competitive in today’s Nanotechnology highly complex, global electronics market. Electronics Assembly Product solutions with consistent performance Praxair is your industry-leading electronics solutions provider, backed by the dedicated service and industry know-how of the largest industrial gas company in North America. Whether its cylinder specialty gases for production processes, facility support gases from a microbulk system, or bulk or on-site delivery systems for large quantity demands, electronics manufacturing requires reliable, consistent products and service to get the job done right. Praxair’s complete suite of electronics gases, delivery equipment and services are designed to help you boost productivity and cut costs – crucial to your bottom line. Process gases that support your productivity Praxair’s global track record of supporting electronics producers in semiconductor, LED and electronics assembly markets among others is second to none. Our process gases maximize productivity, reduce process costs and enable new technologies. Count on Praxair for a reliable supply of gases that
    [Show full text]
  • Microwave Assisted Pure and Mg Doped Tungsten Oxide WO3 Nanoparticles for Superconducting Applications V
    Microwave Assisted Pure and Mg Doped Tungsten Oxide WO3 Nanoparticles for Superconducting Applications V. Hariharan, V. Aroulmoji, K. Prabakaran, V. Karthik To cite this version: V. Hariharan, V. Aroulmoji, K. Prabakaran, V. Karthik. Microwave Assisted Pure and Mg Doped Tungsten Oxide WO3 Nanoparticles for Superconducting Applications. International jour- nal of advanced Science and Engineering, Mahendra Publications, 2020, 7 (2), pp.1776-1781. 10.29294/IJASE.7.2.2020.1776-1781. hal-03093008 HAL Id: hal-03093008 https://hal.archives-ouvertes.fr/hal-03093008 Submitted on 3 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Int. J. Adv. Sci. Eng. Vol.7 No.2 1776-1781 (2020) 1776 E-ISSN: 2349 5359; P-ISSN: 2454-9967 Microwave Assisted Pure and Mg Doped Tungsten Oxide WO 3 Nanoparticles for Superconducting Applications V. Hariharan 1*, V. Aroulmoji 2, K. Prabakaran 1, V. Karthik 1 1PG & Research Department of Physics, Mahendra Arts and Science College (Autonomous), Kalipatti, Namakkal District, Tamilnadu 637 501, India 2Centre for Research & Development, Mahendra Engineering College, Mahendhirapuri, Mallasamudram 637503, Namakkal District, Tamil Nadu, India ABSTRACT: The aim of the present work focuses the role of “Mg” in WO 3.H 2O nanopowders, doped with Magnesium using a facile microwave irradiation process and the annealing process was carried out at 600°C in air for 6 h in order to remove the impurities and enhance the crystallinity of the end products.
    [Show full text]